Updated on 2024/02/02

写真a

 
YAMADA Hiroshi
 
Organization
Faculty of Medicine, Dentistry and Pharmaceutical Sciences Associate Professor
Position
Associate Professor
External link

Degree

  • 博士(理学) ( 1997.3   広島大学 )

Research Interests

  • 腎臓の血液濾過の分子生理

  • マラリア原虫の細胞生理

  • cytoskeleton

  • cell biology

  • biochemistry

  • biophysics

  • membrane traffic

  • がん細胞の遊走、浸潤

  • クライオ電子顕微鏡

  • microvesicleを介した内在性内分泌制御

Research Areas

  • Life Science / Functional biochemistry

  • Life Science / Cell biology

  • Life Science / Parasitology

  • Life Science / Physiology

  • Life Science / Structural biochemistry  / 電子顕微鏡学

Education

  • Hiroshima University   理学研究科   遺伝子科学専攻

    1995 - 1997

      More details

  • 大阪大学大学院   工学研究科博士前期課程   醗酵工学専攻

    1991 - 1993

      More details

  • Osaka University   工学部   醗酵工学科

    1987 - 1991

      More details

Research History

  • Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University   Department of Biochemistry   Research Professor

    2023.6

      More details

  • Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University   Department of Biochemistry   Associate Professor

    2011.4

      More details

  • 岡山大学大学院医歯薬学総合研究科・講師

    2005.9 - 2011.3

      More details

  • 岡山大学大学院医歯薬学総合研究科・助手(配置換)

    2005.4 - 2005.8

      More details

  • 米国イェール大学医学部細胞生物学講座 (Pietro DeCamilli教授) 客員研究員

    2002.10 - 2003.3

      More details

  • 岡山大学大学院医歯学総合研究科・助手(配置換)

    2001.4 - 2005.3

      More details

  • 岡山大学医学部・助手

    2000.5 - 2001.3

      More details

  • 岡山大学大学院自然科学研究科・講師・中核的研究機関研究員

    1999.10 - 2000.4

      More details

  • Osaka University   The Institute of Scientific and Industrial Research

    1997 - 1999

      More details

▼display all

Professional Memberships

 

Papers

  • Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes. Reviewed International coauthorship International journal

    The Mon La, Hiromi Tachibana, Shun-Ai Li, Tadashi Abe, Sayaka Seiriki, Hikaru Nagaoka, Eizo Takashima, Tetsuya Takeda, Daisuke Ogawa, Shin-Ichi Makino, Katsuhiko Asanuma, Masami Watanabe, Xuefei Tian, Shuta Ishibe, Ayuko Sakane, Takuya Sasaki, Jun Wada, Kohji Takei, Hiroshi Yamada

    FASEB journal : official publication of the Federation of American Societies for Experimental Biology   34 ( 12 )   16449 - 16463   2020.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.

    DOI: 10.1096/fj.202001240RR

    PubMed

    researchmap

    Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1096/fj.202001240RR

  • Structural basis of Irgb6 inactivation by Toxoplasma gondii through the phosphorylation of switch I Reviewed International journal

    Okuma H, Saijo-Hamano Y, Yamada H, Sherif AA, Hashizaki E, Sakai N, Kato T, Imasaki T, Kikkawa S, Nitta E, Sasai M, Abe T, Sugihara F, Maniwa Y, Kosako H, Takei K, Standley DM, Yamamoto M, Nitta R

    Genes to Cells   2023.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.

    DOI: 10.1111/gtc.13080

    PubMed

    researchmap

  • Pacsin 2-dependent N-cadherin internalization regulates the migration behaviour of malignant cancer cells Reviewed

    Haymar Win, Jianzhen Li, Tadashi Abe, Hiroshi Yamada, Takumi Higaki, Yasutomo Nasu, Masami Watanabe, Kohji Takei, Tetsuya Takeda

    Journal of Cell Science   jcs.260827   2023.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1242/jcs.260827

    researchmap

  • Recruitment of Irgb6 to the membrane is a direct trigger for membrane deformation Reviewed International journal

    Hiroshi Yamada, Tadashi Abe, Hikaru Nagaoka, Eizo Takashima, Ryo Nitta, Masahiro Yamamoto, Kohji Takei

    Frontiers in Cellular and Infection Microbiology   12   992198 - 992198   2022.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

    Irgb6 is a member of interferon γ-induced immunity related GTPase (IRG), and one of twenty “effector” IRGs, which coordinately attack parasitophorous vacuole membrane (PVM), causing death of intracellular pathogen. Although Irgb6 plays a pivotal role as a pioneer in the process of PVM disruption, the direct effect of Irgb6 on membrane remained to be elucidated. Here, we utilized artificial lipid membranes to reconstitute Irgb6-membrane interaction in vitro, and revealed that Irgb6 directly deformed the membranes. Liposomes incubated with recombinant Irgb6 were drastically deformed generating massive tubular protrusions in the absence of guanine nucleotide, or with GMP-PNP. Liposome deformation was abolished by incubating with Irgb6-K275A/R371A, point mutations at membrane targeting residues. The membrane tubules generated by Irgb6 were mostly disappeared by the addition of GTP or GDP, which are caused by detachment of Irgb6 from membrane. Binding of Irgb6 to the membrane, which was reconstituted in vitro using lipid monolayer, was stimulated at GTP-bound state. Irgb6 GTPase activity was stimulated by the presence of liposomes more than eightfold. Irgb6 GTPase activity in the absence of membrane was also slightly stimulated, by lowering ionic strength, or by increasing protein concentration, indicating synergistic stimulation of the GTPase activity. These results suggest that membrane targeting of Irgb6 and resulting membrane deformation does not require GTP, but converting into GTP-bound state is crucial for detaching Irgb6 from the membrane, which might coincident with local membrane disruption.

    DOI: 10.3389/fcimb.2022.992198

    PubMed

    researchmap

  • Dynamin: molecular scissors for membrane fission

    Tetsuya Takeda, Hiroshi Yamada, Kohji Takei

    Plasma Membrane Shaping   77 - 90   2022.9

     More details

    Publishing type:Part of collection (book)   Publisher:Elsevier  

    DOI: 10.1016/b978-0-323-89911-6.00023-6

    researchmap

  • The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes Reviewed International journal

    Eriko Hamasaki, Natsuki Wakita, Hiroki Yasuoka, Hikaru Nagaoka, Masayuki Morita, Eizo Takashima, Takayuki Uchihashi, Tetsuya Takeda, Tadashi Abe, Ji-Won Lee, Tadahiro Iimura, Moin A Saleem, Naohisa Ogo, Akira Asai, Akihiro Narita, Kohji Takei, Hiroshi Yamada

    Frontiers in Cell and Developmental Biology   10   1 - 12   2022.5

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with α-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.

    DOI: 10.3389/fcell.2022.884509

    PubMed

    researchmap

  • Microtubule assembly by soluble tau impairs vesicle endocytosis and excitatory neurotransmission via dynamin sequestration in Alzheimer's disease mice synapse model Reviewed International journal

    Tetsuya Hori, Kohgaku Eguchi, Han-Ying Wang, Tomohiro Miyasaka, Laurent Guillaud, Zacharie Taoufiq, Satyajit Mahapatra, Hiroshi Yamada, Kohji Takei, Tomoyuki Takahashi

    eLife   11   2022.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:eLife Sciences Publications, Ltd  

    Elevation of soluble wild-type (WT) tau occurs in synaptic compartments in Alzheimer's disease. We addressed whether tau elevation affects synaptic transmission at the calyx of Held in slices from mice brainstem. Whole-cell loading of WT human tau (h-tau) in presynaptic terminals at 10-20 µM caused microtubule (MT) assembly and activity-dependent rundown of excitatory neurotransmission. Capacitance measurements revealed that the primary target of WT h-tau is vesicle endocytosis. Blocking MT assembly using nocodazole prevented tau-induced impairments of endocytosis and neurotransmission. Immunofluorescence imaging analyses revealed that MT assembly by WT h-tau loading was associated with an increased MT-bound fraction of the endocytic protein dynamin. A synthetic dodecapeptide corresponding to dynamin-1-pleckstrin-homology domain inhibited MT-dynamin interaction and rescued tau-induced impairments of endocytosis and neurotransmission. We conclude that elevation of presynaptic WT tau induces de novo assembly of MTs, thereby sequestering free dynamins. As a result, endocytosis and subsequent vesicle replenishment are impaired, causing activity-dependent rundown of neurotransmission.

    DOI: 10.7554/elife.73542

    PubMed

    researchmap

    Other Link: https://cdn.elifesciences.org/articles/73542/elife-73542-v1.xml

  • Imaging‐based evaluation of pathogenicity by novel DNM2 variants associated with centronuclear myopathy Reviewed

    Kenshiro Fujise, Mariko Okubo, Tadashi Abe, Hiroshi Yamada, Kohji Takei, Ichizo Nishino, Tetsuya Takeda, Satoru Noguchi

    Human Mutation   43 ( 2 )   169 - 179   2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    DOI: 10.1002/humu.24307

    PubMed

    researchmap

  • Dynamin 2 and BAR domain protein pacsin 2 cooperatively regulate formation and maturation of podosomes Reviewed International journal

    Jianzhen Li, Kenshiro Fujise, Haymar Wint, Yosuke Senju, Shiro Suetsugu, Hiroshi Yamada, Kohji Takei, Tetsuya Takeda

    Biochemical and Biophysical Research Communications   571   145 - 151   2021.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated. In this study, we identified a BAR (Bin-Amphiphysin-Rvs167) domain protein pacsin 2 as a functional partner of dynamin 2 at podosomes. Dynamin 2 and pacsin 2 interact and co-localize to podosomes in Src-transformed NIH 3T3 (NIH-Src) cells. RNAi of either dynamin 2 or pacsin 2 in NIH-Src cells inhibited podosome formation and maturation, suggesting essential and related roles at podosomes. Consistently, RNAi of pacsin 2 prevented dynamin 2 localization to podosomes, and reciprocal RNAi of dynamin 2 prevented pacsin 2 localization to podosomes. Taking these results together, we conclude that dynamin 2 and pacsin 2 co-operatively regulate organization of podosomes in NIH-Src cells.

    DOI: 10.1016/j.bbrc.2021.07.041

    PubMed

    researchmap

  • JRAB/MICAL-L2 undergoes liquid–liquid phase separation to form tubular recycling endosomes Reviewed

    Ayuko Sakane, Taka-aki Yano, Takayuki Uchihashi, Kazuki Horikawa, Yusuke Hara, Issei Imoto, Shusaku Kurisu, Hiroshi Yamada, Kohji Takei, Takuya Sasaki

    Communications Biology   4 ( 1 )   2021.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    <title>Abstract</title>Elongated tubular endosomes play essential roles in diverse cellular functions. Multiple molecules have been implicated in tubulation of recycling endosomes, but the mechanism of endosomal tubule biogenesis has remained unclear. In this study, we found that JRAB/MICAL-L2 induces endosomal tubulation via activated Rab8A. In association with Rab8A, JRAB/MICAL-L2 adopts its closed form, which functions in the tubulation of recycling endosomes. Moreover, JRAB/MICAL-L2 induces liquid–liquid phase separation, initiating the formation of tubular recycling endosomes upon overexpression. Between its N-terminal and C-terminal globular domains, JRAB/MICAL-L2 contains an intrinsically disordered region, which contributes to the formation of JRAB/MICAL-L2 condensates. Based on our findings, we propose that JRAB/MICAL-L2 plays two sequential roles in the biogenesis of tubular recycling endosomes: first, JRAB/MICAL-L2 organizes phase separation, and then the closed form of JRAB/MICAL-L2 formed by interaction with Rab8A promotes endosomal tubulation.

    DOI: 10.1038/s42003-021-02080-7

    researchmap

    Other Link: http://www.nature.com/articles/s42003-021-02080-7

  • Mutant BIN1-Dynamin 2 complexes dysregulate membrane remodeling in the pathogenesis of centronuclear myopathy. Reviewed International journal

    Kenshiro Fujise, Mariko Okubo, Tadashi Abe, Hiroshi Yamada, Ichizo Nishino, Satoru Noguchi, Kohji Takei, Tetsuya Takeda

    The Journal of Biological Chemistry   2020.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Membrane remodeling is required for dynamic cellular processes such as cell division, polarization and motility. BAR domain proteins and dynamins are key molecules in membrane remodeling that work together for membrane deformation and fission. In striated muscles, sarcolemmal invaginations termed T-tubules are required for excitation-contraction coupling. BIN1 and DNM2, which encode a BAR domain protein BIN1 and dynamin 2, respectively, have been reported to be causative genes of centronuclear myopathy (CNM), a hereditary degenerative disease of skeletal muscle, and deformation of T-tubules is often observed in the CNM patients. However, it remains unclear how BIN1 and dynamin 2 are implicated in T-tubule biogenesis, and how mutations in these molecules cause CNM to develop.Here, using an in cellulo reconstitution assay, we demonstrate that dynamin 2 is required for stabilization of membranous structures equivalent to T-tubules. GTPase activity of wild type dynamin 2 is suppressed through interaction with BIN1, whereas that of the disease-associated mutant dynamin 2 remains active due to lack of the BIN1-mediated regulation thus causing aberrant membrane remodeling. Finally, we show that in cellulo aberrant membrane remodeling by mutant dynamin 2 variants is correlated with their enhanced membrane fission activities, and the results can explain severity of the symptoms in patients. Thus, this study provides molecular insights into dysregulated membrane remodeling triggering the pathogenesis of DNM2-related centronuclear myopathy.

    DOI: 10.1074/jbc.RA120.015184

    PubMed

    researchmap

  • Initial phospholipid-dependent Irgb6 targeting to Toxoplasma gondii vacuoles mediates host defense. Reviewed International journal

    Youngae Lee, Hiroshi Yamada, Ariel Pradipta, Ji Su Ma, Masaaki Okamoto, Hikaru Nagaoka, Eizo Takashima, Daron M Standley, Miwa Sasai, Kohji Takei, Masahiro Yamamoto

    Life science alliance   3 ( 1 )   2020.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Toxoplasma gondii is an obligate intracellular protozoan parasite capable of infecting warm-blooded animals by ingestion. The organism enters host cells and resides in the cytoplasm in a membrane-bound parasitophorous vacuole (PV). Inducing an interferon response enables IFN-γ-inducible immunity-related GTPase (IRG protein) to accumulate on the PV and to restrict parasite growth. However, little is known about the mechanisms by which IRG proteins recognize and destroy T. gondii PV. We characterized the role of IRG protein Irgb6 in the cell-autonomous response against T. gondii, which involves vacuole ubiquitination and breakdown. We show that Irgb6 is capable of binding a specific phospholipid on the PV membrane. Furthermore, the absence of Irgb6 causes reduced targeting of other effector IRG proteins to the PV. This suggests that Irgb6 has a role as a pioneer in the process by which multiple IRG proteins access the PV. Irgb6-deficient mice are highly susceptible to infection by a strain of T. gondii avirulent in wild-type mice.

    DOI: 10.26508/lsa.201900549

    PubMed

    researchmap

  • Internalization of AMPA-type Glutamate Receptor in the MIN6 Pancreatic β-cell Line Reviewed International journal

    The Mon La, Hiroshi Yamada, Sayaka Seiriki, Shun-AI Li, Kenshiro Fujise, Natsuho Katsumi, Tadashi Abe, Masami Watanabe, Kohji Takei

    Cell Structure and Function   45 ( 2 )   121 - 130   2020

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Japan Society for Cell Biology  

    DOI: 10.1247/csf.20020

    PubMed

    researchmap

  • ATP6AP2 variant impairs CNS development and neuronal survival to cause fulminant neurodegeneration. Reviewed International coauthorship International journal

    Takuo Hirose, Alfredo Cabrera-Socorro, David Chitayat, Thomas Lemonnier, Olivier Féraud, Carmen Cifuentes-Diaz, Nicolas Gervasi, Cedric Mombereau, Tanay Ghosh, Loredana Stoica, Jeanne d'Arc Al Bacha, Hiroshi Yamada, Marcel A Lauterbach, Marc Guillon, Kiriko Kaneko, Joy W Norris, Komudi Siriwardena, Susan Blasér, Jérémie Teillon, Roberto Mendoza-Londono, Marion Russeau, Julien Hadoux, Sadayoshi Ito, Pierre Corvol, Maria G Matheus, Kenton R Holden, Kohji Takei, Valentina Emiliani, Annelise Bennaceur-Griscelli, Charles E Schwartz, Genevieve Nguyen, Matthias Groszer

    The Journal of Clinical Investigation   129 ( 5 )   2145 - 2162   2019.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase-dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase-dependent signaling and protein degradation in the developing human central nervous system.

    DOI: 10.1172/JCI79990

    PubMed

    researchmap

  • Phosphorylation of cortactin by cyclin-dependent kinase 5 modulates actin bundling by the dynamin 1-cortactin ring-like complex and formation of filopodia and lamellipodia in NG108-15 glioma-derived cells. Reviewed International journal

    Tadashi Abe, The Mon La, Yuuzi Miyagaki, Eri Oya, Fan-Yan Wei, Kento Sumida, Kenshiro Fujise, Tetsuya Takeda, Kazuhito Tomizawa, Kohji Takei, Hiroshi Yamada

    International Journal of Oncology   54 ( 2 )   550 - 558   2019.2

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Dynamin copolymerizes with cortactin to form a ring‑like complex that bundles and stabilizes actin filaments. Actin bundle formation is crucial for generation of filopodia and lamellipodia, which guide migration, invasion, and metastasis of cancer cells. However, it is unknown how the dynamin‑cortactin complex regulates actin bundle formation. The present study investigated phosphorylation of cortactin by cyclin‑dependent kinase 5 (CDK5) and its effect on actin bundle formation by the dynamin‑cortactin complex. CDK5 directly phosphorylated cortactin at T145/T219 in vitro. Phosphomimetic mutants in which one or both of these threonine residues was substituted by aspartate were used. The three phosphomimetic mutants (T145D, T219D and T145DT219D) had a decreased affinity for F‑actin. Furthermore, electron microscopy demonstrated that these phosphomimetic mutants could not form a ring‑like complex with dynamin 1. Consistently, the dynamin 1‑phosphomimetic cortactin complexes exhibited decreased actin‑bundling activity. Expression of the phosphomimetic mutants resulted in not only aberrant lamellipodia and short filopodia but also cell migration in NG108‑15 glioma‑derived cells. These results indicate that phosphorylation of cortactin by CDK5 regulates formation of lamellipodia and filopodia by modulating dynamin 1/cortactin‑dependent actin bundling. Taken together, these findings suggest that CDK5 is a potential molecular target for anticancer therapy.

    DOI: 10.3892/ijo.2018.4663

    PubMed

    researchmap

  • A Novel Membrane Fission Mechanism by Dynamin Complex: Clusterase Model

    TAKEI Kohji, YAMADA Hiroshi, TAKEDA Tetsuya

    Seibutsu Butsuri   59 ( 5 )   255 - 261   2019

     More details

    Language:Japanese   Publisher:The Biophysical Society of Japan General Incorporated Association  

    Dynamin GTPase, an essential endocytotic protein, helically polymerizes at the neck of endocytic pits, and mechanically sever the membrane upon GTP hydrolysis. However, it is not known exactly how the dynamin disconnect the membrane. To clarify the mechanisms we analyzed structural changes of dynamin complexes during membrane fission using electron microscopy and high-speed atomic force microscopy (HS-AFM). Surprisingly, the dynamin ring complexes were clustered upon GTP hydrolysis and membrane constriction occurred at uncoated regions between the clusters, suggesting a novel mode of action of dynamin. In this commentary, we illustrate dynamin’s membrane fission models proposed thus far, and our novel “clusterase” model.

    DOI: 10.2142/biophys.59.255

    CiNii Article

    CiNii Books

    researchmap

    Other Link: http://id.ndl.go.jp/bib/030043645

  • Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis Reviewed

    Tetsuya Takeda, Toshiya Kozai, Huiran Yang, Daiki Ishikuro, Kaho Seyama, Yusuke Kumagai, Tadashi Abe, Hiroshi Yamada, Takayuki Uchihashi, Toshio Ando, Kohji Takei

    eLife   7   2018.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:eLife Sciences Publications Ltd  

    Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission.

    DOI: 10.7554/eLife.30246

    Scopus

    PubMed

    researchmap

  • Dynamin2 GTPase contributes to invadopodia formation in invasive bladder cancer cells Reviewed

    Yubai Zhang, Maya Nolan, Hiroshi Yamada, Masami Watanabe, Yasutomo Nasu, Kohji Takei, Tetsuya Takeda

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   480 ( 3 )   409 - 414   2016.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Cancer cell invasion is mediated by actin-based membrane protrusions termed invadopodia. Invadopodia consist of "core" F-actin bundles associated with adhesive and proteolytic machineries promoting cell invasion by degrading extracellular matrix (ECM). Formation of the F-actin core in invadopodia is regulated by various actin-binding proteins including Arp2/3 complex and cortactin. Dynamin GTPase localizes to the invadopodia and is implicated in cancer cell invasion, but its precise role at the invadopodia remained elusive.
    In this study, we examined the roles of dynamin at the invadopodia of bladder cancer cells. Although all three dynamin isoforms (dynamin1, 2 and 3) are expressed in human bladder cancer cell line T24, only dynamin2 localizes to the invadopodia. Inhibition of dynamin2 function, using either RNA interference (RNAi) or the dynamin specific inhibitor Dynasore, caused defects in invadopodia formation and suppressed invasive activity of 124 bladder cancer cells. Structure-function analysis using dynamin2 deletion fragments identified the proline/arginine-rich domain (PRD) of dynamin2 as indispensable for invadopodia formation and invasiveness of 124 cells. Thus, dynamin2 contributes to bladder cancer invasion by controlling invadopodia formation in bladder cancer cells and may prove a valuable therapeutic target. (C) 2016 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.bbrc.2016.10.063

    Web of Science

    PubMed

    researchmap

  • Actin bundling by dynamin 2 and cortactin is implicated in cell migration by stabilizing filopodia in human non-small cell lung carcinoma cells Reviewed

    Hiroshi Yamada, Tetsuya Takeda, Hiroyuki Michiue, Tadashi Abe, Kohji Takei

    International Journal of Oncology   49 ( 3 )   877 - 886   2016.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPANDIDOS PUBL LTD  

    The endocytic protein dynamin participates in the formation of actin-based membrane protrusions such as podosomes, pseudopodia, and invadopodia, which facilitate cancer cell migration, invasion, and metastasis. However, the role of dynamin in the formation of actin-based membrane protrusions at the leading edge of cancer cells is unclear. In this study, we demonstrate that the ubiquitously expressed dynamin 2 isoform facilitates cell migration by stabilizing F-actin bundles in filopodia of the lung cancer cell line H1299. Pharmacological inhibition of dynamin 2 decreased cell migration and filopodial formation. Furthermore, dynamin 2 and cortactin mostly colocalized along F-actin bundles in filopodia of serum-stimulated H1299 cells by immunofluorescent and immunoelectron microscopy. Knockdown of dynamin 2 or cortactin inhibited the formation of filopodia in serum-stimulated H1299 cells, concomitant with a loss of F-actin bundles. Expression of wild-type cortactin rescued the punctate-like localization of dynamin 2 and filopodial formation. The incubation of dynamin 2 and cortactin with F-actin induced the formation of long and thick actin bundles, with these proteins colocalizing at F-actin bundles. A depolymerization assay revealed that dynamin 2 and cortactin increased the stability of F-actin bundles. These results indicate that dynamin 2 and cortactin participate in cell migration by stabilizing F-actin bundles in filopodia. Taken together, these findings suggest that dynamin might be a possible molecular target for anticancer therapy.

    DOI: 10.3892/ijo.2016.3592

    Web of Science

    PubMed

    researchmap

  • Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice Reviewed

    Takashi Hatanaka, Daisuke Ogawa, Hiromi Tachibana, Jun Eguchi, Tatsuyuki Inoue, Hiroshi Yamada, Kohji Takei, Hirofumi Makino, Jun Wada

    Pharmacology Research and Perspectives   4 ( 4 )   e00239   2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley-Blackwell Publishing Ltd  

    It is unclear whether the improvement in diabetic nephropathy by sodium glucose cotransporter 2 (SGLT2) inhibitors is caused by a direct effect on SGLT2 or by the improvement in hyperglycemia. Here, we investigated the effect of dapagliflozin on early-stage diabetic nephropathy using a mouse model of type 1 diabetes and murine proximal tubular epithelial cells. Eight-week-old Akita mice were treated with dapagliflozin or insulin for 12 weeks. Body weight, urinary albumin excretion, blood pressure, as well as levels of blood glucose and hemoglobin A1c were measured. Expansion of the mesangial matrix, interstitial fibrosis, and macrophage infiltration in kidneys were evaluated by histology. Oxidative stress and apoptosis were evaluated in kidneys and cultured proximal tubular epithelial cells. Compared with nontreated mice, dapagliflozin and insulin decreased blood glucose and hemoglobin A1c levels equally. Urine volume and water intake increased significantly in the dapagliflozin-treated group compared with those in the insulin-treated group, but there were no differences in body weight or blood pressure between the two groups. Macrophage infiltration and fibrosis in renal interstitium improved significantly in the dapagliflozin group compared with the insulin group. Oxidative stress was attenuated by dapagliflozin, and suppression occurred in a dose-dependent manner. RNAi knockdown of SGLT2 resulted in reduced oxidative stress. Dapagliflozin ameliorates diabetic nephropathy by suppressing hyperglycemia-induced oxidative stress in a manner independent of hyperglycemia improvement in Akita mice. Our findings suggest that dapagliflozin may be a novel therapeutic approach for the treatment of diabetic nephropathy.

    DOI: 10.1002/prp2.239

    Scopus

    PubMed

    researchmap

  • Expression of a dynamin 2 mutant associated with Charcot-Marie-Tooth disease leads to aberrant actin dynamics and lamellipodia formation Reviewed

    Hiroshi Yamada, Kinue Kobayashi, Yubai Zhang, Tetsuya Takeda, Kohji Takei

    Neuroscience Letters   628   179 - 185   2016.8

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.neulet.2016.06.030

    Web of Science

    PubMed

    researchmap

  • Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Reviewed International journal

    Keiichiro Hayashi, Hiroyuki Michiue, Hiroshi Yamada, Katsuyoshi Takata, Hiroki Nakayama, Fan-Yan Wei, Atsushi Fujimura, Hiroshi Tazawa, Akira Asai, Naohisa Ogo, Hiroyuki Miyachi, Tei-ichi Nishiki, Kazuhito Tomizawa, Kohji Takei, Hideki Matsui

    Scientific reports   6   23372 - 23372   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Glioblastoma multiforme (GBM) is the most common malignant brain tumor with a median survival time about one year. Invasion of GBM cells into normal brain is the major cause of poor prognosis and requires dynamic reorganization of the actin cytoskeleton, which includes lamellipodial protrusions, focal adhesions, and stress fibers at the leading edge of GBM. Therefore, we hypothesized that inhibitors of actin polymerization can suppress GBM migration and invasion. First, we adopted a drug repositioning system for screening with a pyrene-actin-based actin polymerization assay and identified fluvoxamine, a clinically used antidepressant. Fluvoxamine, selective serotonin reuptake inhibitor, was a potent inhibitor of actin polymerization and confirmed as drug penetration through the blood-brain barrier (BBB) and accumulation of whole brain including brain tumor with no drug toxicity. Fluvoxamine inhibited serum-induced ruffle formation, cell migration, and invasion of human GBM and glioma stem cells in vitro by suppressing both FAK and Akt/mammalian target of rapamycin signaling. Daily treatment of athymic mice bearing human glioma-initiating cells with fluvoxamine blocked tumor cell invasion and prolonged the survival with almost same dose of anti-depressant effect. In conclusion, fluvoxamine is a promising anti-invasive treatment against GBM with reliable approach.

    DOI: 10.1038/srep23372

    Web of Science

    PubMed

    researchmap

  • Possible role of cortactin phosphorylation by protein kinase Cα in actin-bundle formation at growth cone Reviewed International journal

    Hiroshi Yamada, Tatsuya Kikuchi, Toshio Masumoto, Fan-Yan Wei, Tadashi Abe, Tetsuya Takeda, Teiichi Nishiki, Kazuhito Tomizawa, Masami Watanabe, Hideki Matsui, Kohji Takei

    Biology of the Cell   107 ( 9 )   319 - 330   2015.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    BACKGROUND INFORMATION: Cortactin contributes to growth cone morphogenesis by forming with dynamin, ring-shaped complexes that mechanically bundle and stabilise F-actin. However, the regulatory mechanism of cortactin action is poorly understood. RESULTS: Immunofluorescence microscopy revealed that protein kinase C (PKC) α colocalises with cortactin at growth cone filopodia in SH-SY5Y neuroblastoma cells. PKC activation by phorbol 12-myristate 13-acetate causes cortactin phosphorylation, filopodial retraction and F-actin-bundle loss. Moreover, PKCα directly phosphorylates cortactin in vitro at S135/T145/S172, mitigating both cortactin's actin-binding and actin-crosslinking activity, whereas cellular expression of a phosphorylation-mimetic cortactin mutant hinders filopodial formation with a significant decrease of actin bundles. CONCLUSIONS: Our results indicate that PKC-mediated cortactin phosphorylation might be implicated in the maintenance of growth cone.

    DOI: 10.1111/boc.201500032

    Web of Science

    PubMed

    researchmap

  • Metallothionein deficiency exacerbates diabetic nephropathy in streptozotocin-induced diabetic mice Reviewed

    Hiromi Tachibana, Daisuke Ogawa, Norio Sogawa, Masato Asanuma, Ikuko Miyazaki, Naoto Terami, Takashi Hatanaka, Chikage Sato Horiguchi, Atsuko Nakatsuka, Jun Eguchi, Jun Wada, Hiroshi Yamada, Kohji Takei, Hirofumi Makino

    American Journal of Physiology - Renal Physiology   306 ( 1 )   F105 - F115   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Oxidative stress and inflammation play important roles in diabetic complications, including diabetic nephropathy. Metallothionein (MT) is induced in proximal tubular epithelial cells as an antioxidant in the diabetic kidney
    however, the role of MT in renal function remains unclear. We therefore investigated whether MT deficiency accelerates diabetic nephropathy through oxidative stress and inflammation. Diabetes was induced by streptozotocin injection in MT-deficient (MT-/-) and MT+/+ mice. Urinary albumin excretion, histological changes, markers for reactive oxygen species (ROS), and kidney inflammation were measured. Murine proximal tubular epithelial (mProx24) cells were used to further elucidate the role of MT under high-glucose conditions. Parameters of diabetic nephropathy and markers of ROS and inflammation were accelerated in diabetic MT-/- mice compared with diabetic MT+/+ mice, despite equivalent levels of hyperglycemia. MT deficiency accelerated interstitial fibrosis and macrophage infiltration into the interstitium in the diabetic kidney. Electron microscopy revealed abnormal mitochondrial morphology in proximal tubular epithelial cells in diabetic MT-/- mice. In vitro studies demonstrated that knockdown of MT by small interfering RNA enhanced mitochondrial ROS generation and inflammation-related gene expression in mProx24 cells cultured under high-glucose conditions. The results of this study suggest that MT may play a key role in protecting the kidney against high glucose-induced ROS and subsequent inflammation in diabetic nephropathy. © 2014 the American Physiological Society.

    DOI: 10.1152/ajprenal.00034.2013

    Scopus

    researchmap

  • N′-[4-(dipropylamino)benzylidene]-2-hydroxybenzohydrazide is a dynamin GTPase inhibitor that suppresses cancer cell migration and invasion by inhibiting actin polymerization Reviewed

    Hiroshi Yamada, Tadashi Abe, Shun-Ai Li, Shota Tago, Peng Huang, Masami Watanabe, Satoru Ikeda, Naohisa Ogo, Akira Asai, Kohji Takei

    Biochemical and Biophysical Research Communications   443 ( 2 )   511 - 517   2014.1

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.bbrc.2013.11.118

    Web of Science

    PubMed

    researchmap

  • Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. Reviewed International journal

    Naoto Terami, Daisuke Ogawa, Hiromi Tachibana, Takashi Hatanaka, Jun Wada, Atsuko Nakatsuka, Jun Eguchi, Chikage Sato Horiguchi, Naoko Nishii, Hiroshi Yamada, Kohji Takei, Hirofumi Makino

    PloS one   9 ( 6 )   e100777   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    Inhibition of sodium glucose cotransporter 2 (SGLT2) has been reported as a new therapeutic strategy for treating diabetes. However, the effect of SGLT2 inhibitors on the kidney is unknown. In addition, whether SGLT2 inhibitors have an anti-inflammatory or antioxidative stress effect is still unclear. In this study, to resolve these issues, we evaluated the effects of the SGLT2 inhibitor, dapagliflozin, using a mouse model of type 2 diabetes and cultured proximal tubular epithelial (mProx24) cells. Male db/db mice were administered 0.1 or 1.0 mg/kg of dapagliflozin for 12 weeks. Body weight, blood pressure, blood glucose, hemoglobin A1c, albuminuria and creatinine clearance were measured. Mesangial matrix accumulation and interstitial fibrosis in the kidney and pancreatic β-cell mass were evaluated by histological analysis. Furthermore, gene expression of inflammatory mediators, such as osteopontin, monocyte chemoattractant protein-1 and transforming growth factor-β, was evaluated by quantitative reverse transcriptase-PCR. In addition, oxidative stress was evaluated by dihydroethidium and NADPH oxidase 4 staining. Administration of 0.1 or 1.0 mg/kg of dapagliflozin ameliorated hyperglycemia, β-cell damage and albuminuria in db/db mice. Serum creatinine, creatinine clearance and blood pressure were not affected by administration of dapagliflozin, but glomerular mesangial expansion and interstitial fibrosis were suppressed in a dose-dependent manner. Dapagliflozin treatment markedly decreased macrophage infiltration and the gene expression of inflammation and oxidative stress in the kidney of db/db mice. Moreover, dapagliflozin suppressed the high-glucose-induced gene expression of inflammatory cytokines and oxidative stress in cultured mProx24 cells. These data suggest that dapagliflozin ameliorates diabetic nephropathy by improving hyperglycemia along with inhibiting inflammation and oxidative stress.

    DOI: 10.1371/journal.pone.0100777

    Web of Science

    PubMed

    researchmap

  • Stabilization of Actin Bundles by a Dynamin 1/Cortactin Ring Complex Is Necessary for Growth Cone Filopodia Reviewed

    H. Yamada, T. Abe, A. Satoh, N. Okazaki, S. Tago, K. Kobayashi, Y. Yoshida, Y. Oda, M. Watanabe, K. Tomizawa, H. Matsui, K. Takei

    Journal of Neuroscience   33 ( 10 )   4514 - 4526   2013.3

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Society for Neuroscience  

    DOI: 10.1523/jneurosci.2762-12.2013

    PubMed

    researchmap

  • Cancer stem cell-like characteristics of a CD133+ subpopulation in the J82 human bladder cancer cell line. Reviewed International journal

    Peng Huang, Masami Watanabe, Haruki Kaku, Hideo Ueki, Hirofumi Noguchi, Morito Sugimoto, Takeshi Hirata, Hiroshi Yamada, Kohji Takei, Shaobo Zheng, Kai Xu, Yasutomo Nasu, Yasuyuki Fujii, Chunxiao Liu, Hiromi Kumon

    Molecular and clinical oncology   1 ( 1 )   180 - 184   2013.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Cancer stem cells (CSCs) are thought to be crucial for understanding the biological roots of cancer, and are of increasing importance as a target for new anticancer agents. According to an expression analysis of the cell surface antigens of various types of cancer, CD133 is considered to be a potential marker of cancer stemness. In this study, a human urinary bladder cancer cell line (J82) was used to analyze the cancer stem cell-like characteristics of CD133+ bladder cancer cells in vitro and in vivo. The CD133 expression in the J82 cells was examined and the cells were immunomagnetically categorized into positive and negative subsets. The CD133- and CD133+ subsets were phenotypically divergent with regard to the cell growth pattern, while CD133+ cells tended to colonize during their growth. In CD133+ cells, the pluripotent stem cell factors Oct-4 and Sox-2 were upregulated, and a statistically significant proliferation increase was observed when compared to CD133- cells. The CD133+ subpopulation was more tolerant to the chemotherapeutic agent cisplatin, and Bacillus Calmette-Guérin (BCG), an agent instilled intravesically to treat bladder cancer. In addition, CD133+ J82 cells were more resistant to radiation treatment when compared to CD133- cells. The in vivo tumorigenesis of the CD133- and CD133+ subsets of J82 cancer cells was also examined by subcutaneously injecting them into nude mice. The tumor growth was more aggressive in the CD133+ subpopulation, showing a significant difference in the tumorigenic potential in these subsets. In conclusion, J82 human bladder cancer cells include CD133- and CD133+ subpopulations, while the CD133 molecule is a potential marker of the potential malignancy of human bladder cancer. In the present study, the CD133+ subpopulation was herein demonstrated to have certain characteristics consistent with those of cancer stem cells.

    DOI: 10.3892/mco.2012.29

    PubMed

    researchmap

  • REIC/Dkk-3-encoding adenoviral vector as a potentially effective therapeutic agent for bladder cancer. Reviewed International journal

    Takeshi Hirata, Masami Watanabe, Haruki Kaku, Yasuyuki Kobayashi, Hiroshi Yamada, Masakiyo Sakaguchi, Kohji Takei, Nam-Ho Huh, Yasutomo Nasu, Hiromi Kumon

    International journal of oncology   41 ( 2 )   559 - 64   2012.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPANDIDOS PUBL LTD  

    Bladder cancer is one of the most common urogenital malignancies. The intravesical instillation of anticancer agents is an attractive strategy to treat a superficial lesion or floating/disseminated cancer cells after transurethral operation. An adenovirus carrying REIC/Dkk-3, a tumor suppressor gene (Ad-REIC), exhibits cancer-specific apoptotic effects in various types of cancer cells. The aim of the present study was to examine the potential of Ad-REIC as a therapeutic agent for bladder cancer. KK47 and RT4 human bladder cancer cells were sensitive to the Ad-REIC treatment for apoptosis induction, but some human bladder cancer cell lines (T24, J82 and TccSup) were resistant. Significant cell growth inhibition was observed when these resistant cancer cell lines were treated with Ad-REIC in a condition of floating cells, which is clinically observed after transurethral operation and becomes a cause of intravesical cancer dissemination. The therapeutic potential of Ad-REIC for the treatment of multidrug-resistant bladder cancer was investigated. The adriamycin-resistant KK47 bladder cancer cells (KK47/ADM), which also present multidrug resistance, showed induction of significant apoptosis following Ad-REIC treatment. The Ad-REIC treatment induced downregulation of P-glycoprotein in KK47/ADM cells and restored the sensitivity to doxorubicin (adriamycin). Ad-REIC suppressed P-glycoprotein expression in a c-Jun-NH2-kinase (JNK)-dependent manner. Therefore, the current study indicated two therapeutic aspects of the Ad-REIC agent against human bladder cancer cells, as an apoptosis inducer/cell growth inhibitor and as a sensitizer of chemotherapeutic agents in multidrug-resistant cancer cells. The intravesical instillation of Ad-REIC could be an attractive therapeutic method in human bladder cancer where the treatment of superficial lesions and floating/disseminated or multidrug-resistant cancer cells is necessary.

    DOI: 10.3892/ijo.2012.1503

    Web of Science

    PubMed

    researchmap

  • A novel gene expression system for detecting viable bladder cancer cells Reviewed

    Hideo Ueki, Masami Watanabe, Haruki Kaku, Peng Huang, Shun-Ai Li, Kazuhiko Ochiai, Takeshi Hirata, Hirofumi Noguchi, Hiroshi Yamada, Kohji Takei, Yasutomo Nasu, Yuji Kashiwakura, Hiromi Kumon

    INTERNATIONAL JOURNAL OF ONCOLOGY   41 ( 1 )   135 - 140   2012.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPANDIDOS PUBL LTD  

    A novel transcriptional system was developed that can robustly enhance cancer-specific gene expression. In the system, hTERT promoter-driven gene expression was enhanced by an advanced two-step transcriptional amplification (TSTA). This construct was used to develop a novel system for detection of bladder cancer cells. The current study evaluated the advanced TSTA system by examining the cancer-specific gene transcription in various bladder cancer cell lines. The system significantly enhanced cancer-specific luciferase gene expression in the bladder cancer cell lines in comparison to the previous expression system of one-step or conventional TSTA. The fold gain of the enhancement was significantly correlated to the telomerase activity of the cell lines. A green fluorescent protein (GFP) gene encoding plasmid vector was constructed where hTERT promoter-driving transcription is enhanced by the advanced TSTA to utilize the system for the imaging and detection of viable bladder cancer cells. The advanced TSTA-hTERT-GFP plasmid successfully induced cancer-specific gene expression, showing robust GFP expression in human bladder cancer cell lines, but no visible GFP expression in normal bladder urothelial cells. The control GFP plasm id with a CMV promoter yielded GFP expression in both normal bladder cells and cancer cells. The advanced TSTA-hTERT-GFP plasmid allowed selective visualization of viable human bladder cancer cells in mixed cell culture containing 10- and 100-fold more normal bladder urothelial cells. These findings indicate that the advanced TSTA-hTERT expressional system is a valuable tool for detecting viable bladder cancer cells. The current system can be applied for in vitro detection of bladder cancer cells in urine and other types of cancer cells disseminated in vivo.

    DOI: 10.3892/ijo.2012.1417

    Web of Science

    PubMed

    researchmap

  • Expression pattern of REIC/Dkk-3 in various cell types and the implications of the soluble form in prostatic acinar development Reviewed

    Kai Zhang, Masami Watanabe, Yuji Kashiwakura, Shun-Al Li, Kohei Edamura, Peng Huang, Ken Yamaguchi, Yasutomo Nasu, Yasuyuki Kobayashi, Masakiyo Sakaguchi, Kazuhiko Ochiai, Hiroshi Yamada, Kohji Takei, Hideo Ueki, Nam-Ho Huh, Ming Li, Haruki Kaku, Yanqun Na, Hiromi Kumon

    INTERNATIONAL JOURNAL OF ONCOLOGY   37 ( 6 )   1495 - 1501   2010.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPANDIDOS PUBL LTD  

    The tumor suppressor REIC/Dkk-3 is a secretory protein which was originally identified to be downregulated in human immortalized cells In the present study, we investigated the expression pattern of REIC/Dkk-3 in various cell types to characterize its physiological functions We first examined the expression level of REIC/Dkk-3 in a broad range of cancer cell types and confirmed that it was significantly downregulated in all of the cell types We also examined the tissue distribution pattern in a variety of normal mouse organs Ubiquitous REIC/Dkk-3 protein expression was observed in the organs The expression was abundant in the liver, heart and brain tissue, but was absent in the spleen and peripheral blood mononuclear cells The immunohistochemical analyses revealed that the subcellular localization of REIC/Dkk-3 had a punctate pattern around the nucleus, indicating its association with secretory vesicles In cancer cells stably transfected with REIC/Dkk-3 the protein was predominantly localized to the endoplasmic reticulum (ER) under observation with confocal microscopy Because REIC/ Dkk-3 was found to be abundantly expressed in the acinar epithelial cells of the mouse prostate, we analyzed the effects of recombinant REIC/Dkk-3 protein on the acinar morphogenesis of RWPE-1 cells, which are derived from human normal prostate epithelium Statistically significant acinar growth was observed in the culture condition with 10 mu g/m1 REIC/Dkk-3 protein, implicating the soluble form m prostatic acinar development Current results suggest that REIC/Dkk-3 may play a role in regulating the morphological process of normal tissue architecture through an autocrine and/or paracrine manner

    DOI: 10.3892/ijo_00000802

    Web of Science

    PubMed

    researchmap

  • Use of liposomes to study vesicular transport. Reviewed International journal

    Kohji Takei, Hiroshi Yamada, Tadashi Abe

    Methods in molecular biology (Clifton, N.J.)   606   531 - 42   2010

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Liposomes have been utilized for variety of membrane transport studies including clathrin-mediated endocytosis. Here we introduce clathrin-coated structures that are generated on large unilamellar liposomes by incubating with clathrin coat proteins. Large unilamellar liposomes are also used to reconstitute vesicle formation in a cell-free system, and the vesicle formation can be quantified by using dynamic light scattering (DLS). Furthermore, phagocytosis assay using liposome-conjugated styrene beads is demonstrated.

    DOI: 10.1007/978-1-60761-447-0_36

    PubMed

    researchmap

  • Dynamic Interaction of Amphiphysin with N-WASP Regulates Actin Assembly Reviewed

    Hiroshi Yamada, Sergi Padilla-Parra, Sun-Joo Park, Toshiki Itoh, Mathilde Chaineau, Ilaria Monaldi, Ottavio Cremona, Fabio Benfenati, Pietro De Camilli, Maïté Coppey-Moisan, Marc Tramier, Thierry Galli, Kohji Takei

    Journal of Biological Chemistry   284 ( 49 )   34244 - 34256   2009.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society for Biochemistry & Molecular Biology (ASBMB)  

    DOI: 10.1074/jbc.m109.064204

    PubMed

    researchmap

  • Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments Reviewed

    Hiroshi Yamada, Tadashi Abe, Shun-Ai Li, Yuki Masuoka, Mihoko Isoda, Masami Watanabe, Yasutomo Nasu, Hiromi Kumon, Akira Asai, Kohji Takei

    Biochemical and Biophysical Research Communications   390 ( 4 )   1142 - 1148   2009.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.bbrc.2009.10.105

    PubMed

    researchmap

  • Dynamin 2 is required for actin assembly in phagocytosis in Sertoli cells Reviewed

    Atsushi Otsuka, Tadashi Abe, Masami Watanabe, Hitoshi Yagisawa, Kohji Takei, Hiroshi Yamada

    Biochemical and Biophysical Research Communications   378 ( 3 )   478 - 482   2009.1

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.bbrc.2008.11.066

    Web of Science

    PubMed

    researchmap

  • Dynamin 2 cooperates with amphiphysin 1 in phagocytosis in sertoli cells. Reviewed

    Akira Nakanishi, Tadashi Abe, Masami Watanabe, Kohji Takei, Hiroshi Yamada

    Acta medica Okayama   62 ( 6 )   385 - 91   2008.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Testicular Sertoli cells highly express dynamin 2 and amphiphysin 1. Here we demonstrate that dynamin 2 is implicated in phosphatidylserine (PS)-dependent phagocytosis in Sertoli cells. Immunofluorescence and dual-live imaging revealed that dynamin 2 and amphiphysin 1 accumulate simultaneously at ruffles. These proteins are specifically bound in vitro. Over-expression of dominant negative dynamin 2 (K44A) inhibits liposome-uptake and leads to the mis-localization of amphiphysin 1. Thus, the cooperative function of dynamin 2 and amphiphysin 1 in PS-dependent phagocytosis is strongly suggested.

    DOI: 10.18926/AMO/30954

    PubMed

    researchmap

  • Amphiphysin 1 Is Important for Actin Polymerization during Phagocytosis Reviewed

    Hiroshi Yamada, Emiko Ohashi, Tadashi Abe, Norihiro Kusumi, Shun-AI Li, Yumi Yoshida, Masami Watanabe, Kazuhito Tomizawa, Yuji Kashiwakura, Hiromi Kumon, Hideki Matsui, Kohji Takei

    Molecular Biology of the Cell   18 ( 11 )   4669 - 4680   2007.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society for Cell Biology (ASCB)  

    Amphiphysin 1 is involved in clathrin-mediated endocytosis. In this study, we demonstrate that amphiphysin 1 is essential for cellular phagocytosis and that it is critical for actin polymerization. Phagocytosis in Sertoli cells was induced by stimulating phosphatidylserine receptors. This stimulation led to the formation of actin-rich structures, including ruffles, phagocytic cups, and phagosomes, all of which showed an accumulation of amphiphysin 1. Knocking out amphiphysin 1 by RNA interference in the cells resulted in the reduction of ruffle formation, actin polymerization, and phagocytosis. Phagocytosis was also drastically decreased in amph 1 (−/−) Sertoli cells. In addition, phosphatidylinositol-4,5-bisphosphate–induced actin polymerization was decreased in the knockout testis cytosol. The addition of recombinant amphiphysin 1 to the cytosol restored the polymerization process. Ruffle formation in small interfering RNA-treated cells was recovered by the expression of constitutively active Rac1, suggesting that amphiphysin 1 functions upstream of the protein. These findings support that amphiphysin 1 is important in the regulation of actin dynamics and that it is required for phagocytosis.

    DOI: 10.1091/mbc.e07-04-0296

    Web of Science

    PubMed

    researchmap

  • Major Cdk5-dependent phosphorylation sites of amphiphysin 1 are implicated in the regulation of the membrane binding and endocytosis. Reviewed International journal

    Shuang Liang, Fan-Yan Wei, Yu-Mei Wu, Kenji Tanabe, Tadashi Abe, Yoshiya Oda, Yumi Yoshida, Hiroshi Yamada, Hideki Matsui, Kazuhito Tomizawa, Kohji Takei

    Journal of neurochemistry   102 ( 5 )   1466 - 1476   2007.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING  

    Amphiphysin 1 (amph 1) is an endocytic protein enriched in the nerve terminals that functions in the clathrin-mediated endocytosis. It acts as membrane curvature sensor, a linker of clathrin coat proteins, and an enhancer of dynamin Guanosine Triphosphatase (GTPase) activity. Amph 1 undergoes phosphorylation by cyclin-dependent kinase 5 (Cdk5), at five phosphorylation sites, serine 262, 272, 276, 285, and threonine 310, as determined by mass spectrometry (MS). We show here that Cdk5-dependent phosphorylation of amph 1 is enhanced in the presence of lipid membranes. Analysis by tandem liquid chromatograph MS revealed that the phosphorylation occurs at two phosphorylation sites. The phosphorylation was markedly decreased by mutation either Ser276 or Ser285 of amph 1 to alanine (S276A and S285A). Furthermore, mutation of both sites (S276, 285A) completely eliminated the phosphorylation. Functional studies indicated that binding of amph 1 to lipid membrane was attenuated by Cdk5-dependent phosphorylation of wild type amph 1, but not of the S276, 285A form. Interestingly, endocytosis was increased in rat pheochromocytoma cells expressing amph 1 S276, 285A in comparison with wild type. These results suggest that Ser276 and Ser285 are regulatory Cdk5 phosphorylation sites of amph 1 in the lipid-bound state. Phosphorylation at these sites alters binding of amph 1 to lipid membranes, and may be an important regulatory aspect in the regulation of synaptic vesicle endocytosis.

    DOI: 10.1111/j.1471-4159.2007.04507.x

    Web of Science

    PubMed

    researchmap

  • Identification of Vanabin-interacting protein 1 (VIP1) from blood cells of the vanadium-rich ascidian Ascidia sydneiensis samea Reviewed

    Tatsuya Ueki, Koki Shintaku, Yuki Yonekawa, Nariaki Takatsu, Hiroshi Yamada, Toshiyuki Hamada, Hiroshi Hirota, Hitoshi Michibata

    BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS   1770 ( 6 )   951 - 957   2007.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Several species of ascidians, the so-called tunicates, accumulate extremely high levels of vanadium ions in their blood cells. We previously identified a family of vanadium-binding proteins, named Vanabins, from blood cells and blood plasma of a vanadium-rich ascidian, Ascidia sydneiensis samea. The 3-dimensional structure of Vanabin2, the predominant vanadium-binding protein in blood cells, has been revealed, and the vanadium-binding properties of Vanabin2 have been studied in detail. Here, we used Far Western blotting to identify a novel protein that interacts with Vanabin2 from a blood cell cDNA library. The protein, named Vanabin-interacting protein 1 (VIP1), was localized in the cytoplasm of signet ring cells and giant cells. Using a two-hybrid method, we revealed that VIP1 interacted with Vanabins 1, 2, 3, and 4 but not with Vanabin P. The N-terminal domain of VIP1 was shown to be important for the interaction. Further, Vanabin1 was found to interact with all of the other Vanabins. These results suggest that VIP1 and Vanabin1 act as metal chaperones or target proteins in vanadocytes. (c) 2007 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.bbagen.2007.02.003

    Web of Science

    researchmap

  • Implication of amphiphysin 1 and dynamin 2 in tubulobulbar complex formation and spermatid release. Reviewed

    Norihiro Kusumi, Masami Watanabe, Hiroshi Yamada, Shun-Ai Li, Yuji Kashiwakura, Takashi Matsukawa, Atsushi Nagai, Yasutomo Nasu, Hiromi Kumon, Kohji Takei

    Cell structure and function   32 ( 2 )   101 - 13   2007

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN SOC CELL BIOLOGY  

    Tubulobulbar complexes (TBCs) are composed of several tubular invaginations formed at the plasma membrane of testicular Sertoli cells. TBCs are transiently formed at the contact region with spermatids at spermatogenic stage VII in rat and mouse, and such TBC formation is prerequisite for spermatid release. Since the characteristic structure of TBCs suggests that the molecules implicated in endocytosis could be involved in TBC formation, we here investigated the localization and physiological roles of endocytic proteins, amphiphysin 1 and dynamin 2, at TBCs. We demonstrated by immunofluorescence that the endocytic proteins were concentrated at TBCs, where they colocalized with cytoskeletal proteins, such as actin and vinculin. Immunoelectron microscopy disclosed that both amphiphysin 1 and dynamin 2 were localized on TBC membrane. Next, we histologically examined the testis from amphiphysin 1 deficient {Amph(-/-)} mice. Morphometric analysis revealed that the number of TBCs was significantly reduced in Amph(-/-). The ratio of stage VIII seminiferous tubules was increased, and the ratio of stage IX was conversely decreased in Amph(-/-). Moreover, unreleased spermatids in stage VIII seminiferous tubules were increased in Amph(-/-), indicating that spermatid release and the following transition from stage VIII to IX was prolonged in Amph(-/-) mice. These results suggest that amphiphysin 1 and dynamin 2 are involved in TBC formation and spermatid release at Sertoli cells.

    Web of Science

    PubMed

    researchmap

  • Localization of Vanabins, vanadium-binding proteins, in the blood cells of the vanadium-rich ascidian, Ascidia sydneiensis samea Reviewed

    Nobuo Yamaguchi, Yuko Amakawa, Hiroshi Yamada, Tatsuya Ueki, Hitoshi Michibata

    ZOOLOGICAL SCIENCE   23 ( 10 )   909 - 915   2006.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ZOOLOGICAL SOC JAPAN  

    Some species of the family Ascidiidae accumulate vanadium in concentrations in excess of 350 mM, which is about 10(7)-fold higher than the concentration of vanadium in seawater. In these species, signet ring cells with a single large vacuole in which vanadium ions are contained function as vanadium-accumulating cells. These have been termed vanadocytes. We recently isolated five vanadium-binding proteins, which we named Vanabin1, Vanabin2, Vanabin3, Vanabin4, and VanabinP, from vanadocytes of the vanadium-rich ascidian Ascidia sydneiensis samea. In this study, we analyzed localization of the Vanabins in the blood cells of A. sydneiensis samea using monoclonal antibodies and confocal microscopy. The Vanabin1 and Vanabin2 proteins were found in the cytoplasm and/or in some organelles of vanadocytes. Vanabin3 was also detected in the cytoplasm, while Vanabin4 was found exclusively in the cytoplasmic membrane.

    DOI: 10.2108/zsj.23.909

    Web of Science

    PubMed

    researchmap

  • Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Reviewed

    Shun-Ai Li, Masami Watanabe, Hiroshi Yamada, Atsushi Nagai, Masahiro Kinuta, Kohji Takei

    Cell structure and function   29 ( 4 )   91 - 9   2004.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN SOC CELL BIOLOGY  

    Klotho mutant mouse (kl-/-), a mouse model for human aging, exhibits various phenotypes in a wide range of organs including arteriosclerosis, neural degeneration, skin and gonadal atrophy, pulmonary emphysema, calcification of soft tissues, and cognition impairment. Klotho mRNA, however, is expressed only in brain, kidney, reproductive organs, pituitary gland, and parathyroid gland. Therefore it remains to be elucidated how lack of Klotho protein in these limited organs leads to the variety of phenotypes. To shed light on mechanisms by which Klotho protein acts on distant targets, we examined localization of Klotho protein in brain, kidney, and reproductive organs, and analyzed brain and kidney in kl-/- mice searching for changes in target regions in these organs. In brain, Klotho proteins were localized at choroid plexus, where the proteins were dominantly localized at the apical plasma membrane of ependymal cells. In kl-/- brain, reduction of synapses was evident in hippocampus, suggesting a role of Klotho as a humoral factor in cerebrospinal fluid. Klotho proteins in kidney localized at distal renal tubules. Interestingly, in kl-/-mice, type IIa Na/phosphate (Pi) cotransporters, which function at the proximal renal tubules in reabsorption of phosphate ions, were translocated. This suggests that Klotho protein in kidney is implicated in calcium homeostasis which regulates localization of type IIa Na/Pi cotransporters via parathyroid hormone (PTH). Klotho proteins in reproductive organs were expressed only in mature germ cells, although in kl-/- mice germ cell maturation was arrested at earlier stages. Thus, Klotho proteins not only function as a humoral factor, but also are implicated in hormonal regulation, which may explain why mutation of klotho gene results in a variety of phenotypes.

    Web of Science

    PubMed

    researchmap

  • ジエチルニトロソアミン投与アカタラセミアマウスにおけるビタミンEの効果 Reviewed

    益岡典芳, 汪 達紘, 太田 潤, 山田輝夫, 石橋直樹, 森 將晏, 池田己喜子, 山田浩司, 吉良尚平

    ビタミンE研究の進歩XI(ビタミンE研究会編)   40 - 44   2004.12

     More details

    Language:Japanese   Publishing type:Part of collection (book)  

    researchmap

  • Dynamin-2 regulates oxidized low-density lipoprotein-induced apoptosis of vascular smooth muscle cell Reviewed

    Y Kashiwakura, M Watanabe, N Kusumi, K Sumiyoshi, Y Nasu, H Yamada, T Sawamura, H Kumon, K Takei, H Daida

    CIRCULATION   110 ( 21 )   3329 - 3334   2004.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT WILLIAMS & WILKINS  

    Background-On exposure to oxidized low-density lipoprotein (oxLDL), vascular cells generally undergo apoptosis, which is one of the major pathogenic factors of atherosclerosis. In this study, we examined the role of dynamin ( a crucial GTPase protein in endocytosis) in oxLDL-induced apoptosis of vascular smooth muscle cells (VSMC).
    Methods and Results-After oxLDL stimulation, dynamin-2 colocalized with LOX-1 around the cell surface, as well as oxLDL in the cytoplasm, suggesting that dynamin-2 was involved in scavenger receptor-mediated oxLDL endocytosis. Downregulation of dynamin-2 induced by dynamin-2 dominant negative plasmid (K44A) resulted in a decrease of oxLDL uptake and thereby in a reduction of apoptosis. These data demonstrated that dynamin-2 was involved in oxLDL-induced apoptosis via the oxLDL endocytotic pathway. On the other hand, dynamin-2 wild-type plasmid transfection promoted oxLDL-induced apoptosis without increasing oxLDL uptake. Interestingly, the p53 inhibitor pifithrin-alpha (PFT) significantly reduced apoptosis promoted by wild-type dynamin-2 (78% reduction compared with the PFT[-] condition). These results indicated that dynamin-2 enhanced oxLDL-induced apoptosis of VSMC by participating in the p53 pathway, probably as a signal transducer. Moreover, we demonstrated that, in advanced plaques of apolipoprotein E-/- mice, dynamin-2 expression was often enhanced in apoptotic VSMC, suggesting that dynamin-2 might participate in apoptosis of VSMC even in vivo.
    Conclusions - Our data demonstrated that dynamin-2 at least partially regulated oxLDL-induced apoptosis of VSMC by participating in 2 independent pathways: the oxLDL endocytotic pathway and the p53 pathway. These findings suggest that dynamin-2 may serve as a new research or therapeutic target in vascular disease.

    DOI: 10.1161/01.CIR.0000147828.86593.85

    Web of Science

    PubMed

    researchmap

  • Formation of S-[2-carboxy-1-(1H-imidazol-4-yl) ethyl]glutathione, a new metabolite of L-histidine, from cis-urocanic acid and glutathione by the action of glutathione S-transferase. Reviewed International journal

    Masahiro Kinuta, Keiko Kinuta, Hiroshi Yamada, Tadashi Abe, Yumi Yoshida, Kenta Araki, Shun-Ai Li, Atsushi Otsuka, Akira Nakanishi, Yoshinori Moriyama, Kohji Takei

    Electrophoresis   24 ( 18 )   3212 - 8   2003.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    Exposure of the skin to sunlight results in an increase of the content of epidermal trans-urocanic acid, a key metabolite of L-histidine, and also in occurrence of the isomerization of trans-urocanic acid to the cis isomer. S-[2-Carboxy-1-(1H-imidazol-4-yl)ethyl]glutathione (GS(CIE)), an adduct of urocanic acid and glutathione, is a presumed origin of a urinary compound S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-L-cysteine (Cys(CIE)). The formation of GS(CIE) is stimulated by exposing the skin to sunlight irradiation. In this study we investigated an enzymatic formation of GS(CIE) from glutathione and cis-urocanic acid by incubation with rat liver extract that contained glutathione S-transferase (GST) at high activity. The formation of GS(CIE) was suppressed significantly when a liver extract depleted of GST activity was used. Enzymatic degradation of GS(CIE) with gamma -glutamyl transpeptidase resulted in the formation of N-[S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-L-cysteinyl]glycine, a metabolic intermediate between the glutathione adduct and Cys(CIE). A hydrolyzed product of GS(CIE) by HCl was identical with the urinary Cys(CIE). Compounds were analyzed by high-voltage paper electrophoresis, capillary electrophoresis, and fast atom bombardment mass spectrometry. From these results, we suggest that GS(CIE) formed from cis-urocanic acid and glutathione is an origin of the urinary compound Cys(CIE) and that the formation reaction is catalyzed mostly by the action of GST.

    DOI: 10.1002/elps.200305582

    Web of Science

    PubMed

    researchmap

  • Secretory granule-mediated co-secretion of L-glutamate and glucagon triggers glutamatergic signal transmission in islets of Langerhans. Reviewed International journal

    Mitsuko Hayashi, Hiroshi Yamada, Shunsuke Uehara, Riyo Morimoto, Akiko Muroyama, Shouki Yatsushiro, Jun Takeda, Akitsugu Yamamoto, Yoshinori Moriyama

    The Journal of biological chemistry   278 ( 3 )   1966 - 74   2003.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    L-Glutamate is believed to function as an intercellular transmitter in the islets of Langerhans. However, critical issues, i.e. where, when and how L-glutamate appears, and what happens upon stimulation of glutamate receptors in the islets, remain unresolved. Vesicular glutamate transporter 2 (VGLUT2), an isoform of the vesicular glutamate transporter essential for neuronal storage of L-glutamate, is expressed in alpha cells (Hayashi, M., Otsuka, M., Morimoto, R., Hirota, S., Yatsushiro, S., Takeda, J., Yamamoto, A., and Moriyama, Y. (2001) J. Biol. Chem. 276, 43400-43406). Here we show that VGLUT2 is specifically localized in glucagon-containing secretory granules but not in synaptic-like microvesicles in alpha TC6 cells, clonal alpha cells, and islet alpha cells. VGLUT1, another VGLUT isoform, is also expressed and localized in secretory granules in alpha cells. Low glucose conditions triggered co-secretion of stoichiometric amounts of L-glutamate and glucagon from alpha TC6 cells and isolated islets, which is dependent on temperature and Ca(2+) and inhibited by phentolamine. Similar co-secretion of L-glutamate and glucagon from islets was observed upon stimulation of beta-adrenergic receptors with isoproterenol. Under low glucose conditions, stimulation of glutamate receptors facilitates secretion of gamma-aminobutyric acid from MIN6 m9, clonal beta cells, and isolated islets. These results indicate that co-secretion of L-glutamate and glucagon from alpha cells under low glucose conditions triggers GABA secretion from beta cells and defines the mode of action of L-glutamate as a regulatory molecule for the endocrine function. To our knowledge, this is the first example of secretory granule-mediated glutamatergic signal transmission.

    DOI: 10.1074/jbc.M206758200

    Web of Science

    PubMed

    researchmap

  • Distribution of dynamins in testis and their possible relation to spermatogenesis. Reviewed International journal

    Akihiro Kamitani, Hiroshi Yamada, Masahiro Kinuta, Masami Watanabe, Shun-Ai Li, Takashi Matsukawa, Mark McNiven, Hiromi Kumon, Kohji Takei

    Biochemical and biophysical research communications   294 ( 2 )   261 - 7   2002.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Dynamin 2 and dynamin 3 are highly expressed in testis. However, their functions in the tissue remain unclear. Considering that dynamin 1, neuron-specific isoform of dynamin, plays a pivotal role in endocytosis, functions of dynamin 2 and dynamin 3 in testis must be essential. Cellular expression and subcellular localization of dynamin 2 and dynamin 3 in testis were investigated. Dynamin 2 and dynamin 3 were highly expressed in germ cells and Sertoli cells, constituents of seminiferous tubules. By immunofluorescence it was revealed that dynamin 2 colocalizes with clathrin both at the plasmamembrane and at Golgi in a cell line of Sertoli cells. Immunoreactivity for dynamin 3, on the other hand, appeared as finer puncta, which did not colocalize with clathrin, suggesting that these two dynamins have distinct functions in Sertoli cells. In the klotho deficient mouse testis, which demonstrates disorder in spermatogenesis, expression of dynamin 2 and dynamin 3 was drastically reduced indicating possible association of these proteins with spermatogenesis.

    DOI: 10.1016/S0006-291X(02)00470-9

    Web of Science

    PubMed

    researchmap

  • Norepinephrine triggers Ca2+-dependent exocytosis of 5-hydroxytryptamine from rat pinealocytes in culture. Reviewed International journal

    Hiroshi Yamada, Mitsuko Hayashi, Shunsuke Uehara, Mika Kinoshita, Akiko Muroyama, Masami Watanabe, Koji Takei, Yoshinori Moriyama

    Journal of neurochemistry   81 ( 3 )   533 - 40   2002.5

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING LTD  

    5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.

    Web of Science

    PubMed

    researchmap

  • Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Reviewed International journal

    Masahiro Kinuta, Hiroshi Yamada, Tadashi Abe, Masami Watanabe, Shun-Ai Li, Akihiro Kamitani, Tatsuji Yasuda, Takashi Matsukawa, Hiromi Kumon, Kohji Takei

    Proceedings of the National Academy of Sciences of the United States of America   99 ( 5 )   2842 - 7   2002.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    As a step toward the elucidation of mechanisms in vesicle budding, a cell-free assay that measures cytosol-induced vesicle generation from liposomes was established. This assay then was used to explore the role of phosphoinositides in vesicle formation. Liposomes incubated with brain cytosol in the presence of ATP and GTP massively generated small vesicles, as assessed both quantitatively and qualitatively by a dynamic light-scattering assay. Both ATP and GTP were required. Vesicle formation was inhibited greatly by the immunodepletion of dynamin 1 from the cytosol, indicating a major contribution of this GTPase in this reaction and suggesting that it mimics endocytic vesicle fission. Increasing the concentration of l-alpha-phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] but not of l-alpha-phosphatidylinositol 4-monophosphate or l-alpha-phosphatidylinositol in the lipid membranes enhanced vesicle formation. Lipid analysis revealed rapid degradation of PtdIns(4,5)P2 to l-alpha-phosphatidylinositol during the incubation with the reaction reaching a maximum within 5 sec, whereas vesicle formation proceeded with a longer time course. PtdIns(4,5)P2 degradation was independent of vesicle formation and occurred also in the presence of guanosine 5'-O-(thiotriphosphate), where few vesicle formations occurred. These results suggest that PtdIns(4,5)P2 plays a critical role in the early step of vesicle formation, possibly in the recruitment of coats and fission factors to membranes.

    DOI: 10.1073/pnas.261715599

    Web of Science

    PubMed

    researchmap

  • Identification and Characterization of a Synaptojanin 2 Splice Isoform Predominantly Expressed in Nerve Terminals Reviewed

    Yasuo Nemoto, Markus R. Wenk, Masami Watanabe, Laurie Daniell, Tomoe Murakami, Niels Ringstad, Hiroshi Yamada, Kohji Takei, Pietro De Camilli

    Journal of Biological Chemistry   276 ( 44 )   41133 - 41142   2001.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    We have previously identified synaptojanin 1, a phosphoinositide phosphatase predominantly expressed in the nervous system, and synaptojanin 2, a broadly expressed isoform. Synaptojanin 1 is concentrated in nerve terminals, where it has been implicated in synaptic vesicle recycling and actin function. Synaptojanin 2A is targeted to mitochondria via a PDZ domain-mediated interaction. We have now characterized an alternatively spliced form of synaptojanin 2 that shares several properties with synaptojanin 1. This isoform, synaptojanin 2B, undergoes further alternative splicing to generate synaptojanin 2B1 and 2B2. Both amphiphysin and endophilin, two partners synaptojanin 1, bind synaptojanin 2B2, whereas only amphiphysin binds synaptojanin 2B1. Sequence similar to the endophilin-binding site in synaptojanin 1 is present only in synaptojanin 2B2, and this sequence was capable of affinity purifying endophilin from rat brain. The Sac1 domain of synaptojanin 2 exhibited phosphoinositide phosphatase activity very similar to that of the Sac1 domain of synaptojanin 1. Site-directed mutagenesis further illustrated its functional similarity to the catalytic domain of Sac1 proteins. Antibodies raised against the synaptojanin 2B-specific carboxyl-terminal region identified a 160-kDa protein in brain and testis. Immunofluorescence showed that synaptojanin 2B is localized at nerve terminals in brain and at the spermatid manchette in testis. Active Rac1 GTPase affects the intracellular localization of synaptojanin 2, but not of synaptojanin 1. These results suggest that synaptojanin 2B has a partially overlapping function with synaptojanin 1 in nerve terminals, with additional roles in neurons and other cells including spermatids.

    DOI: 10.1074/jbc.M106404200

    Scopus

    PubMed

    researchmap

  • Determination of S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]glutathione, a novel metabolite of L-histidine, in tissue extracts from sunlight-irradiated rat by capillary electrophoresis Reviewed

    M Kinuta, J Ohta, H Yamada, K Kinuta, T Abe, SA Li, A Otsuka, A Nakanishi, K Takei

    ELECTROPHORESIS   22 ( 16 )   3365 - 3370   2001.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    Exposure of the skin to sunlight results in an increase in the content of epidermal Urocanic acid, a key metabolite Of L-histidine, and some portions of the metabolite penetrate into the body fluid. S-[2-Carboxy-1 -(1H-imidazol-4-yl)ethyl]glutathione (GS(CIE)), an adduct of glutathione and urocanic acid, was proposed to be an origin of a urinary compound, S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-L-cysteine (Cys(CIE)). Various catabolites of Cys(CIE) were also isolated from human urine previously. However, no direct evidence to show the existence of GS(CIE) as a biological material had been found. By using capillary electrophoresis, the glutathione adduct has now been found in the extracts of rat tissues from the kidney, liver, skin and blood when the rat was kept under conditions of sunlight irradiation after the fur on the dorsal skin had been clipped. On the other hand, no or a trace of GS(CIE) was determined in rat tissue extracts when the animal was kept indoor in usual manner. The glutathione adduct was isolated from the kidney extract of the sunlight-irradiated rat using ion-exchangers and high-voltage paper electrophoresis, and determined by fast-atom-bombardment mass spectrometry. These results indicate that GS(CIE) formation actually occurs in the body and that the formation is accelerated by exposing the rat to sunlight irradiation. From these findings, we propose an alternative pathway of histidine metabolism which is initiated by the adduction of urocanic acid to glutathione to form GS(CIE) and terminates with the formation of the urinary compounds via Cys(CIE).

    Web of Science

    researchmap

  • D-aspartate is stored in secretory granules and released through a Ca2+-dependent pathway in a subset of rat pheochromocytoma PC12 cells Reviewed

    S Nakatsuka, M Hayashi, A Muroyama, M Otsuka, S Kozaki, H Yamada, Y Moriyama

    JOURNAL OF BIOLOGICAL CHEMISTRY   276 ( 28 )   26589 - 26596   2001.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    D-Aspartate in mammalian neuronal and neuroendocrine cells is suggested to play a regulatory role(s) in the neuroendocrine function. Although D-aspartate is known to be released from neuroendocrine cells, the mechanism underlying the release is less understood. Rat pheochromocytoma PC12 cells contain an appreciable amount of D-aspartate (257 +/- 31 pmol/10(7) cells). Indirect immunofluorescence microscopy with specific antibodies against D-aspartate indicated that the amino acid is present within a particulate structure, which is co-localized with dopamine and chromogranin A, markers for secretory granules, but not with synaptophysin, a marker for synaptic-like microvesicles. After sucrose density gradient centrifugation of the postnuclear particulate fraction, about 80% of the D-aspartate was recovered in the secretory granule fraction. Upon the addition of KCI, an appreciable amount of D-aspartate (about 40 pmol/10(7) cells at 10 min) was released from cultured cells on incubation in the presence of Ca2+ in the medium. The addition of A23187 also triggered D-aspartate release. Botulinum neurotoxin type E inhibited about 40% of KCl- and Ca2+-dependent D-aspartate release followed by specific cleavage of 25-kDa synaptosomal-associated protein. alpha -latrotoxin increased the intracellular [Ca2+] and caused the Ca2+-dependent D-aspartate release. Bafilomycin Al dissipated the intracellular acidic regions and inhibited 40% of the Ca2+-dependent D-aspartate release. These properties are similar to those of the exocytosis of dopamine. Furthermore, digitonin-permeabilized cells took up radiolabeled D-aspartate depending on MgATP, which is sensitive to bafilomycin Al or 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile. Taken together, these results strongly suggest that D-aspartate is stored in secretory granules and then secreted through a Ca2+-dependent exocytotic mechanism. Exocytosis of D-aspartate further supports the role(s) of D-aspartate as a chemical transmitter in neuroendocrine cells.

    Web of Science

    researchmap

  • Ca2+-dependent exocytosis of L-glutamate by αTC6, clonal mouse pancreatic α-cells Reviewed

    Hiroshi Yamada, Masato Otsuka, Mitsuko Hayashi, Shuuichi Nakatsuka, Kazuyuki Hamaguchi, Akitsugu Yamamoto, Yoshinori Moriyama

    Diabetes   50 ( 5 )   1012 - 1020   2001

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Diabetes Association Inc.  

    Pancreatic islet cells express receptors and transporters for L-glutamate and are thus believed to use L-glutamate as an intercellular signaling molecule. However, the mechanism by which L-glutamate appears in the islets is unknown. In the present study, we investigated whether L-glutamate is secreted through exocytosis by αTC6 cells (clonal mouse pancreatic α-cells). An appreciable amount of L-glutamate was released from cultured cells after the addition of KCl or A23187 in the presence of Ca2+ and 10 mmol/l glucose in the medium. The KCl-induced glutamate release was significantly reduced when assayed in the absence of Ca2+ or when the cells were pretreated with EGTA-AM. The KCl-induced Ca2+-dependent glutamate release was inhibited ∼40% by voltage-gated Ca2+ channel blockers, such as nifedipine at 20 μmol/l. The degree of KCl-induced Ca2+-dependent glutamate release was correlated with an increase in intracellular [Ca2+], as monitored by fura-2 fluorescence. Botulinum neurotoxin type E inhibited 55% of the KCl-induced Ca2+-dependent glutamate release, followed by specific cleavage of 25 kDa synaptosomal-associated protein. Furthermore, bafilomycin A1, a specific inhibitor of vacuolar H+-ATPase, inhibited 40% of the KCl-induced Ca2+-dependent glutamate release. Immunoelectronmicroscopy with antibodies against synaptophysin, a marker for neuronal synaptic vesicles and endocrine synaptic-like microvesicles, revealed a large number of synaptophysin-positive clear vesicles in cells. Digitonin-permeabilized cells took up L-glutamate only in the presence of MgATP, which is sensitive to bafilomycin A1 or 3,5-di-tert-butyl-4-hydroxybenzylidene-malononitrile (a proton conductor) but insensitive to either oligomycin or vanadate. From these results, it was concluded that αTC6 cells accumulate L-glutamate in the synaptophysin-containing vesicles in an ATP-dependent manner and secrete it through a Ca2+-dependent exocytic mechanism. The Ca2+-dependent glutamate release was also triggered when cells were transferred in the medium containing 1 mmol/l glucose, suggesting that low glucose treatment stimulates the release of glutamate. Our results are consistent with the idea that L-glutamate is secreted by α-cells through Ca2+-dependent regulated exocytosis.

    DOI: 10.2337/diabetes.50.5.1012

    Scopus

    PubMed

    researchmap

  • Vacuolar H+-ATPase localized in plasma membranes of malaria parasite cells, Plasmodium falciparum, is involved in regional acidification of parasitized erythrocytes Reviewed

    Mitsuko Hayashi, Hiroshi Yamada, Toshihide Mitamura, Toshihiro Horii, Akitsugu Yamamoto, Yoshinori Moriyama

    Journal of Biological Chemistry   275 ( 44 )   34353 - 34358   2000.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society for Biochemistry and Molecular Biology Inc.  

    Recent biochemical studies involving 2',7'-bis-(2-carboxyethyl)-5,6-carboxylfluorescein (BCECF)-labeled saponin-permeabilized and parasitized erythrocytes indicated that malaria parasite cells maintain the resting cytoplasmic pH at about 7.3, and treatment with vacuolar proton-pump inhibitors reduces the resting pH to 6.7, suggesting proton extrusion from the parasite cells via vacuolar H+-ATPase (Saliba, K. J., and Kirk, K. (1999) J. Biol. Chem. 274, 33213-33219). In the present study, we investigated the localization of vacuolar H+-ATPase in Plasmodium falciparum cells infecting erythrocytes. Antibodies against vacuolar H+-ATPase subunit A and B specifically immunostained the infecting parasite cells and recognized a single 67- and 55-kDa polypeptide, respectively. Immunoelectron microscopy indicated that the immunological counterpart of V-ATPase subunits A and B is localized at the plasma membrane, small clear vesicles, and food vacuoles, a lower extent being detected at the parasitophorus vacuolar membrane of the parasite cells. We measured the cytoplasmic pH of both infected erythrocytes and invading malaria parasite cells by microfluorimetry using BCECF fluorescence. It was found that a restricted area of the erythrocyte cytoplasm near a parasite cell is slightly acidic, being about pH 6.9. The pH increased to pH 7.3 upon the addition of either concanamycin B or bafilomycin A1, specific inhibitors of vacuolar H+-ATPase. Simultaneously, the cytoplasmic pH of the infecting parasite cell decreased from pH 7.3 to 7.1. Neither vanadate at 0.5 mM, an inhibitor of P-type H+-ATPase, nor ethylisopropylamiloride at 0.2 mM, an inhibitor of Na+/H+-exchanger, affected the cytoplasmic pH of erythrocytes or infecting parasite cells. These results constitute direct evidence that plasma membrane vacuolar H+-ATPase is responsible for active extrusion of protons from the parasite cells.

    DOI: 10.1074/jbc.M003323200

    Scopus

    PubMed

    researchmap

  • Ionotropic glutamate receptors expressed in human retinoblastoma Y79 cells Reviewed

    M Takeda, M Haga, H Yamada, M Kinoshita, M Otsuka, S Tsuboi, Y Moriyama

    NEUROSCIENCE LETTERS   294 ( 2 )   97 - 100   2000.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCI IRELAND LTD  

    Mammalian retinal photoreceptors and pinealocytes have common characteristic that they secrete melatonin and L-glutamate as chemical transmitters. Although pinealocytes express glutamate receptors and receive glutamate signals, whether or not photoreceptors express glutamate receptors is unknown. Here, we investigated the expression of the glutamate receptors in cultured Y79 clonal human retinoblastoma cells, as model systems of photoreceptors. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that GluR1, GluR5, GluR7, EAA2, NR1, NR2A and NR2D mRNAs were present in the cultured cells. Northern analysis confirmed the presence of GluR7, EAA2, NR1, NR2A and NR2D mRNAs, while other mRNAs were under the detection limit. Addition of (RS)-alpha -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate increases intracellular (Ca2+) in Fura-2 loaded cells, which is blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. N-methyl-D-aspartate also increases intracellular (Ca2+). These results demonstrated the presence of functional ionotropic receptors in Y79 cells. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.

    Web of Science

    researchmap

  • Ionotropic glutamate receptors trigger microvesicle-mediated exocytosis of L-glutamate in rat pinealocytes Reviewed

    S Yatsushiro, H Yamada, M Hayashi, A Yamamoto, Y Moriyama

    JOURNAL OF NEUROCHEMISTRY   75 ( 1 )   288 - 297   2000.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT WILLIAMS & WILKINS  

    Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca2+ concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca2+ channel blockers such as nifedipine, or by omitting Ca2+ or Na+ in the medium. In the presence of Ca2+ and Na+, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxarolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca2+ channel blockers, type E or B botulinum neurotoxin, or incubation at &lt;20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca2+ channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.

    Web of Science

    researchmap

  • Synaptic-like microvesicles, synaptic vesicle counterparts in endocrine cells, are involved in a novel regulatory mechanism for the synthesis and secretion of hormones Reviewed

    Y Moriyama, M Hayashi, H Yamada, S Yatsushiro, S Ishio, A Yamamoto

    JOURNAL OF EXPERIMENTAL BIOLOGY   203 ( 1 )   117 - 125   2000.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:COMPANY OF BIOLOGISTS LTD  

    Microvesicles in endocrine cells are the morphological and functional equivalent of neuronal synaptic vesicles. Microvesicles accumulate various neurotransmitters through a transmitter-specific vesicular transporter energized by vacuolar H+-ATPase. We found that mammalian pinealocytes, endocrine cells that synthesize and secrete melatonin, accumulate L-glutamate in their microvesicles and secrete it through exocytosis. Pinealocytes use L-glutamate as either a paracrine- or autocrine-like chemical transmitter in a receptor-mediated manner, resulting in inhibition of melatonin synthesis. In this article, we briefly describe the overall features of the microvesicle-mediated signal-transduction mechanism in the pineal gland and discuss the important role of acidic organelles in a novel regulatory mechanism for hormonal synthesis and secretion.

    Web of Science

    researchmap

  • 松果体におけるグルタミン酸を用いた細胞間情報伝達系 メラトニン合成の負の制御機構の発見 Reviewed

    山田浩司

    神経化学   39 ( 1 )   2000

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese  

    J-GLOBAL

    researchmap

  • Hydroxyindole-O-methyltransferase is another target for L-glutamate-evoked inhibition of melatonin synthesis in rat pinealocytes Reviewed

    S Ishio, H Yamada, CM Craft, Y Moriyama

    BRAIN RESEARCH   850 ( 1-2 )   73 - 78   1999.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Rat pinealocytes use L-glutamate as a modulator for melatonin synthesis. Upon binding of L-glutamate to the class II metabotropic glutamate receptor, norepinephrine (NE)-dependent formation of cAMP was inhibited, resulting in decreased serotonin-N-acetyltransferase (NAT) activity and melatonin output. Although L-glutamate at 1 mM caused 90% inhibition of melatonin synthesis, about 30% of the NAT activity remained, suggesting the presence of another target for L-glutamate. In this study, we found that L-glutamate also inhibits hydroxyindole-O-methyltransferase (HIOMT). The inhibition is reversible and dose-dependent: the maximal inhibition was obtained with more than 0.4 mM L-glutamate. Contrary to L-glutamate-evoked inhibition of NAT, agonists for class Il metabotropic receptors such as (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) had no effect on HIOMT. Neither (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine (MCCG), an specific antagonist for class II mGluRs, nor dibutyryl cAMP restored the L-glutamate-evoked inhibition of HIOMT. Northern blot analyses revealed that L-glutamate significantly inhibits the expression of mRNA of NAT, but not that of HIOMT. These results indicated that HIOMT is an another target for L-glutamate due to its inhibition of melatonin synthesis, and the signaling pathway toward the inhibition is distinct from that of NAT. (C) 1999 Elsevier Science B.V. All rights reserved.

    Web of Science

    researchmap

  • Functional expression of metabotropic glutamate receptor type 5 in rat pinealocytes Reviewed

    S Yatsushiro, H Yamada, M Hayashi, S Tsuboi, Y Moriyama

    NEUROREPORT   10 ( 7 )   1599 - 1603   1999.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT WILLIAMS & WILKINS  

    MAMMALIAN pinealocytes, endocrine cells for melatonin, express class II metabotropic glutamate receptors (mGluRs), which are involved in negative regulation of melatonin synthesis through an inhibitory cAMP cascade. We investigated whether mGluRs other than class II receptors are expressed in rat pinealocytes. RT-PCR analysis and Northern blotting indicated that the mRNA of mGluR5, a class I receptor, was present in pineal glands. Quisqualate and 1-aminocyclopentane- 1,3-dicarboxylate (1S,3R-ACPD), class I receptor agonists, increased the intracellular [Ca2+] of fura-2 loaded cultured pinealocytes in the absence of extracellular Ca2+ which is blocked by methylcarboxyphenylglycine, a class I receptor antagonist. These results suggest that mGluR5 is functionally expressed in pinealocytes and triggers Ca2+ efflux from intracellular stores. NeuroReport 10:1599-1603 (C) 1999 Lippincott Williams & Wilkins.

    Web of Science

    researchmap

  • Intrinsic glutaminergic system negatively regulates melatonin synthesis in mammalian pineal gland Reviewed

    Y Moriyama, H Yamada, M Hayashi, S Yatsushiro

    MELATONIN AFTER FOUR DECADES   460   83 - 90   1999

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:KLUWER ACADEMIC / PLENUM PUBL  

    Web of Science

    researchmap

  • Synaptic vesicle protein SV2B, but not SV2A, is predominantly expressed and associated with microvesicles in rat pinealocytes Reviewed

    M. Hayashi, S. Yatsushiro, H. Yamada, A. Yamamoto, M. Futai, A. Yamaguchi, Y. Moriyama

    Advances in Experimental Medicine and Biology   460   91 - 93   1999

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Scopus

    PubMed

    researchmap

  • Acetylcholine triggers L-glutamate exocytosis via nicotinic receptors and inhibits melatonin synthesis in rat pinealocytes Reviewed

    H Yamada, A Ogura, S Koizumi, A Yamaguchi, Y Moriyama

    JOURNAL OF NEUROSCIENCE   18 ( 13 )   4946 - 4952   1998.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:SOC NEUROSCIENCE  

    Rat pinealocytes, melatonin-secreting endocrine cells, contain peripheral glutaminergic systems. L-Glutamate is a negative regulator of melatonin synthesis through a metabotropic receptor-mediated inhibitory cAMP cascade. Previously, we reported that depolarization of pinealocytes by externally added KCl and activation of L-type Ca2+ channels resulted in secretion of L-glutamate by microvesicle exocytosis. What is unknown is how and what kinds of stimuli trigger glutamate exocytosis under physiological conditions. Here, we report that the nicotinic acetylcholine receptor can trigger glutamate exocytosis from cultured rate pinealocytes. Moreover, acetylcholine or nicotine inhibited norepinphrine-dependent serotonin N-acetyltransferase activity, which results in decreased melatonin synthesis. These activities were blocked by (2S,3S,4S)-2-methyl-2- (carboxycyclopropyl)glycine, an antagonist of the metabotropic glutamate receptor. These results suggest that cholinergic stimulation initiates the glutaminergic signaling cascade in pineal glands and that parasympathetic neurons innervating the gland exert negative control over melatonin synthesis by way of the glutaminergic systems.

    Web of Science

    researchmap

  • Synaptic vesicle protein SV2B, but not SV2A, is predominantly expressed and associated with microvesicles in rat pinealocytes Reviewed

    T Hayashi, A Yamamoto, S Yatsushiro, H Yamada, M Futai, A Yamaguchi, Y Moriyama

    JOURNAL OF NEUROCHEMISTRY   71 ( 1 )   356 - 365   1998.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT WILLIAMS & WILKINS  

    Microvesicles are endocrine counterparts of neuronal synaptic vesicles, and accumulate and secrete classic neurotransmitters. In mammalian pinealocytes, microvesicles accumulate L-glutamate through a vesicular glutamate transporter and secrete it through exocytosis, To characterize the molecular organization of microvesicles in more detail, we investigated in this study the expression and localization of synaptic vesicle protein 2 (SV2) in rat pinealocytes. RT-PCR analysis indicated that transcripts specific for two isoforms, SV2A, a ubiquitous form present in neuronal and endocrine cells, and SV2B, a neuron-specific form, are amplified in pineal RNAs, Northern blotting with specific transcripts indicated that the mRNA for SV2B is predominantly expressed, whereas that for SV2A is below the detection limit. Site-specific antibodies against SV2B recognized a single 72-kDa polypeptide in the pineal membrane fraction, whereas anti-SV2A antibodies did not recognize any polypeptides, Immunohistochemical analysis of cultured cells indicated that SV2B is expressed in pinealocytes but not in other types of cells. SV2B is present in somata and is especially rich in processes, which are filled with microvesicles. SV2B is colocalized with synaptophysin and synaptotagmin, markers for microvesicles, Immunoelectron microscopy indicated that SV2B is associated with microvesicles. These results indicated that SV2B, but not SV2A, is expressed in rat pinealocytes and associated with microvesicles, As SV2B is also expressed in cultured alpha TC6 clonal pancreatic alpha cells, SV2B is not a protein specific for neurons.

    Web of Science

    researchmap

  • D-aspartate modulates melatonin synthesis in rat pinealocytes Reviewed

    S Ishio, H Yamada, M Hayashi, S Yatsushiro, T Noumi, A Yamaguchi, Y Moriyama

    NEUROSCIENCE LETTERS   249 ( 2-3 )   143 - 146   1998.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCI IRELAND LTD  

    It has been known that pinealocytes contain the highest level of D-aspartate among various neuroendocrine cells in the rat. Here, we report that exogenous D-aspartate strongly inhibited norepinephrine-dependent melatonin synthesis in the rat pineal gland, the concentration required for 50% inhibition being 75 mu M. This inhibition was due at least partly to decreased norepinephrine-dependent serotonin N-acetyltransferase activity. Upon incubation, D-aspartate was gradually released from pinealocytes and accumulated in the incubation medium as determined by high-performance liquid chromatography on a Pirkle-type chiral column, These results suggest that D-aspartate acts as a negative regulator for melatonin synthesis in the pineal gland. (C) 1998 Elsevier Science Ireland Ltd. All rights reserved.

    Web of Science

    researchmap

  • Identification of D-aspartate in rat pheochromocytoma PC12 cells Reviewed

    Y Moriyama, H Yamada, M Hayashi, T Oda, A Yamaguchi

    NEUROSCIENCE LETTERS   248 ( 1 )   57 - 60   1998.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCI IRELAND LTD  

    D-Aspartate is now known to be present in mammalian neuronal and endocrine cells in vivo, and may play some role(s) in neurocrine and endocrine functions. However, origin of D-aspartate is unknown. Here, we report that free D-aspartate (108 pmoles/3 x 10(7) cells) is present in the cultured PC12 cells, a rat pheochromocytoma cell line, as determined with immunohistochemical techniques as well as high performance liquid chromatography (HPLC) on a Pirkle-type chiral column. The amount of D-aspartate does not change with the passage. The culture medium does not contain D-aspartate. These results strongly suggest the presence of a de novo biosynthetic pathway for D-aspartate in the endocrine cells. (C) 1998 Elsevier Science Ireland Ltd.

    Web of Science

    researchmap

  • Metabotropic glutamate receptors negatively regulate melatonin synthesis in rat pinealocytes Reviewed

    H Yamada, S Yatsushiro, S Ishio, M Hayashi, T Nishi, A Yamamoto, M Futai, A Yamaguchi, Y Moriyama

    JOURNAL OF NEUROSCIENCE   18 ( 6 )   2056 - 2062   1998.3

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:SOC NEUROSCIENCE  

    Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis in a cAMP-mediated manner. In addition to melatonin, we showed previously that pinealocytes secrete L-glutamate through an exocytic mechanism. The released glutamate inhibits norepinephrine (NE)-dependent melatonin synthesis. Consistent with this observation, specific agonists of class II metabotropic glutamate receptors (mGluRs), including 1-(1S,3R)-aminocyclopentane-1,3-dicarboxylic acid (tACPD), inhibited NE-dependent melatonin synthesis, whereas agonists for other types of glutamate receptors did not. Furthermore, reverse transcription-PCR, Northern blotting, and immunohistochemistry analyses indicated expression of class II mGluR3 in pinealocytes. Inhibitory guanine nucleotide-binding protein (G(i)) was also detected in pinealocytes. L-Glutamate or agonists of class II receptors decreased NE- or forskolin-dependent increase of cAMP and serotonin-N-acetyltransferase activities to similar extents. These effects were blocked by pertussis toxin or dibutyryl cAMP, These results indicate that the inhibitory cAMP cascade is involved in the glutamate-evoked inhibition of melatonin synthesis, We propose that the glutaminergic system negatively regulates NE-dependent melatonin synthesis in rat pinealocytes.

    Web of Science

    researchmap

  • Autonomic regulation of melatonin synthesis through intrinsic glutaminergic systems in mammalian pineal glands. Reviewed

    森山芳則, 山田浩司

    生化学   70 ( 5 )   1998

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • Functional expression of a GLT-1 type Na+-dependent glutamate transporter in rat pinealocytes Reviewed

    H Yamada, S Yatsushiro, A Yamamoto, M Hayashi, T Nishi, M Futai, A Yamaguchi, Y Moriyama

    JOURNAL OF NEUROCHEMISTRY   69 ( 4 )   1491 - 1498   1997.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT-RAVEN PUBL  

    Pinealocytes, the neuroendocrine cells that produce melatonin, accumulate glutamate in microvesicles through a specific vesicular transporter energetically coupled with vacuolar-type proton ATPase. The glutamate is secreted into the extracellular space through microvesicle-mediated exocytosis and then stimulates neighboring pinealocytes, resulting in inhibition of norepinephrine-dependent melatonin synthesis. In this study, we identified and characterized the plasma membrane-type glutamate transporter in rat pinealocytes. The [H-3]-glutamate uptake by cultured pinealocytes was driven by extracellular Na+, saturated with the [H-3] glutamate concentration used, and significantly inhibited by L-glutamate, L-aspartate, beta-threo-hydroxyaspartale, pyrrolidine dicarboxylate, and L-cysteine sulfinate, substrates or inhibitors of the plasma membrane glutamate transporter. Consistently, the clearance of extracellular glutamate, as measured by HPLC, was also dependent on Nai and inhibited by beta-threo-hydroxyaspartate and L-cysteine sulfinate. Immunological studies with site-specific antibodies against three isoforms of the Na+-dependent glutamate transporter (GLT-1, GLAST, and EAAC1) revealed the expression of only the GLT-1 type transporter in pineal glands. Expression of the GLT-1 type transporter in pineal glands was further demonstrated by means of reverse transcription-polymerase chain reaction with specific DNA probes. Immunohistochemical analysis indicated that the immunological counterpart(s) of the GLT-1 is localized in pinealocytes. These results suggested that the GLT-1-type Na+-dependent transporter is expressed and functions as a reuptake system for glutamate in rat pinealocytes. The physiological role of the transporter in the termination of the glutamate signal in the pineal gland is discussed.

    DOI: 10.1046/j.1471-4159.1997.69041491.x

    Web of Science

    researchmap

  • L-aspartate but not the D form is secreted through microvesicle-mediated exocytosis and is sequestered through Na+-dependent transporter in rat pinealocytes Reviewed

    S Yatsushiro, H Yamada, S Kozaki, H Kumon, H Michibata, A Yamamoto, Y Moriyama

    JOURNAL OF NEUROCHEMISTRY   69 ( 1 )   340 - 347   1997.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:LIPPINCOTT-RAVEN PUBL  

    Rat pinealocytes accumulate glutamate in microvesicles and secrete it through exocytosis so as to transmit signals intercellularly. Glutamate is involved in the negative regulation of norepinephrine-stimulated melatonin production. In this study, we found that aspartate is also released from cultured rat pinealocytes during the exocytosis of glutamate. The release of aspartate was triggered by addition of KCl or A23187 (a Ca2+ ionophore) in the presence of Ca2+ and was proportional to the amount of L-glutamate released. Furthermore, the release of aspartate was inhibited by both botulinum neurotoxin type E and L- or N-type voltage-gated Ca2+ channel blockers. Bay K 8644, an agonist for the L-type Ca2+ channel, stimulated the release of aspartate 2.1-fold. Immunohistochemical analyses with antibodies against aspartate and synaptophysin revealed that aspartate is colocalized with synaptophysin in a cultured pinealocyte. HPLC with fluorometric detection indicated that the released aspartate is of the L form, although pinealocytes also contain the D form in their cytoplasm, corresponding to similar to 30% of the total free aspartate, Radiolabeled L-aspartate was taken up by the microsomal fraction from bovine pineal glands in a Na+-dependent manner. The Na+-dependent uptake of L-aspartate was strongly inhibited by L-cysteine sulfinate, beta-hydroxyaspartate, and L-serine-O-sulfate, inhibitors for the Na+-dependent glutamate/aspartate transporter on the plasma membrane, Na+-dependent sequestration of L-aspartate was also observed in cultured rat pinealocytes, which was inhibited similarly by these transporter inhibitors. These results strongly suggest that L-aspartate is released through microvesicle-mediated exocytosis from pinealocytes and is taken up again through the Na+-dependent transporter at the plasma membrane. The possible role of L-aspartate as an intercellular chemical transmitter in the pineal gland is discussed.

    Web of Science

    researchmap

  • L-Aspartate-evoked inhibition of melatonin production in rat pineal glands Reviewed

    H Yamada, A Yamaguchi, Y Moriyama

    NEUROSCIENCE LETTERS   228 ( 2 )   103 - 106   1997.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCI IRELAND LTD  

    Our previous studies in rat indicated that pinealocytes secrete L-glutamate through microvesicle-mediated exocytosis to regulate negatively melatonin production. Recently, we further found that pinealocytes secrete L-aspartate through microvesicle-mediated exocytosis. In the present study, we investigated the role of L-aspartate in the melatonin production in isolated rat pineal glands. It was found that L-aspartate inhibits norepinephrine-stimulated melatonin production as well as serotonin N-acetyltransferase activity reversibly and dose dependently, the concentrations required for 50% inhibition being 150 and 175 mu M, respectively. L-Asparagine and oxaloacetate, metabolites of L-aspartate, had no effect on the melatonin production. These results suggest that pinealocytes use L-aspartate, as well as L-glutamate, as a negative regulator for melatonin production. (C) 1997 Elsevier Science Ireland Ltd.

    Web of Science

    researchmap

  • Transmembrane topology of Escherichia coli H+-ATPase (ATP synthase) subunit a Reviewed

    Hiroshi Yamada, Yoshinori Moriyama, Masatomo Maeda, Masamitsu Futai

    FEBS Letters   390 ( 1 )   34 - 38   1996.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier B.V.  

    Escherichia coli H+-ATPase subunit a is a hydrophobic F0 subunit. To investigate the topology of the subunit in the membrane, we prepared site-specific polyclonal antibodies against amino-terminal (Ser-3 to Leu-16), middle loop (Lys-167 to Gln-181), and carboxyl-terminal (Thr-259 to His-271) peptide segments. Enzyme-linked immunosorbent assay revealed that these antibodies specifically reacted with subunit a of inside-out membrane vesicles, but not with that of right-side-out spheroplasts. Full reactivity appeared when spheroplasts were disrupted with Triton X-100 (0.5%) or by sonication. These results suggest that at least parts of the three peptide segments of subunit a face the cytoplasm. Based on these observations, we propose a novel transmembrane topology of subunit a.

    DOI: 10.1016/0014-5793(96)00621-7

    Scopus

    PubMed

    researchmap

  • Vesicular monoamine transporter in microvesicles from bovine posterior pituitaries is immunologically similar to but distinct from the chromaffin granule counterpart in its sensitivities to 1-methyl-4-phenylpyridinium and histamine Reviewed

    Y Moriyama, H Yamada

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   221 ( 3 )   790 - 794   1996.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    The microvesicles (MVs) in bovine posterior pituitaries contain the reserpine-sensitive vesicular monoamine transporter (Moriyama et al. (1995) J. Biol. Chem. 270, 11424-11429). An antibody against the N-terminal region of the monoamine transporter from bovine chromaffin granules recognized a polypeptide in the MVs with a similar molecular mass to the chromaffin granule counterpart. 1-Methyl-4-phenylpyridinium inhibited the norepinephrine uptake by the MVs and chromaffin vesicles, the concentrations required for 50% inhibition being 8 and 150 mu M, respectively. Histamine also showed similar effect. These results indicated that the monoamine transporter in MVs is immunologically similar to, but distinguishable pharmacologically, from the chromaffin granule counterpart, and suggested dir polymorphism of the transporter in bovine tissues. (C) 1996 Academic Press, Inc.

    Web of Science

    researchmap

  • Role of endocrine cell microvesicles in intercellular chemical transduction. International journal

    Y Moriyama, A Yamamoto, H Yamada, Y Tashiro, M Futai

    Biological chemistry Hoppe-Seyler   377 ( 3 )   155 - 65   1996.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Microvesicles (MVs) in endocrine cells are morphologically similar to neuronal synaptic vesicles. MVs were shown to contain proteins involved in neurotransmitter storage such as vacuolar H(+)-ATPase and neurotransmitter transporters, and ones in vesicular trafficking such as synaptobrevins and N-ethylmaleimide-sensitive fusion protein. Isolated MVs accumulate cell-specific neurotransmitters in an energy-dependent manner. Upon stimulation, the MVs may fuse with the plasma membrane and secrete the internal neurotransmitters. Thus, endocrine cells possess an MV-mediated secretion system as an intercellular signal transducing system.

    PubMed

    researchmap

  • The L-type Ca2+ channel is involved in microvesicle-mediated glutamate exocytosis from rat pinealocytes Reviewed

    Hiroshi Yamada, Akitsugu Yamamoto, Masami Takahashi, Hitoshi Michibata, Hiromi Kumon, Yoshinori Moriyama

    Journal of Pineal Research   21 ( 3 )   165 - 174   1996

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Blackwell Publishing Ltd  

    Pinealocytes, parenchymal cells of the pineal gland, secrete glutamate through microvesicle-mediated exocytosis upon depolarization by KCl in the presence of Ca2+, which is involved in a novel paracrine-like intercellular signal transduction mechanism in neuroendocrine organs. In the present study, we investigated whether or not the L-type Ca2+ channel is involved in the microvesicle-mediated glutamate secretion from cultured rat pinealocytes. Nifedipine, a specific antagonist of the L-type Ca2+ channel, inhibited the Ca2+-dependent glutamate exocytosis by 48% at 20 μM. Other L-type Ca2+ channel antagonists, such as nitrendipine, showed similar effects. 1,4-Dihydro-2,6-dimethyl-5-nitro-4[2-(trifluoromethyl)-phenyl]-3- pyridinecarboxylic acid methyl ester (BAY K8644), an agonist of the L-type Ca2+ channel, at 1 μM, on the other hand, stimulated the glutamate exocytosis about 1.6-fold. Consistently, these Ca2+ channel antagonists inhibited about 50% of the Ca2+ uptake, whereas BAY K8644 increased the uptake 5.3-fold. An antibody against the carboxyl-terminal region of the rabbit L-type Ca2+ channel recognized polypeptides of pinealocytes with apparent molecular masses of 250 and 270 kDa, respectively, and immunostained the plasma membrane region of the pinealocytes. These results strongly suggested that the entry of Ca2+ through L-type Ca2+ channel(s), at least in part, triggers microvesicle-mediated glutamate exocytosis in pinealocytes. © Munksgaard.

    DOI: 10.1111/j.1600-079X.1996.tb00284.x

    Scopus

    PubMed

    researchmap

  • Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in rat pinealocytes Reviewed

    Hiroshi Yamada, Akitsugu Yamamoto, Susumu Yodozawa, Shunji Kozaki, Masami Takahashi, Mitsuhiro Morita, Hitoshi Michibata, Teiichi Furuichi, Katsuhiko Mikoshiba, Yoshinori Moriyama

    Journal of Pineal Research   21 ( 3 )   175 - 191   1996

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Blackwell Publishing Ltd  

    Mammalian pinealocytes are neuroendocrine cells that synthesize and secrete melatonin, these processes being positively controlled by norepinephrine derived from innervating sympathetic neurons. Previously, we showed that pinealocytes contain a large number of microvesicles (MVs) that specifically accumulate L-glutamate through a vesicular glutamate transporter and contain proteins for exocytosis such as synaptobrevin 2 (VAMP2). These findings suggested that the MVs are counterparts of synaptic vesicles and are involved in paracrine-like chemical transduction in the pineal gland. Here, we show that pinealocytes actually secrete glutamate upon stimulation by KCl in the presence of Ca2+ at 37°C. The ability of glutamate secretion disappeared when the cells were incubated at below 20°C. Loss of the activity was also observed on successive stimulation, but it was recovered after 12 hr incubation. A low concentration of cadmium chloride or ω-conotoxin GVIA inhibited the secretion. Botulinum neurotoxin E cleaved synaptic vesicle-associated protein 25 (SNAP-25) and thus inhibited the secretion. The released L-glutamate stimulated pinealocytes themselves via glutamate receptor(s) and inhibited norepinephrine-stimulated melatonin secretion. These results strongly suggest that pinealocytes are glutaminergic paraneurons, and that the glutaminergic system regulates negatively the synthesis and secretion of melatonin. The MV-mediated paracrine-like chemical transduction seems to be a novel mechanism that regulates hormonal secretion by neuroendocrine cells. © Munksgaard.

    DOI: 10.1111/j.1600-079X.1996.tb00285.x

    Scopus

    PubMed

    researchmap

  • Microvesicles isolated from bovine posterior pituitary accumulate norepinephrine Reviewed

    Y. Moriyama, A. Yamamoto, H. Yamada, Y. Tashiro, K. I. Tomochika, M. Takahashi, M. Maeda, M. Futai

    Journal of Biological Chemistry   270 ( 19 )   11424 - 11429   1995

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Histochemical study indicated that the posterior pituitary possesses numerous microvesicles (MVs) containing synaptophysin, a marker protein specific for brain synaptic vesicles (Navone, F., Di Gioia, G., Jahn, R., Browning, M., Greengard, P. and De Camilli, P. (1989) J. Cell Biol. 109, 3425-2433). By monitoring cross-reactivity with anti-synaptophysin antibody, the MVs were highly purified from bovine posterior pituitaries by a combination of differential and sucrose density gradient centrifugations. The purified MVs had an average diameter of about 60 nm and were associated with synaptophysin as revealed by immunoelectron microscopy. The vesicles contained ATPase activity partially sensitive to bafilomycin A1 and to vanadate. The membrane fraction immunoisolated with anti-synaptophysin antibody also exhibited similar ATPase activity. The two ATPases could be purified separately
    the vanadate-sensitive enzyme was identified as a 115- kDa polypeptide immunochemically similar to chromaffin granule P-ATPase (forming phosphoenzyme intermediate), and the bafilomycin A1-sensitive ATPase showed essentially the same properties as those of vacuolar type H+- ATPases. Upon addition of ATP, the MVs formed an electrochemical gradient of protons and took up norepinephrine in a reserpine-sensitive manner, indicating the presence of secondary monoamine transporter coupled with vacuolar type H+-ATPase. No uptake of L-glutamate, γ-aminobutyrate, glycine, or acetylcholine was observed. The identification of MVs as organelles responsible for storage of monoamines is important for understanding the physiological function of the posterior pituitary.

    DOI: 10.1074/jbc.270.19.11424

    Scopus

    PubMed

    researchmap

  • Inhibition of neurotransmitter and hormone transport into secretory vesicles by 2-(4-phenylpiperidino)cyclohexanol and 2-bromo-α-ergocryptine: Both compounds act as uncouplers and dissipate the electrochemical gradient of protons Reviewed

    Yoshinori Moriyama, Kosuke Amakatsu, Hiroshi Yamada, Mi-Yeon Park, Masamitsu Futai

    Archives of Biochemistry and Biophysics   290 ( 1 )   233 - 238   1991

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    2-(4-Phenylpiperidino)cyclohexanol (AH-5183) and 2-bromo-α-ergocryptine, known inhibitors of the transport of acetylcholine and l-glutamate, respectively, into synaptic vesicles, inhibited the ATP-dependent uptake of dopamine in parallel with the dissipation of the electrochemical gradient of protons in chromaffin granule membrane vesicles. These compounds induced the release of accumulated dopamine from the vesicles. They also inhibited the ATP-dependent formation of the electrochemical gradient of protons in liposomes reconstituted with chromaffin H+-ATPase without affecting the activities for ATP hydrolysis, and ATP-dependent uptakes of dopamine, γ-aminobutyrate, and glutamate into synaptic vesicles. These results indicated that 2-(4-phenylpiperidino)cyclohexanol and 2-bromo-α-ergocryptine acted as uncouplers in the secretory vesicles. © 1991.

    DOI: 10.1016/0003-9861(91)90614-O

    Scopus

    PubMed

    researchmap

▼display all

MISC

  • オートファジー Invited

    竹居孝二, 山田浩司

    岡山医学会雑誌   135   92 - 94   2023.8

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • メカノエンザイム・ダイナミンGTPaseによるアクチン線維束化機構の解析

    山田 浩司, 阿部 匡史, 竹田 哲也, 高島 英造, 森田 将之, 竹居 孝二

    日本生物工学会大会講演要旨集   平成30年度   122 - 122   2018.8

     More details

    Language:Japanese   Publisher:(公社)日本生物工学会  

    researchmap

  • エンドサイトーシス生物学の新展開 ダイナミンによる膜切断過程の動態イメージング

    竹田 哲也, 小財 稔矢, 楊 恵然, 石黒 大輝, 背山 佳穂, 熊谷 祐介, 阿部 匡史, 山田 浩司, 内橋 貴之, 安藤 敏夫, 竹居 孝二

    生命科学系学会合同年次大会   2017年度   [4AW17 - 2]   2017.12

     More details

    Language:English   Publisher:生命科学系学会合同年次大会運営事務局  

    researchmap

  • 成長円錐におけるPKCαのコルタクチンリン酸化によるアクチン制御の可能性

    山田 浩司, 菊池 達也, 増本 年男, 魏 范研, 阿部 匡史, 竹田 哲也, 西木 禎一, 富澤 一仁, 渡部 昌実, 松井 秀樹, 竹居 孝二

    日本生化学会大会・日本分子生物学会年会合同大会講演要旨集   88回・38回   [1P1328] - [1P1328]   2015.12

     More details

    Language:English   Publisher:(公社)日本生化学会  

    researchmap

  • ダイナミン・コルタクチン複合体はアクチン線維を束化し、この束化は成長円錐の糸状仮足形成に重要である

    山田 浩司, 阿部 匡史, 竹居 孝二

    日本薬学会年会要旨集   131年会 ( 3 )   152 - 152   2011.3

     More details

    Language:English   Publisher:(公社)日本薬学会  

    researchmap

  • Dynamic interaction of amphiphysin with N-WASP regulates actin assembly Invited

    山田浩司, PADILLA-PARRA Sergi, 朴宣奏, 伊藤俊樹, CHAINEAU Mathilde, MONALDI Ilaria, CREMONA Ottavio, BENFENATI Fabio, De CAMILLI, COPPEY-MOISAN Maïté, TRAMIER Marc, GALLI Thierry, 竹居孝二

    岡山医学会雑誌   123 ( 1 )   1 - 11   2011

     More details

    Authorship:Lead author   Language:Japanese  

    J-GLOBAL

    researchmap

  • ダイナミン1/コルタクチン複合体はアクチン線維束を形成し、成長円錐フィロポディア形成を支持する(Dynamin 1/cortactin complex mechanically bundles actin filaments and supports the formation of growth cone filopodia)

    竹居 孝二, 阿部 匡史, 川田 慎浩, 山田 浩司

    神経化学   49 ( 2-3 )   501 - 501   2010.8

     More details

    Language:English   Publisher:日本神経化学会  

    researchmap

  • ダイナミン/コルタクチン複合体によるアクチン束化は糸状仮足形成と関連がある(Actin bundling by dynamin/cortactin complex is implicated in filopodia formation)

    山田 浩司, 阿部 匡史, 川田 慎浩, 竹居 孝二

    日本生化学会大会プログラム・講演要旨集   82回   3P - 372   2009.9

     More details

    Language:English   Publisher:(公社)日本生化学会  

    researchmap

  • ダイナミン/コルタクチン複合体によるアクチン束形成の新しいメカニズム 糸状仮足形成における意義(Novel mechanism of actin bundle formation by dynamin/cortactin complex: its implication in filopodia formation)

    山田 浩司, 阿部 匡史, 吉田 祐実, 竹居 孝二

    日本細胞生物学会大会講演要旨集   61回   175 - 175   2009.5

     More details

    Language:English   Publisher:(一社)日本細胞生物学会  

    researchmap

  • ダイナミン1は、コルタクチンとともに、アクチンの動態に働く(Dynamin 1 participates in actin dynamics with cortactin)

    信崎 哲郎, 吉田 祐実, 阿部 匡史, 小田 吉哉, 富沢 一仁, 山田 浩司, 竹居 孝二

    日本細胞生物学会大会講演要旨集   60回   100 - 100   2008.6

     More details

    Language:English   Publisher:(一社)日本細胞生物学会  

    researchmap

  • Dynamin及びAmphiphysinのリン酸化-脱リン酸化による小胞形成能変化

    絹田 正裕, 荒木 健太, 阿部 匡史, 梁 爽, 吉田 祐美, 山田 浩司, 永松 知洋, 富澤 一仁, 松井 秀樹, 保田 立二, 竹居 孝二

    生化学   76 ( 3 )   307 - 307   2004.3

     More details

    Language:Japanese   Publisher:(公社)日本生化学会  

    researchmap

  • シナプスの可塑性とグルタミン酸受容体のクラスリン被覆小胞による細胞内への取り込み Invited Reviewed

    山田浩司

    化学と工業   54 ( 6 )   2001

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese  

    J-GLOBAL

    researchmap

▼display all

Presentations

  • 糸球体足細胞(ポドサイト)におけるダイナミンによる微小管制御と形態形成 Invited

    山田 浩司

    第94回日本生化学会大会  2021.11.3 

     More details

    Event date: 2021.11.3 - 2021.11.5

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • ダイナミンによる細胞骨格制御 Invited

    山田 浩司

    愛媛大学応用化学セミナー・ミニシンポジウム  2021.7.21 

     More details

    Event date: 2021.7.21

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • 血液ろ過に重要な新規の腎臓病治療標的タンパク質「ダイナミン1」の発見 Invited

    山田浩司

    未来のバイオ技術勉強会  2021.4.23  バイオインダストリー協会

     More details

    Event date: 2021.4.23

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    Venue:オンライン  

  • 腎糸球体ポドサイトにおける細胞骨格ダイナミクスの解明

    竹居 孝二, 阿部 匡史, 竹田 哲也, 田邊 克幸, 山田 浩司

    第96回日本生化学会大会  2023.11.1 

     More details

    Event date: 2023.10.31 - 2023.11.2

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • TRPV2の細胞膜移行におけるダイナミン1による微小管制御の役割

    山田 浩司, 阿部 匡史, 竹田 哲也, 竹居 孝二

    第96回日本生化学会大会  2023.11.1 

     More details

    Event date: 2023.10.31 - 2023.11.2

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • 糸球体ポドサイトにおけるダイナミン1による微小管制御機構 Invited

    山田 浩司

    愛媛大学PRiME 共同研究発表会  2023.9.12 

     More details

    Event date: 2023.9.12

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • Pacsin 2-dependent N-cadherin internalization regulates the migration behaviour of malignant cancer cells

    Haymar Win, Jianzhen Li, Tadashi Abe, Hiroshi Yamada, Takumi Higaki, Yasutomo Nasu, Masami Watanabe, Kohji Takei, Tetsuya Takeda

    2023.6.28 

     More details

    Event date: 2023.6

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Irgb6の膜へのリクルートは膜変形を直接誘導する

    阿部 匡史、山田 浩司、長岡 ひかる、高島 英造、仁田 亮、山本 雅裕、竹居 孝二

    第95回日本生化学会大会  2022.11.11  日本生化学会

     More details

    Event date: 2022.11.9 - 2022.11.11

    Language:Japanese   Presentation type:Poster presentation  

    Venue:名古屋国際会議場  

  • 脂質膜結合活性が低下しているダイナミン2のCMT変異体は、ポドサイトにおけるアクチン線維の配向とアクチンバンドル形成を異常にする

    山田 浩司, 阿部 匡史, 内橋 貴之, 成田 哲博, 竹田 哲也, 竹居 孝二

    第95回日本生化学会大会  2022.11.11  日本生化学会

     More details

    Event date: 2022.11.9 - 2022.11.11

    Language:Japanese   Presentation type:Poster presentation  

    Venue:名古屋国際会議場  

    researchmap

  • ダイナミンによる微小管制御と糸球体ポドサイトの形態形成

    竹居 孝二、山田 浩司

    第74回日本細胞生物学会大会  2022.6.30  日本細胞生物学会

     More details

    Event date: 2022.6.28 - 2022.6.30

    Language:Japanese   Presentation type:Poster presentation  

    Venue:タワーホール船堀  

  • ポドサイトにおけるダイナミン2によるアクチン制御にはダイナミン2の適切な自己重合と膜との相互作用が必要である

    山田浩司, 内橋貴之, 成田哲博, 竹居孝二

    第6回ポドサイト研究会  2022.3.26 

     More details

    Event date: 2022.3.26

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 分化ポドサイトにおけるダイナミン1の機能

    竹居孝二, 淺沼克彦, 山田浩司

    第6回ポドサイト研究会  2022.3.26 

     More details

    Event date: 2022.3.26

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 糸球体ポドサイトからのグルタミン酸の放出と開口放出関連タンパクの探索

    安岡宏樹, 西井尚子, 原田結加, 宮地孝明, 阿部匡史, 竹田哲也, 和田淳, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11  日本生化学会中国・四国支部

     More details

    Event date: 2021.9.10 - 2021.9.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学  

  • ダイナミン1は微小管の配向を調節しTRPV2の細胞膜移行を制御する

    籔彩夏, 安岡宏樹, 片野坂友紀, 阿部匡史, 竹田哲也, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11  日本生化学会中国・四国支部

     More details

    Event date: 2021.9.10 - 2021.9.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学  

  • ダイナミン2の自己重合と膜との相互作用は糸球体ポドサイトのアクチン制御に重要である

    濱崎英理子, 安岡宏樹, 和木田夏輝, 阿部匡史, 竹田哲也, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11  日本生化学会中国・四国支部

     More details

    Event date: 2021.9.10 - 2021.9.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:岡山大学  

  • Amphiphysin1はsynaptopodinと共同してアクチン制御に働く

    山田浩司, The Mon La, 阿部 匡史, 竹田 哲也, 高島 英造, 長岡 ひかる, 淺沼 克彦, 竹居 孝二

    第4回ポドサイト研究会  2020.3  ポドサイト研究会

     More details

    Event date: 2020.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:オンライン  

  • 筋細胞膜リモデリングにおけるメカニカルストレス応答の解析

    藤瀬賢志郎, 山田浩司, 竹居孝二, 竹田哲也

    日本筋学会学術集会プログラム・抄録集  2019 

     More details

    Event date: 2019

    researchmap

  • 中心核ミオパチー型BIN1およびDNM2変異体による膜リモデリング異常の解析

    藤瀬賢志郎, 山田浩司, 竹居孝二, 竹田哲也

    日本細胞生物学会大会(Web)  2019 

     More details

    Event date: 2019

    researchmap

  • 腎糸球体ポドサイトにおけるアンフィファイジン1の機能

    山田浩司, LA The Mon, 竹田哲也, 阿部匡史, 淺沼克彦, 竹居孝二

    日本生化学会大会(Web)  2019 

     More details

    Event date: 2019

    researchmap

  • 腎糸球体ポドサイトにおけるダイナミンイソフォームの局在と機能

    阿部匡史, LA The Mon, 橘洋美, 竹田哲也, 竹居孝二, 山田浩司

    日本生化学会大会(Web)  2019 

     More details

    Event date: 2019

    researchmap

  • メカノエンザイム・ダイナミンGTPaseによるアクチン線維束化機構の解析

    山田 浩司, 阿部 匡史, 竹田 哲也, 高島 英造, 森田 将之, 竹居 孝二

    日本生物工学会大会講演要旨集  2018.8  (公社)日本生物工学会

     More details

    Event date: 2018.8

    Language:Japanese  

    researchmap

  • ダイナミン2のシャルコー・マリー・トゥース病の原因変異とアクチン再構成との相関

    隅田健斗, LA The Mon, 和木田夏輝, 森田将之, 高島英造, 竹田哲也, 阿部匡史, 竹居孝二, 山田浩司

    日本分子生物学会年会プログラム・要旨集(Web)  2018 

     More details

    Event date: 2018

    researchmap

  • ダイナミン-コルタクチンらせん状複合体の解析:機械的なアクチン線維束形成とアクチン脱重合保護作用

    阿部匡史, 山田浩司, 竹田哲也, 内橋貴之, 安藤敏夫, 竹居孝二

    日本生化学会大会(Web)  2017 

     More details

    Event date: 2017

    researchmap

  • GTP加水分解に共役したダイナミン依存的膜切断機構の高速原子間力顕微鏡解析

    竹田哲也, 石黒大輝, 楊恵然, 小財稔矢, 背山佳穂, 熊谷祐介, 山田浩司, 内橋貴之, 安藤敏夫, 竹居孝二

    日本細胞生物学会大会(Web)  2017 

     More details

    Event date: 2017

    researchmap

  • ダイナミン2のシャルコー・マリー・トゥース病の原因変異は腎ポドサイトのアクチン再構成を阻害する

    和木田夏輝, LA The Mon, 隅田健斗, 竹田哲也, 阿部匡史, 竹居孝二, 山田浩司

    日本生化学会大会(Web)  2017 

     More details

    Event date: 2017

    researchmap

  • ダイナミンによる膜切断機構の高速AFMイメージング解析

    竹田哲也, 竹田哲也, 熊谷祐介, 背山佳穂, YANG Huiran, 山田浩司, 山田浩司, 内橋貴之, 内橋貴之, 安藤敏夫, 安藤敏夫, 竹居孝二, 竹居孝二

    日本細胞生物学会大会(Web)  2016 

     More details

    Event date: 2016

    researchmap

  • 腎糸球体ポドサイトにおけるダイナミンアイソフォームの局在と機能

    橘洋美, 竹田哲也, 山田浩司, 小川大輔, 竹居孝二

    日本細胞生物学会大会(Web)  2016 

     More details

    Event date: 2016

    researchmap

  • 成長円錐におけるPKCαのコルタクチンリン酸化によるアクチン制御の可能性

    山田 浩司, 菊池 達也, 増本 年男, 魏 范研, 阿部 匡史, 竹田 哲也, 西木 禎一, 富澤 一仁, 渡部 昌実, 松井 秀樹, 竹居 孝二

    日本生化学会大会・日本分子生物学会年会合同大会講演要旨集  2015.12  (公社)日本生化学会

     More details

    Event date: 2015.12

    Language:English  

    researchmap

  • 腎糸球体ポドサイト分化におけるダイナミンGTPアーゼの役割

    橘洋美, 竹田哲也, 山田浩司, 小川大輔, 竹居孝二

    日本生化学会大会(Web)  2015 

     More details

    Event date: 2015

    researchmap

  • 肺がん細胞株における細胞運動を司るダイナミン2によるアクチン動態制御

    阿部匡史, 山田浩司, 竹田哲也, 竹居孝二

    日本生化学会大会(Web)  2014 

     More details

    Event date: 2014

    researchmap

  • 脳血液関門通過可能なアクチン重合抑制薬による膠芽腫に対する抗浸潤効果の検討

    道上宏之, 林桂一郎, 山田浩司, 中山大輝, 黒住和彦, 市川智継, 松下博昭, 西木禎一, 竹居孝二, 富澤一仁, 松井秀樹

    日本脳腫瘍学会プログラム・抄録集  2014 

     More details

    Event date: 2014

    researchmap

  • 悪性脳腫瘍に対するDrug Repositioning(DR)に基づく新規抗浸潤薬の研究開発

    道上宏之, 林桂一郎, 山田浩司, 魏范研, 高田尚良, 藤村篤史, 黒住和彦, 市川智継, 大守伊織, 西木禎一, 竹居孝二, 松井秀樹

    日本脳腫瘍学会プログラム・抄録集  2013 

     More details

    Event date: 2013

    researchmap

  • ダイナミンGTPアーゼ/コルタクチン複合体はアクチン線維束を安定化するメカニカルデバイスである

    山田浩司, 阿部匡史, 竹居孝二

    日本生体エネルギー研究会討論会講演要旨集  2012 

     More details

    Event date: 2012

    researchmap

  • Dynaminを標的にした抗がん剤の開発

    岡崎奈奈, 阿部匡史, 有田美香子, 多湖翔太, 永井さや, 池田敏, 小郷尚久, 浅井章良, 山田浩司, 竹居孝二

    日本生化学会大会(Web)  2012 

     More details

    Event date: 2012

    researchmap

  • ダイナミン・コルタクチン複合体はアクチン線維を束化し、この束化は成長円錐の糸状仮足形成に重要である

    山田 浩司, 阿部 匡史, 竹居 孝二

    日本薬学会年会要旨集  2011.3  (公社)日本薬学会

     More details

    Event date: 2011.3

    Language:English  

    researchmap

  • PKC phosphorylation of cortactin is implicated in the regulation of actin dynamics

    Hiroshi Yamada, Tadashi Abe, Toshio Masumoto, Mari Sei, Tatsuya Kikuchi, Kazuhito Tomizawa, Satoru Ikeda, Hideki Matsui, Kohji Takei

    51st Annual meeting, American Society for Cell Biology  2011.12  AMER SOC CELL BIOLOGY

     More details

    Event date: 2011

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ダイナミン/コルタクチン複合体によるアクチン細胞骨格制御機構

    竹居孝二, 山田浩司, 阿部匡

    生体膜と薬物の相互作用シンポジウム講演要旨集  2011 

     More details

    Event date: 2011

    researchmap

  • 成長円錐糸状仮足形成におけるCortactinのPKCalphaによるリン酸化とアクチン制御の可能性

    山田 浩司, 勢井 麻梨, 阿部 匡史, 増本 年男, 菊池 達也, 富澤 一仁, 池田 敏, 松井 秀樹, 竹居 孝二

    日本生化学会大会プログラム・講演要旨集  2011  (公社)日本生化学会

     More details

    Event date: 2011

    Language:Japanese  

    researchmap

  • ダイナミン1/コルタクチン複合体はアクチン線維束を形成し、成長円錐フィロポディア形成を支持する(Dynamin 1/cortactin complex mechanically bundles actin filaments and supports the formation of growth cone filopodia)

    竹居 孝二, 阿部 匡史, 川田 慎浩, 山田 浩司

    神経化学  2010.8  日本神経化学会

     More details

    Event date: 2010.8

    Language:English  

    researchmap

  • Dynamic Interaction of Amphiphysin with N-WASP Regulates Actin Assembly

    Hiroshi Yamada, Sergi Padilla-Parra, Sun-Joo Park, Toshiki Itoh, Mathilde Chaineau, Ilaria Monaldi, Ottavio Cremona, Fabio Benfenati, Pietro De Camilli, Maite Coppey-Moisan, Marc Tramier, Kohji Takei

    33rd Annual Meeting of the Japan Neuroscience Society (Neuro 2010)  2010  ELSEVIER IRELAND LTD

     More details

    Event date: 2010

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ダイナミン/コルタクチン複合体によるアクチン束化は糸状仮足形成と関連がある(Actin bundling by dynamin/cortactin complex is implicated in filopodia formation)

    山田 浩司, 阿部 匡史, 川田 慎浩, 竹居 孝二

    日本生化学会大会プログラム・講演要旨集  2009.9  (公社)日本生化学会

     More details

    Event date: 2009.9

    Language:English  

    researchmap

  • ダイナミン/コルタクチン複合体によるアクチン束形成の新しいメカニズム 糸状仮足形成における意義(Novel mechanism of actin bundle formation by dynamin/cortactin complex: its implication in filopodia formation)

    山田 浩司, 阿部 匡史, 吉田 祐実, 竹居 孝二

    日本細胞生物学会大会講演要旨集  2009.5  (一社)日本細胞生物学会

     More details

    Event date: 2009.5

    Language:English  

    researchmap

  • ダイナミン1は、コルタクチンとともに、アクチンの動態に働く(Dynamin 1 participates in actin dynamics with cortactin)

    信崎 哲郎, 吉田 祐実, 阿部 匡史, 小田 吉哉, 富沢 一仁, 山田 浩司, 竹居 孝二

    日本細胞生物学会大会講演要旨集  2008.6  (一社)日本細胞生物学会

     More details

    Event date: 2008.6

    Language:English  

    researchmap

  • Localization of dynamin2 during mitosis

    Nobuhisa Ishida, Shun-Ai Li, Yuuichi Nakamura, Hiroshi Yamada, Toshio Sugahara, Kohji Takei

    CELL STRUCTURE AND FUNCTION  2005.6  JAPAN SOC CELL BIOLOGY

     More details

    Event date: 2005.6

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Analysis of the major cdk5 phosphorylation sites of amphiphysin 1

    Shuang Liang, Yumi Yoshida, Kazuhito Tomizawa, Tadashi Abe, Hiroshi Yamada, Hideki Matsui, Kohji Takei

    CELL STRUCTURE AND FUNCTION  2005.6  JAPAN SOC CELL BIOLOGY

     More details

    Event date: 2005.6

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Localization of amphiphysin1 and dynamin2 in tubulobulbar complexes (TBC) formation and sperm release at Sertoli cells

    Norihiro Kusumi, Masami Watanabe, Hiroshi Yamada, Shun-Ai Li, Yuji Kashiwakura, Atsushi Nagai, Yasutomo Nasu, Hiromi Kumon, Pietro De Camilli, Kohji Takei

    CELL STRUCTURE AND FUNCTION  2005.6  JAPAN SOC CELL BIOLOGY

     More details

    Event date: 2005.6

    Language:English   Presentation type:Poster presentation  

    researchmap

  • エンドサイトーシス関連タンパク質amphiphysin 1の精巣における機能

    久住倫宏, 渡部昌実, 坪井啓, 永井敦, 公文裕巳, 山田浩司, 竹居孝二, 柏倉祐司

    日本泌尿器科学会雑誌  2005 

     More details

    Event date: 2005

    researchmap

  • Dynamin 2 is involved in PS-dependent formation of membrane ruffles and phagocytosis in rat sertoli cells

    Hiroshi Yamada, Shun-Ai Li, Masami Watanabe, Fan-Yan Wei, Norihiro Kusumi, Kazuhito Tomizawa, Mark McNiven, Hideki Matsui, Hiromi Kumon, Kohji Takei

    MOLECULAR BIOLOGY OF THE CELL  2004.12  AMER SOC CELL BIOLOGY

     More details

    Event date: 2004.12

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Dynamin及びAmphiphysinのリン酸化-脱リン酸化による小胞形成能変化

    絹田 正裕, 荒木 健太, 阿部 匡史, 梁 爽, 吉田 祐美, 山田 浩司, 永松 知洋, 富澤 一仁, 松井 秀樹, 保田 立二, 竹居 孝二

    生化学  2004.3  (公社)日本生化学会

     More details

    Event date: 2004.3

    Language:Japanese  

    researchmap

  • 小胞形成に対するdynamin及びamphiphysinのリン酸化-脱リン酸化の効果

    荒木 健太, 阿部 匡史, 福田 功, 富澤 一仁, 山田 浩司, 須田 城, 絹田 正裕, 竹居 孝二

    日本細胞生物学会大会講演要旨集  2003.5  (一社)日本細胞生物学会

     More details

    Event date: 2003.5

    Language:Japanese  

    researchmap

  • Expression of endocytic proteins in the testis, and their implication in spermatogenesis.

    A Kamitani, M Watanabe, H Iguchi, A Nagai, H Yamada, M Kinuta, K Takei, H Kumon

    JOURNAL OF UROLOGY  2002.4  LIPPINCOTT WILLIAMS & WILKINS

     More details

    Event date: 2002.4

    Language:English  

    researchmap

  • 脳及び精巣におけるKlothoタンパクの発現とKlotho変異マウスのエンドサイトーシス機能タンパクの発現変化

    李順愛, 絹田正裕, 紙谷章弘, 紙谷章弘, 山田浩司, 公文裕巳, 竹居孝二

    日本細胞生物学会大会講演要旨集  2002 

     More details

    Event date: 2002

    researchmap

  • ラット培養セルトリ細胞におけるDynamin2,3の発現

    山田浩司, 紙谷章弘, 渡部昌実, 絹田正裕, 公文裕巳, 竹居孝二

    第75回日本生化学会大会  2002 

     More details

    Event date: 2002

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ヒトretinoblastoma Y79細胞に発現しているグルタミン酸受容体

    木下美香, 武田美智子, 山田浩司, 大塚正人, 坪井誠二, 森山芳則

    日本薬学会年会要旨集  2001 

     More details

    Event date: 2001

    researchmap

  • エンドサイトーシスにおけるPtdIns(4,5)P2の分解

    絹田正裕, 山田浩司, 阿部匡史, 李順愛, 渡部昌実, 紙谷章弘, 公文裕巳, 竹居孝二

    日本細胞生物学会大会講演要旨集  2001 

     More details

    Event date: 2001

    researchmap

  • ラット培養セルトリ細胞におけるエンドサイトーシス関連蛋白質の発現

    紙谷章弘, 山田浩司, 渡部昌実, 絹田正裕, 公文裕巳, 竹居孝二

    日本細胞生物学会大会講演要旨集  2001 

     More details

    Event date: 2001

    researchmap

  • ラット松果体細胞からのセロトニンの開口放出

    上原俊介, 山田浩司, 林美都子, 木下美香, 渡部昌美, 竹居孝二, 森山芳則

    第74回日本生化学会大会  2001 

     More details

    Event date: 2001

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Ptdlns(4,5)P2の分解とエンドサイトーシス

    山田浩司, 絹田正裕, 阿部匡史, 李順愛, 渡部昌美, 紙谷章弘, 公文裕巳, 竹居孝二

    第44回日本神経化学会  2001 

     More details

    Event date: 2001

    Language:English   Presentation type:Poster presentation  

    researchmap

  • 興奮性アミノ酸による内分泌機能制御

    森山芳則, 林美都子, 山田浩司, 中塚修一, 木下美香, 室山明子, 広田寿美子, 森本理代, 山本章嗣

    日本細胞生物学会大会講演要旨集  2001 

     More details

    Event date: 2001

    researchmap

  • マウスすい臓ランゲルハンス島由来αTC6からのグルタミン酸の開口放出

    中塚修一, 山田浩司, 大塚正人, 林美都子, 浜口和之, 山本章嗣, 森山芳則

    日本薬学会年会要旨集  2001 

     More details

    Event date: 2001

    researchmap

  • Vesicle formation and membrane lipid kinetics in model synaptic endocytosis using liposomes.

    M Kinuta, H Yamada, T Abe, M Watanabe, J Ohta, K Takei

    MOLECULAR BIOLOGY OF THE CELL  2000.12  AMER SOC CELL BIOLOGY

     More details

    Event date: 2000.12

    Language:English  

    researchmap

  • ヒト・マラリア原虫Plasmodium falciparumにおけるV-ATPaseの局在と機能

    林美都子, 山田浩司, 森山芳則, 三田村俊秀, 堀井俊宏, 山本章嗣

    日本細胞生物学会大会講演要旨集  2000 

     More details

    Event date: 2000

    researchmap

  • リポソームを用いたエンドサイトーシスのモデル実験と膜脂質の動態

    絹田正裕, 阿部匡史, 山田浩司, 太田潤, 渡部昌実, ラタナクル ニシャ, 竹居孝二

    日本細胞生物学会大会講演要旨集  2000 

     More details

    Event date: 2000

    researchmap

  • 細胞膜のダイナミックス エンドサイトーシスにおける細胞膜脂質の動態

    竹居孝二, 絹田正裕, 阿部匡史, 山田浩司, 太田潤, 渡部昌実

    日本細胞生物学会大会講演要旨集  2000 

     More details

    Event date: 2000

    researchmap

  • グルタミン酸作動性内分泌細胞の発見

    森山芳則, 山田浩司, 林美都子, 大塚正人, 八代聖基, 石尾将吾, 中塚修一, 木下美香, 山本章嗣

    日本細胞生物学会大会講演要旨集  2000 

     More details

    Event date: 2000

    researchmap

  • ラット松果体におけるイオン型グルタミン酸受容体の発現とその機能

    八代 聖基, 山田 浩司, 林 美都子, 坪井 誠二, 山本 章嗣, 森山 芳則

    第72回日本生化学会大会  1999.8  (公社)日本生化学会

     More details

    Event date: 1999.8

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ラット松果体における代謝調節型グルタミン酸受容体(mGluR5)の機能的発現

    山田 浩司, 八代 聖基, 林 美都子, 坪井 誠二, 森山 芳則

    第72回日本生化学会大会  1999.8  (公社)日本生化学会

     More details

    Event date: 1999.8

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • 松果体におけるグルタミン酸によるメラトニンの合成阻害機構

    石尾将吾, 八代聖基, 山田浩司, 林美都子, は和めぐみ, 阿蘇寛明, 山本章嗣, 坪井誠二, 森山芳則

    生体膜と薬物の相互作用シンポジウム講演要旨集  1999 

     More details

    Event date: 1999

    researchmap

  • Control mechanism of melatonin synthesis through metabolism type glutamate receptor in rat pineal body.

    石尾将吾, 八代聖基, 山田浩司, 林美都子, 山口明人, 森山芳則

    日本薬学会年会要旨集  1998 

     More details

    Event date: 1998

    researchmap

  • Research on the synthesis control of biological clock hormone melatonin. Discovery of a negative control mechanism through metabolism type glutamate receptor.

    山田浩司, 八代聖基, 林美都子, 二井将光, 山口明人, 森山芳則

    生体膜と薬物の相互作用シンポジウム講演要旨集  1998 

     More details

    Event date: 1998

    researchmap

  • Molecular cell biology of Plasmodium. Identification and function of acidic compartment.

    森山芳則, 林美都子, 山田浩司, 山口明人, 山本章嗣, 三田村俊秀, 堀井俊宏, 金恵淑, 綿矢有佑

    生体膜と薬物の相互作用シンポジウム講演要旨集  1998 

     More details

    Event date: 1998

    researchmap

  • Structure and function of the synaptic vesicle and micro-vesicle of endocrine cell.

    林美都子, 山本章嗣, 山田浩司, 八代聖基, 山口明人, 二井将光, 森山芳則

    生体膜と薬物の相互作用シンポジウム講演要旨集  1998 

     More details

    Event date: 1998

    researchmap

  • Glutamate paracrine secretory mechanism through microvesicle in the pinealocyte.

    山田浩司, 山本章嗣, 森山芳則

    日本分子生物学会年会プログラム・講演要旨集  1996 

     More details

    Event date: 1996

    researchmap

  • Exocytosis of glutamate from the pineal body parenchymal cells.

    山田浩司, 山本章嗣, 田代裕, 道端斉, 森山芳則

    日本細胞生物学会大会講演要旨集  1995 

     More details

    Event date: 1995

    researchmap

  • New intercellular information transfer syste related to synaptic vesicle-like microvesicle.

    森山芳則, 山田浩司, 道端斉, 山本章嗣, 田代裕

    日本細胞生物学会大会講演要旨集  1995 

     More details

    Event date: 1995

    researchmap

  • New information transfer system between cells relating to synaptic vesicle-like microvesicle.

    森山芳則, 山田浩司, 道端斉, 山本章嗣, 田代裕

    日本動物学会大会予稿集  1995 

     More details

    Event date: 1995

    researchmap

  • Acid vesicle existing in Ascidia sydneiensis samea.

    林美都子, 浅井純子, 山田浩司, 宇山太郎, 森山芳則, 道端斉

    日本動物学会大会予稿集  1995 

     More details

    Event date: 1995

    researchmap

  • Exocytosis of glutamate from pineal body parenchymal cell.

    山田浩司, 山本章嗣, 田代裕, 道端斉, 森山芳則

    日本動物学会大会予稿集  1995 

     More details

    Event date: 1995

    researchmap

  • 糸球体ポドサイトからのグルタミン酸の放出と開口放出関連タンパクの探索

    安岡宏樹, 西井尚子, 原田結加, 宮地孝明, 阿部匡史, 竹田哲也, 和田淳, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ダイナミン1は微小管の配向を調節しTRPV2の細胞膜移行を制御する

    籔彩夏, 安岡宏樹, 片野坂友紀, 阿部匡史, 竹田哲也, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ダイナミン2の自己重合と膜との相互作用は糸球体ポドサイトのアクチン制御に重要である

    濱崎英理子, 安岡宏樹, 和木田夏輝, 阿部匡史, 竹田哲也, 竹居孝二, 山田浩司

    第62回日本生化学会中国・四国支部例会  2021.9.11 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 血液ろ過に重要な新規の腎臓病治療標的タンパク質 『ダイナミン1』の発見 Invited

    山田 浩司

    "未来へのバイオ技術”勉強会(バイオインダストリー協会)  2021.4.23 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • Amphiphysin1はsynaptopodinと共同してアクチン制御に働く

    山田浩司, The Mon La, 阿部 匡史, 竹田 哲也, 高島 英造, 長岡 ひかる, 淺沼 克彦, 竹居 孝二

    第4回ポドサイト研究会  2020.3 

     More details

    Language:Japanese  

    researchmap

  • ダイナミンによる細胞骨格制御と創薬 Invited

    薬学総合セミナー(新潟薬科大学)  2020.2.4 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • Dynamin1 / cortactin complex bundles actin filaments and supports growth cone formation.

    Kohji Takei, Tadashi Abe, Hiroshi Yamada, Mari Sei

    50th Annual meeting, American Society for Cell Biology  2010.12 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Novel mechanism of actin bundle formation by Dynamin1 / cortactin complex.

    Hiroshi Yamada, Tadashi Abe, Yoshihiro Kawada, Kohji Takei

    49th Annual meeting, American Society for Cell Biology  2009.12 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Microvesicle-mediated exocytosis of glutamate in pinealocytes. NIBB International meeting on dynamic aspects of lysosomal/vacuolar system.

    Hiroshi Yamada, Akitsugu Yamamoto, Akihito Yamaguchi, Yoshinori Moriyama

    NIBB International meeting on dynamic aspects of lysosomal/vacuolar system.  1997.12 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Microvesicle-mediated exocytosis of glutamate is a novel paracrine-like chemical transduction mechanism and inhibits melatonin secretion in pinealocytes.

    Hiroshi Yamada, Akitsugu Yamamoto, Yoshinori Moriyama

    Asiapacific pineal meeting.  1997.3 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Na+-dependent glutamate transporter in pinealocytes: identification and characterization as a reuptake system in the novel paracrine-like intercellular chemical transduction.

    Hiroshi Yamada, Akitsugu Yamamoto, Yoshinori Moriyama

    in Fifteen year's progress and future perspectives of vacuolar ATPases.  1996.11 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

▼display all

Industrial property rights

  • アルツハイマー病治療薬

    高橋智幸, Zacharie Taoufiq, 堀哲也, 竹居孝二, 山田浩司

     More details

    Application no:特願2022-145546  Date applied:2022.9.23

    researchmap

  • 抗がん剤

    道上 宏之, 松井 秀樹, 林 桂一郎, 竹居 孝二, 山田 浩司, 宮地 弘幸, 浅井 章良

     More details

    Applicant:国立大学法人 岡山大学

    Application no:特願2012-263317  Date applied:2012.11.30

    Announcement no:特開2014-108930  Date announced:2014.6.12

    Patent/Registration no:特許第5922563号  Date issued:2016.4.22

    J-GLOBAL

    researchmap

  • 抗浸潤薬の新規スクリーニング法

    山田 浩司, 道上 宏之, 竹居 孝二, 松井 秀樹, 浅井 章良

     More details

    Applicant:国立大学法人 岡山大学

    Application no:特願2012-137489  Date applied:2012.6.19

    Announcement no:特開2014-002043  Date announced:2014.1.9

    Patent/Registration no:特許第5806168号  Date issued:2015.9.11

    J-GLOBAL

    researchmap

  • 医薬組成物

    竹居 孝二, 李 順愛, 山田 浩司, 公文 裕巳, 那須 保友, 渡部 昌実

     More details

    Applicant:国立大学法人 岡山大学

    Application no:特願2008-114729  Date applied:2008.4.25

    Announcement no:特開2009-057364  Date announced:2009.3.19

    Patent/Registration no:特許第5283962号  Date issued:2013.6.7

    J-GLOBAL

    researchmap

Awards

  • 教育奨励賞

    2011   岡山医学会  

    山田 浩司

     More details

  • 脳神経研究奨励賞

    2009   岡山医学会  

    山田 浩司

     More details

Research Projects

  • マラリア原虫細胞分裂機構をターゲットとする新規創薬基盤の創生

    2023.05 - 2024.03

    国立研究開発法人 日本医療研究開発機構  新興・再興感染症に対する革新的医薬品等開発推進研究事業 

    山田浩司、高島英造、内橋貴之、成田哲博、高野光則

      More details

    Authorship:Principal investigator 

    researchmap

  • ダイナミン超複合体による新規の細胞骨格リアレンジメント機構

    Grant number:23H02477  2023.04 - 2026.03

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    竹居孝二、山田浩司

      More details

    Authorship:Coinvestigator(s) 

    researchmap

  • 慢性腎臓病克服をめざす糸球体ポドサイトのマルチスケール解析

    2023

    岡山県  電源所在県科学技術振興事業 

    竹居孝二,山田浩司,田邊克幸

      More details

    Authorship:Coinvestigator(s) 

    researchmap

  • In vitro解析からひもとくダイナミンによる細胞骨格制御機構とその破綻による病態生理の解析

    2022.06 - 2024.03

    愛媛大学  愛媛大学プロテオインターラクトーム解析共同研究拠点共同研究 

    山田 浩司、高島 英造

      More details

    Authorship:Principal investigator 

    researchmap

  • The role of dynamin in actin dynamics in cancer cell migration and metastasis

    Grant number:22K06580  2022.04 - 2025.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    Tadashi Abe, Hiroshi Yamada

      More details

    Authorship:Coinvestigator(s) 

    Grant amount:\4030000 ( Direct expense: \3100000 、 Indirect expense:\930000 )

    researchmap

  • 細胞骨格及び接着安定化分子を標的とする糸球体ポドサイト保護剤の開発

    2022.03 - 2024.03

    国立研究開発法人 日本医療研究開発機構  「橋渡し研究戦略的推進プログラム」シーズA 

    山田浩司, 竹居孝二

      More details

    Authorship:Principal investigator 

    researchmap

  • 細胞膜とアクチン細胞骨格を繋ぐダイナミンの生理機能の解明

    2021.04 - 2022.03

    愛媛大学  愛媛大学プロテオサイエンスセンター共同研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • ポドサイトが形成する血液濾過装置を支える新規アクチンリモデリング機構の解明

    Grant number:20K08591  2020.04 - 2023.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    山田 浩司, 竹居 孝二, 淺沼 克彦

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    腎臓糸球体ポドサイトに発現しているダイナミン1及びダイナミン2の細胞内機能を調べることを目的とした。本年度は、ダイナミン2のアクチン制御機構について、in vitro解析を中心に行なった。ダイナミン2はCharcot-Marie-Tooth病(CMT)の原因遺伝子の一つであることが知られている。ヒトでは9つの変異が知られている。その一つであるK562Eが細胞内のストレスファイバーとアクチン線維束形成を異常にすることを見出している(Yamada et al., Neurosci. lett., 2016)。この現象を、in vitroで解析するために、ダイナミン2野生型とK562Eをコムギ無細胞タンパク合成系を用いて調製した。最初に、ダイナミン2K562Eの性状を調べた。変異体は、膜との結合と、膜結合に依存するGTPase活性が顕著に低下していた。低イオン強度緩衝液中での自己重合性のGTPase活性は、野生型のそれに比較して、30%低下していた。また、アクチン線維とダイナミン野生型またはK562Eを混合し、その形態を電子顕微鏡にて観察した。変異体は、野生型同様にアクチン線維を束化した。このアクチン線維を精査した。高速原子間力顕微鏡観察から、ダイナミンが螺旋状に重合しているリムの部分にアクチン線維が結合していることがわかった。ダイナミンにより形成されたアクチン線維束と細胞膜を模倣したリポソームとの結合を調べた。ダイナミン変異体により形成されたアクチン線維束はリポソームにほとんど結合しなかった。従って、変異体は、細胞内でアクチン線維を束化するものの細胞膜と結合できないために、ストレスファイバー形成不全がおこると考えられる。本研究は、Frontiers in Cell and Developmental Biologyに2022年5月10日に掲載された。

    researchmap

  • ダイナミンをターゲットとする抗グリオーマ分子標的薬の開発

    2020.04 - 2022.03

    国立研究開発法人 日本医療研究開発機構  「橋渡し研究戦略的推進プログラム」シーズA 

    竹居孝二、山田浩司、道上宏之、佐藤あやの

      More details

    Authorship:Coinvestigator(s) 

    researchmap

  • ダイナミンによる細胞骨格制御機構とその破綻に関わる病態解明

    2020.04 - 2021.03

    愛媛大学  愛媛大学プロテオサイエンスセンター共同研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • エンドサイトーシス関連分子のアクチン細胞骨格と膜制御の機能連関

    2020.04 - 2021.03

    神戸大学  神戸大学バイオシグナル総合研究センター共同利用研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • エンドサイトーシス関連分子のアクチン細胞骨格と膜制御の機能連関

    2019.07 - 2020.03

    神戸大学  神戸大学バイオシグナル総合研究センター共同利用研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • 細胞骨格ダイナミクスに基づく分子輸送制御システムの解明と革新的癌創薬への新展開

    Grant number:19H01064  2019.04 - 2024.03

    日本学術振興会  科学研究費助成事業  基盤研究(A)

    渡部 昌実, 黄 鵬, 那須 保友, 定平 卓也, 竹田 哲也, 竹居 孝二, 野口 洋文, 山田 浩司, 落合 和彦

      More details

    Grant amount:\40300000 ( Direct expense: \31000000 、 Indirect expense:\9300000 )

    各種癌細胞を入手すると同時に、より普遍性の高い研究を遂行する為、独自のマウス間葉系幹細胞を樹立した。各種癌細胞において、細胞骨格因子が関わる細胞内分子輸送システムに重要と考えられるタンパク質群の発現を網羅的に解析した。特に、REIC/Dkk-3、SGTA、Tctex-1、Dyneinモーター、Dynaminおよびその他の細胞骨格(制御)因子に着目して、それら関連分子を含め発現を解析した。一部のタンパク質においてはその発現を認めず、免疫組織学的な解析を行うべく準備を進めた。これまでの男性ホルモンレセプターの核内移行に基づく実験系に加え、糖質コルチコイドレセプターの核内移行に基づく表現型解析系を立ち上げた。また癌創薬の観点から複数のDynamin阻害薬に関する検討を行い、in vivo投与での作用機序解明に係る動物実験での解析系の立ち上げを行った。

    researchmap

  • Elucidation of the function of novel actin-binding factors in neutrophil phagocytosis and extracellular trap formation

    Grant number:19K07084  2019.04 - 2022.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    ABE TADASHI

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    Neutrophils play an essential role in the destruction of bacteria in innate immune system. In the process of killing pathogens, neutrophils drastically change their cell shape with accompanying the rearrangement of actin cytoskeleton. We found that expressing dynamin 2 K562E mutant, one of the pathogenic mutations in Charcot-Marie-Tooth disease in cells leads to aberrant actin clusters and stress fibers. The effect of this mutant on actin fibers was analyzed in vitro. Recombinant dynamin 2 K562E showed lower self-assembly ability and membrane binding ability than that of dynamin 2 wildtype. Although dynamin K562E directly bundled actin filaments, the formed bundles showed much less ability to bind to the lipid membranes as compared to dynamin 2 wildtype. In conclusion, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in neutrophil functions.

    researchmap

  • Cooperative regulation of cytoskeleton and membrane dynamics by novel mechanism of dynamin

    Grant number:19H03225  2019.04 - 2022.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    Takei Kohji

      More details

    Grant amount:\17290000 ( Direct expense: \13300000 、 Indirect expense:\3990000 )

    We found that Charcot-Marie-Tooth disease-associated mutations of dynamin 2 cause aberrant stress fibers, showing that dynamin is required for the formation and stabilization of stress fibers. And we reconstituted in vitro the actin bundle formation by dynamin. We also found that dynamin 1 bundles microtubules, and showed that this bundling is necessary for the primary processes formation and stabilization of cell morphology of renal glomerular podocytes. The microtubule-binding site of dynamin 1 was identified. Furthermore, regarding the regulation of membrane dynamics, we demonstrated that dynamin 2 and BIN1, a BAR protein, cooperatively function in T-tubule formation and stabilization of skeletal muscle cells.

    researchmap

  • ダイナミンによる細胞骨格制御機構とその破綻に関わる病態解明

    2019.04 - 2020.03

    愛媛大学  愛媛大学プロテオサイエンスセンター共同研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • Genome-wide expression of P. falciparum membrane proteins

    Grant number:18K19455  2018.06 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)  Grant-in-Aid for Challenging Research (Exploratory)

    Takashima Eizo

      More details

    Grant amount:\6240000 ( Direct expense: \4800000 、 Indirect expense:\1440000 )

    Membrane associated plasmodial proteins are usually difficult to predict using the present algorithms, and are not well expressed by under conventional wheat germ cell-free protein expression system (WGCFS) conditions. In this study, we aimed at expressing P. falciparum genes using WGCFS-liposome method for membrane protein production. As a result, we succeeded to express P. falciparum proteins which are not well expressed by usual conditions of WGCFS. Moreover, liposome encapsulated WGCFS successfully expressed some membrane proteins and the recombinant proteins were localized to the liposomal membrane. Based on these results, we conclude that WGCFS-liposome is a useful tool for the expression of membrane proteins and will facilitate production and functional analyses of P. falciparum membrane proteins.

    researchmap

  • ダイナミンによる細胞骨格制御機構とその破綻に関わる病態解明

    2018.04 - 2019.03

    愛媛大学  愛媛大学プロテオサイエンスセンター共同研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • 熱帯熱マラリア原虫ダイナミンホモログによる膜制御機構

    2018.04 - 2019.03

    神戸大学  神戸大学バイオシグナル総合研究センター共同利用研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • Analysis of membrane deforming proteins in Malaria parasite

    Grant number:17K08808  2017.04 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Yamada Hiroshi

      More details

    Grant amount:\4810000 ( Direct expense: \3700000 、 Indirect expense:\1110000 )

    Malaria parasite live with erythrocyte and form parasitophorous vacuole (PV) around the parasite. And the parasite develops membrane trafficking system to get nutrients and transport many proteins. In this study, we tried to examine whether or not malarial proteins could participate in these membrane remodeling. We found that the candidate protein directly bound to liposomes and deformed them. The activity of membrane deformation by the protein was altered in the presence of GTP. We are now investigating the detailed mechanism of membrane deformation by the protein using electron microscopy and high speed atomic force microscopy.

    researchmap

  • 熱帯熱マラリア原虫ダイナミンホモログによる膜制御機構

    2017.04 - 2018.03

    神戸大学  神戸大学バイオシグナル総合研究センター共同利用研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • 熱帯熱マラリア原虫ダイナミンホモログによる膜制御機構

    2016.07 - 2017.03

    神戸大学  神戸大学バイオシグナル総合研究センター共同利用研究 

      More details

    Authorship:Principal investigator  Grant type:Competitive

  • Development of the anti-invasive drug for treatment of malignant glioma by drug-repositioning of anti-depressant.

    Grant number:16K10756  2016.04 - 2019.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ABE TADASHI

      More details

    Grant amount:\4810000 ( Direct expense: \3700000 、 Indirect expense:\1110000 )

    For treatment of malignant glioma, highly invasive glioma cells become obstacle to surgical removal of primary tumor. To suppress the high invasive activity of glioma cells, we identified the novel anti-invasive drug, a fluvoxamine, by drug repositioning of anti-depressant. Screening for more potent anti-invasive drugs using fluvoxamine as a lead compound are currently in progress. Furthermore, we found that actin-bundling by dynamin-cortactin complex is required for glioma cell invation. Cortactin is phosphorylated by cyclin dependent kinase 5 (CDK5), and its phosphorylation negatively regulates glioma cell invasion.

    researchmap

  • Development of antimalarial drugs targeting the membrane trafficking

    Grant number:26670201  2014.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research  Grant-in-Aid for Challenging Exploratory Research

    YAMADA Hiroshi, TAKEI Kohji

      More details

    Grant amount:\3640000 ( Direct expense: \2800000 、 Indirect expense:\840000 )

    Malaria parasites live in erythrocyte by forming parasitophorous vacuole (PV) around the parasite, and by developing membrane trafficking system. In this study, we tried to examine whether or not malarial proteins could participate in these membrane remodeling. By microscopy, the candidate protein self-assembled under the low ionic strength conditions. Furthermore, the candidate protein deformed liposomes. The activity of membrane deformation by the protein was altered in the presence of GTP but not GTP gamma S, a non-hydrolyzable GTP analogue. We are now investigating the detail mechanism of membrane deformation by the protein using electron microscopy.

    researchmap

  • The role of endocytosis in oateoarhthritis

    Grant number:26670665  2014.04 - 2016.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research  Grant-in-Aid for Challenging Exploratory Research

    HIROHATA Satoshi, YAMADA Hiroshi, OHTSUKI Takashi

      More details

    Grant amount:\3640000 ( Direct expense: \2800000 、 Indirect expense:\840000 )

    The regulation of ADAMTS5 is crucial for osteoarthritis. However, little is known for its mechanism. We hypothesized that endocytosis may be involved in ADAMTS5 regulation. First, we found that endocytosis occurred in OUMS-27. We next examined endocytosis-related molecule, LRP-1 and RAP. The mRNA level of receptor-associated protein (RAP), antagonist of LRP-1, was not changed by IL-1 beta stimulation. It is interesting that the small-sized bands were found by Western blotting using anti-LRP-1 antibody after IL-1 beta stimulation. This is considered to be a short LRP-1 and the shedding of LRP-1 may be occurred by IL-1 beta stimulation.

    researchmap

  • Multi-functionality of dynamin family and mechanism of integrated control

    Grant number:23370089  2011.04 - 2014.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEI Kohji, YAMADA Hiroshi, TANEBE Kenji

      More details

    Grant amount:\18980000 ( Direct expense: \14600000 、 Indirect expense:\4380000 )

    We have clarified a novel regulatory mechanism of actin dynamics by dynamin/cortactin complex. The complex is ring-shaped and it changed the conformation upon dynamin GTP hydrolysis, from open ring to close ring. By the open-cloze motion, the complex bundled F-actins and stabilized the actin bundles. Furthermore, we identified N'-[4-(dipropylamino)benzylidene]-2-hydroxybenzohydrazide(DBHA)as a dynamin inhibitor that suppress dynamin-dependent actin regulation. DBHA inhibited recruitment of dynamin to the leading edge of migrating cancer cell line and ruffle formation. It also showed inhibitory effect in cell migration, invasion, and proliferation.

    researchmap

  • Development of antimalarial drug targeting plasmodium falciparum dynamin

    Grant number:23659213  2011 - 2013

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Exploratory Research  Grant-in-Aid for Challenging Exploratory Research

    TAKEI Kohji, YAMADA Hiroshi

      More details

    Grant amount:\3770000 ( Direct expense: \2900000 、 Indirect expense:\870000 )

    By in vitro actin polymerization assay, we identified N'-(4-(diethylamino) benzylidene)-4-methoxybenzohydrazide (DBHA) as a dynamin inhibitor. Effects of DBHA on ruffle formation and cell migration were also examined, and the results on DBHA were published in a journal article.
    Dynamin isoforms present in plasmodium falciparum, pfDyn1 and pfDyn2, were expressed in insect cells, and they were purified. Using these recombinant proteins, we demonstrated that both pfDyn1 and pfDyn2 have GTPase activity. It was also shown that pfDyn1 and pfDyn2 have an ability to deform lipid membranes. Furthermore, pfDyn2 inhibitor candidate molecules were determined by GTPase activity assay-based drug screening.

    researchmap

  • Elucidation of Biological Adaptation and Remodeling Mechanisms to Mechanical Stress Based on the Development of Novel Micro-Electro-Mechanical Systems (MEMS) technology

    Grant number:22240056  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)  Grant-in-Aid for Scientific Research (A)

    NARUSE Keiji, MOHRI Satoshi, NAKAMURA Kazufumi, TAKEI Kohji, YAMADA Hiroshi, IRIBE Gentaro, KATANOSAKA Yuki

      More details

    Grant amount:\50570000 ( Direct expense: \38900000 、 Indirect expense:\11670000 )

    Physical and mechanical stimuli such as gravity, extension, and shearing stress are generated throughout a living body. It has been gradually revealed that these stimuli, which are transmitted via the mechanotransduction mechanisms of cells, are not simply detrimental stresses for living organisms, but rather are biological information essential to developmental processes and functional adaptation of organs. In this project, on the basis of the development of original loading systems for mechanical stress to cells and tissues, the cellular adaptive responses to the mechanical stimuli and their transduction mechanisms in a variety of mechanosensitive tissues are to be examined. Thus, the project aims toelucidate the molecular mechanisms and roles of mechanotransduction system, which is utilized as a basis of many physiological events. It can also contribute to develop therapeutic approach to cancer invasion, cardiac hypertrophy, and regeneration of neuronal circuit.

    researchmap

  • The role of dynamin in actin dynamics: Development of anticancer drugs inhibiting dynamin function

    Grant number:22501013  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ABE Tadashi, YAMADA Hiroshi, WATANABE Masami, ASAI Akira

      More details

    Grant amount:\4290000 ( Direct expense: \3300000 、 Indirect expense:\990000 )

    In search of more effective inhibitor for dynamin than dynasore, one hundred eighty one dynasore analogues were screened by in vitro actin polymerization assay. N'-(4-(diethylamino)benzylidene)-4-methoxybenzohydrazide (DBHA) was identified as a potent dynamin inhibitor. DBHA strongly inhibited the serum-stimulated ruffle formation, cell migration and invasion. Under these conditions, DBHA showed little toxicity for cultured cancer cell line. Furthermore, we clarified the function of dynamin/cortactin complex in the regulation of actin dynamics. The dynamin/cortactin complexes bundled several actin filaments and the bundling stabilized actin filaments. The actin bundling by dynamin/cortactin complex was necessary for formation of growth cone filopodia and cell migration. These findings might be crucial for developping anti cancer drugs.

    researchmap

  • The relationship between actin bundling by dynamin/cortactin complex and stretch-activated cation channel on actin cytoskeleton

    Grant number:22616004  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    YAMADA Hiroshi

      More details

    Grant amount:\4550000 ( Direct expense: \3500000 、 Indirect expense:\1050000 )

    The function of stretch-activated cation channel on actin dynamics was investigated. Calcium ion concentration in the ruffle membrane was increased during cell migration. Knockdown of the channel in cancer cell line resulted in marked reduction ofboth calcium influx via the channel and serum-stimulated ruffle formation, which were required for cell migration. These results suggest that stretch-activated cation channel in cancer cell is involved in cell migration possibly by regulating actin dynamics. Furthermore, we identified the function of dynamin/cortactin complex in the regulation of actin dynamics. The dynamin/cortactin complexes bundled several actin filaments and the bundling stabilized actin filaments. The actin bundling by dynamin/cortactin complex was necessary for formation of growth cone filopodia and cell migration. These findings might be crucial for the study for neuronal regeneration and cancer cell migration.

    researchmap

  • Molecular mechanism of endocytosis that regulates membrane dynamics

    Grant number:17370071  2005 - 2007

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEI Kohji, YAMADA Hiroshi, LI Shun-ai, TANAE Kenji

      More details

    Grant amount:\15280000 ( Direct expense: \14800000 、 Indirect expense:\480000 )

    In order to elucidate the role of endocytic proteins in membrane dynamics, localization and intracellular dynamics of dynamin and amphiphysin during phagocytosis were examined. For this purpose, testicular Sertoli cell phagocytosis was stimulated by phosphatidylserine containing liposomes, and intracellular localization and dynamics of the endocytic proteins were examined. By immunofluorescence and by live cell imaging, both dynamin2 and amphiphysin were concentrated at the leading edge of lamellipodia and ruffles. Ruffle formation, actin formation, and phagocytosis were markedly inhibited in Amphiphysin siRNA treated cells indicating that amphiphysin is essential for these processes. Furthermore, these effects in the amphiphysin 1-knocked down cells were rescued by co-overexpression of constitutive active Rac 1, suggesting that Rac 1 is involved in the process at the downstream of amphiphysin.
    Next, effect of amphiphysin 1 on actin polymerization activity was examined in vitro. For this purpose, mouse testis cytosol supplemented with pyrene-conjugated actin, were subjected to quantitative actin in vitro polymerization assay. Actin polymerization was also observed under fluorescent microscopy using cytosol supplemented with rhodamine-conjugated actin. Actin assembly activity was considerably reduced in cytosol from amphiphysin 1 knock out mice, which can be recovered by adding back recombinant proteins.
    Thus, amphiphysin 1, an endocytic protein, play a role in the regulation of actin dynamics, by which it stimulate in membrane dynamics and phagocytosis.

    researchmap

  • エンドサイトーシスの分子機構:分子構造から細胞機能まで

    Grant number:15079206  2003 - 2007

    日本学術振興会  科学研究費助成事業  特定領域研究

    竹居 孝二, 山田 浩司, 李 順愛, 田邊 賢司, 絹田 正裕

      More details

    Grant amount:\106400000 ( Direct expense: \106400000 )

    1)ダイナミンによる微小管動態制御
    エンドサイトーシスの機能タンパクであるダイナミンは、細胞骨格の一つである微小管に結合する遺伝子として同定されたが、その生理的意義は不明であった。そこで我々はRNAiによりダイナミン2の発現を抑制した細胞の微小管を形態的に観察した。その結果、ダイナミン2のノックダウンにより動的な微小管が減少し、微小管に沿った膜輸送の障害によりゴルジ体の分散が起こる事を見いだした。さらに、変性性末梢神経障害であるシャルコー・マリー・トゥース病の原因遺伝子として報告されたダイナミン変異体を発現させた細胞でも、同様の結果が観察され微小管の異常な蓄積が観察された。以上の結果からダイナミンが微小管のダイナミクスを制御している可能性が示唆された。
    2)チューブ状エンドソームの切断と成熟機構
    分子選別に機能する初期エンドソームでは、初期エンドソームからリサイクルに向かうチューブ状エンドうソームが形成切断され、リサイクルエンドソームに向かう。一方、残存したエンドソームは、分解に向かう物質を含んだ後期エンドソームへの成熟が行われる。この二つのプロセスがどのように連携しているのかは判っていなかった。我々は、阻害剤を用いてチュニブ状エンドソームの切断、後期エンドソームへの成熟を阻害し、これらのプロセスについて解析した。その結果、チュブ状エンドソームの切断にダイナミンが関与しており、チューブ切断がエンドソームの酸性化と移動などの成熟過程に必要である事を見出した。

    researchmap

  • エンドサイト-シス小胞形成のリアルタイム観察

    Grant number:15657028  2003 - 2005

    日本学術振興会  科学研究費助成事業  萌芽研究

    竹居 孝二, 山田 浩司, 李 順愛, 絹田 正裕

      More details

    Grant amount:\2900000 ( Direct expense: \2900000 )

    ファゴサイトーシスの分子機構解明のために、セルトリ細胞を用いてファゴサイトーシスのリアルタイム観察を行った。まず、セルトリ細胞株SerW3にフォスファチジルセリン(PS)を認識する受容体(SR-B1)が発現していることをウエスタンブロットにより確認し、細胞膜における局在のパターンを蛍光免疫染色により明らかにした。次に、SerW3細胞によるPS含有大型リポゾーム取込みを経時的、定量的に調べることにより、セルトリ細胞のファゴサイトーシスが、SR-B1を介してPS依存性に起こることを明らかにした。SerW3細胞に、PS含有リポゾームあるいはPSで被覆したスチレンビーズを貪食させ、その様子を超高速共焦点レーザー顕微鏡下でリアルタイム観察したところ、ファゴサイトーシスにおけるpseudo pod形成に先立って糸状突起やラッフルの形成など、F-アクチンの再編成による細胞膜の形態変化が著明に認められた。PS刺激からアクチン重合、ラッフル形成にいたる経路には、フォスファチジルイノシトール3リン酸キナーゼ、Rac、cdc42が関与することが阻害剤を用いた実験により示された。GFP-アンフィファイジン1を発現させたSerW3細胞をライブイメージングにより観察すると、ラッフル形成に伴ってアンフィファイジン1がラッフルに集積する様子が認められた。SerW3細胞のアンフィファイジン1をRNAiによりノックダウンするとラッフル形成が抑制されたことから、アンフィファイジン1がファゴサイトーシス初期におけるアクチンフィラメントの再編成に関与することが示唆された。

    researchmap

  • Molecular mechanism of L-glutamate and GABA-mediated regulation of secretion of glucagon and insulin in islets of Langerhans

    Grant number:15390026  2003 - 2005

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    MORIYAMA Yoshinori, OTUSKA Masato, YAMADA Hiroshi

      More details

    Grant amount:\13500000 ( Direct expense: \13500000 )

    Vesicular glutamate transporter (VGLUT) and vesicular GABA transporter (VGAT) play essential roles in the glutamatergic and GABAergic chemical transduction, respectively. VGLUT and VGAT are present not only in the neuronal synaptic vesicles but also in the glucagon-containing secretory granules of A cells of islets of Langerhans, and are responsible for vesicular storage of glutamate and GABA, respectively. This research aimed to reveal the molecular mechanism of the glutamate- and GABA-mediated regulation of secretion of glucagon and insulin in the islets. During three years, we have obtained the following important results.
    (1)We have revealed topology of VGLUT2.
    (2)We have established an in vitro assay system for VGLUT, and identified some essential amino acid residues for transport of glutamate as well as targeting.
    (3)We have established an in vitro assay system for VGAT.
    (4)We have observed decreased glutamatergic signaling in VGLUT1 KO mice.
    (5)We have identified and characterized glutamate signaling pathway in intestinal L cells.
    (6)We have identified and characterized a series of receptors for regulation of secretion of insulin and glucagon.

    researchmap

  • A Study on Regulatory Mechanisms of Endocytosis

    Grant number:14380336  2002 - 2004

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEI Kohji, YAMADA Hiroshi

      More details

    Grant amount:\11100000 ( Direct expense: \11100000 )

    Regarding to regulatory mechanisms of endocytosis, the followings were revealed.
    1.Regulation of endocytosis by Amphiphysin 1
    Dynamin-dependent endocytosis can be reconstituted in vitro by incubating large unilammelar liposomes with brain cytosol or dynamin in presence of GTP. Using amphipshyin knockout brain cytosol in this experimental system, it was clarified that amphiphysin 1 stimulates dynamin GTPase activity and thereby enhances dynamin-dependent vesicle formation. This effect required both BAR domain and SH3 domain of amphiphysin 1. Low membrane curvature of large liposomes was also requisite for the stimulatory effect of amphiphysin 1.
    2.Regulation of endocytosis cdk5-dependent phosphorylation
    Both dynamin 1 and amphiphysin 1 are phosphorylated by cyclin dependent kinase 5 (cdk5). Incubation of liposomes with phosphorylated dynain and phosphorylated amphiphysin 1 in presence of GTP resulted in few vesicle formation, whereas dephophorylated proteins massively generated vesicles. Thus, endocytosis is likely to be regulated by cdk5-dependent phosphorylation.
    3.Localization of dynamin 2 and dynamin3
    Distinct localization of dynamin 2 and dynamin3 in Sertoli cells was revealed suggesting different functions of these isoforms.

    researchmap

  • シナプスにおけるエンドサイトーシス機能タンパク-膜リン脂質相互作用の解析

    Grant number:14380306  2002 - 2004

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    絹田 正裕, 竹居 孝二, 山田 浩司

      More details

    Grant amount:\10700000 ( Direct expense: \10700000 )

    Amphiphysin 1によるDynamin GTPase活性の上昇
    Dynamin 1GTPアーゼ活性に対するAmphiphysin 1と膜脂質の影響を調べ、Amphiphysin 1が、大型リポゾームの存在下にDynamin 1のGTPアーゼ活性を上昇することを明らかにした。リポゾームにフォスファチジルセリン、フォスファチジルイノシトール2リン酸などの酸性リン脂質を含まれる場合、特にGTPアーゼ活性の増強効果が高かった。ミュータントAmphiphysin 1を用いた解析により、Dynamin 1GTPアーゼ活性の増強には膜脂質への結合を担うBARドメインと、dynaminとの結合ドメインであるSH3ドメインが必要でであることを明らかにした。また、クラスリン結合部位、AP2結合部位を含む中間部は、Dynamin 1GTPアーゼ活性に対して抑制的に働くことが示唆された。
    Amphiphysin 1によるDynamin 1と膜脂質の結合の増加
    リポゾームを用いた結合実験により、Amphiphysin 1がDynamin 1と膜脂質の結合を増加させることを明らかにした。この結合増加の一因は、Amphiphysin 1のBARドメインとSH3ドメインを介した間接的結合によるものであることを、ミュータントAmphiphysin 1を用いた解析により明らかにした。
    Amphiphysin 1とDynamin 1と脂質膜の結合増加
    ミュータントAmphiphysin 1を用いた解析により,Amphiphysin 1とDynamin 1のリング形成にはBARドメインとSH3ドメインが必要であることを明らかにした。また、リング形成とDynamin 1 GTPアーゼ活性の上昇が、Dynamin 1と膜結合性にある程度相関することを示唆した。
    以上の成果を論文にまとめ発表した。

    researchmap

  • 膵島におけるグルタミン酸によるインスリン分泌制御機構の解析

    Grant number:14770600  2002 - 2004

    日本学術振興会  科学研究費助成事業  若手研究(B)

    山田 浩司

      More details

    Grant amount:\3800000 ( Direct expense: \3800000 )

    株化細胞であるMIN6細胞に、AMPA型グルタミン酸受容体のイソフォームであるGluR2が発現していることを免疫化学的手法を用いて見いだした。グルタミン酸受容体のエンドサイトーシスを生化学的に検出する手法を構築し、GluR2が、AMPA刺激により細胞内にエンドサイトーシスされることを見いだした。このエンドサイトーシスは、細胞外グルコースが低濃度の場合に顕著に起こり、AMPA型グルタミン酸受容体のアンタゴニストであるGYKI52466により阻害されることが判明した。さらに、このリガンド依存性エンドサイトーシスは、細胞外のNaイオン、Caイオンを除くことにより阻害された。さらに、人工的に細胞膜の脱分極を高濃度のKClを加えることにより、誘導するとGluR2のエンドサイトーシスが起こった。従って、GluR2のエンドサイトーシスは、グルタミン酸の受容体への結合と細胞膜の脱分極が必要であることが示唆された。さらに、蛍光ラベルしたGluR2(GFP-GluR2)をMIN6細胞に強制発現させ、AMPA刺激で、GluR2のエンドサイトーシスを反映していると考えられる蛍光スポットの移動が観察できた。

    researchmap

  • 神経シナプスにおけるエンドサイトーシスの変化を指標とした神経変性疾患の解析

    Grant number:13035032  2001 - 2002

    日本学術振興会  科学研究費助成事業  特定領域研究

    竹居 孝二, 山田 浩司, 絹田 正裕

      More details

    Grant amount:\4600000 ( Direct expense: \4600000 )

    1.老化モデルマウスを用いた解析
    老化脳における神経シナプスの変化を調べるため、老化モデルマウスであるKlotho変異マウス海馬シナプスにおけるタンパク発現を精査した。蛍光免疫染色法および蛍光強度の定量的測定では、シナプス小胞のマーカーであるSynaptophysinの発現が海馬CA3領域において軽度減少していた。次にシナプスエンドサイトーシス機能蛋白(Clathrin、AP2、Dynamin1、Amphiphysin1など)の発現と局在をそれぞれウエスタンブロッティング、蛍光免疫染色法により調べた。Klotho変異マウス海馬ではDynamin1の発現がわずかにの減少していたが、他のタンパクについては変化はみられなかった。
    2.Klothoタンパクの局在
    Klotho変異マウス脳における上記の変化とKlothoタンパクの関連を明らかにする目的で、Klothoタンパクの局在を蛍光免疫染色法により調べた。既にKlotho mRNAは脈絡叢上皮に局在することが報告されているが、Klothoタンパクも脈絡叢に特異的に発現していた。さらに共焦点顕微鏡観察、金コロイドを用いた凍結免疫電顕法により、Klothoタンパクが脈絡叢上衣細胞のapical側(脳室側)に選択的に局在することが明らかになった。脈絡叢は脳脊髄液の産生、調節に機能することから、Klotho変異マウス脳にみられた上記の比較的軽度な変化は、脳脊髄液産生、調節の変化を介した二次的な変化である可能性が示唆された。

    researchmap

  • AMPA型グルタミン酸受容体のエンドサイトーシスの分子機構

    Grant number:13041045  2001

    日本学術振興会  科学研究費助成事業  特定領域研究(A)

    竹居 孝二, 山田 浩司, 絹田 正裕

      More details

    Grant amount:\4000000 ( Direct expense: \4000000 )

    1.膵島β細胞株MIN6のキャラクタライゼイション
    膵島β細胞にはAMPA受容体が発現していることが見い出されており、本研究ではAMPA受容体のエンドサイトーシスの機構を解明するためにβ細胞を用いることを提案した。
    まず特異的抗体を用いたWestern blot法により、MIN6におけるAMPA受容体の発現を明らかにした。次にMIN6におけるエンドサイトーシス機能タンパクの発現を調べた。その結果、クラスリン依存性エンドサイトーシスの機能タンパクであるアンフィファイジン、さらにアンフィファイジンのリン酸化酵素CDK5が高発現することがWestern blot法により見い出された。
    2.エンドサイトーシスのin vitro再構成系の確立
    AMPA受容体エンドサイトーシスの分子メカニズム解明のためには、エンドサイトーシスによる取り込み小胞の形成をin vitroで再現する実験系の確立が必要であると考えた。In vitroで人工脂質膜(リポソーム)を膜成分として、ATPおよびGTP存在下に細胞質と反応させることにより、大型(直径>1μm)のリポソームから直径100nm以下の小胞が多数形成される実験系を確立した。さらに、形成された小胞の大きさ、数、相対的質量を動的光拡散測定装置を用いて測定することにより、小胞形成の定量化を可能とした。この実験系はAMPA受容体の選択的取り込みを解析するための実験系として応用されうる。

    researchmap

  • A Study on Molecular Mechanisms of Endocytosis

    Grant number:12480217  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    TAKEI Kohji, YAMADA Hiroshi, KINUTA Masahiro

      More details

    Grant amount:\14100000 ( Direct expense: \14100000 )

    Establishment of in vitro cell-free system: In order to elucidate molecular mechanisms involved in endocytosis, vesicle formation in endocytosis was reconstituted in vitro. Incubation of large liposomes, larger than 1 μm in diameter, with brain cytosol resulted in massive formation of small vesicles, smaller than 100 nm in diameter. The vesicle formation required both ATP and GTP. Vesicle formation was drastically reduced when liposomes were incubated with dynamin 1 -depleted cytosol, indicating that vesicle formation in this experimental system represents endocytic vesicle formation. The vesicle formed during the incubation can be analyzed quantitatively and qualitatively by dynamic light scattering.
    Functions and Kinetics of membrane lipids: Functions of membrane lipids were studied by analyzing vesicle formation from liposomes of with various compositions. Vesicle formation increased as phosphatidylinositol-4.5-bisphosphate (PIP_2) concentration in liposomes was increased. Furthermore, PIP_2 was degraded to phosphatidylinositol-4-bisphosphate, then to phosphatidylinositol. Next, PIP_2 synthesis during the reaction was analyzed by addition of neomycin, inhibitor for PIP_2 degradation, in the reaction mixture. PIP_2 synthesis was increased by active form of ADP-ribosylation factor 6 (Arf6). It was suggested that increase of membrane recruitment of AP2, clathrin adaptor protein, by Arf6 might attribute to the increase of PIP_2 synthesis.
    Kinetics of membrane lipids in culture cells: Degradation of PTP_2 synthesis upon endocytosis was examined in culture cells. Metabolically labeled HeLa cells were stimulated for endocytosis and the amount of PIP_2 was analyzed. Similar PIP_2 degradation as that observed in the cell-free system was observed.

    researchmap

  • 遺伝子、蛋白の機能、形態解析のための細胞内超微構造のデータベースの構築

    Grant number:12208033  2000

    日本学術振興会  科学研究費助成事業  特定領域研究(C)

    竹居 孝二, 横田 一正, 山田 浩司, 絹田 正裕, 劉 渤江, 國島 丈夫

      More details

    本研究の目的は既報論文の電子顕微鏡像を形態的特徴によって分類し、そのデータベースを構することである。本年度の研究実績は以下の通り。
    1 論文検索および電子顕微鏡像の解析
    今年度は対象論文を神経細胞に限定し、まずPubMedで『neuron(神経)』および『ultrastructure(微細構造)』のキーワードにより検索される約3万7千余の論文の一部について、本データベースの対象論文としての妥当性を分析した。その結果、対象となる電子顕微鏡像は一部の学術雑誌に集中して掲載されていることが判明したので、効率的なデータベース構築をするため、学術雑誌ごとに論文の分析、入力作業を行うこととした。現在、Cell Tissue Researchに掲載された1197件の論文について、電顕像をその特徴により分類し、画像入力およびPubMedからの書誌情報の取り込みを行っている。
    2 データベース構築
    今年度はデータベース構築のためのプロトタイプシステムの実装を行った。このシステムでは、PubMedから得られる論文の書誌情報、論文からスキャナで取り込んだ画像データ、および画像データの特徴をあらわすキーワードなどをデータベースに格納し、相互の関連付けを半自動で行っている。データベースに対する検索は、要求が最も高いと思われるキーワードからの検索を中心に実装した。PubMedの書誌情報がASN.1形式で構造化されているため、テキスト情報は構造化文書の標準規格であるXML形式で構造化した上でデータベースに格納するという構成を採用した。その結果として、データベースとしてはXML文書処理機能の豊富なOracle8iを、また検索システムはJava言語のServlet機能を用いたWWWサーバ・クライアント方式をそれぞれ採用した。この知見を元に、来年度はより使いやすいデータ入力方式や検索方法、PubMedの更新への自動追随などを検討していきたい。

    researchmap

  • 松果体細胞がグルタミン酸作動性のパラニューロンであることの発見とその性格づけ

    Grant number:97J03629  1998

    日本学術振興会  科学研究費助成事業  特別研究員奨励費

    山田 浩司

      More details

    Grant amount:\1300000 ( Direct expense: \1300000 )

    researchmap

▼display all

 

Class subject in charge

  • 医学セミナー (2023academic year) 第1学期

  • 医学研究インターンシップ (2023academic year) 特別

  • Project-based Learning in Molecular Pathogenesis (2023academic year) special  - その他

  • Biochemistry (2023academic year) Concentration  - その他

  • Biochemistry (2023academic year) special  - その他

  • Practicals: Biochemistry (2023academic year) special  - その他

  • Practice in Biochemistry (2023academic year) special  - その他

  • Research Projects: Biochemistry (2023academic year) special  - その他

  • Research Projects and Practicals: Biochemistry I (2023academic year) special  - その他

  • Lecture and Research Projects: Biochemistry I (2023academic year) special  - その他

  • Research Projects and Practicals: Biochemistry II (2023academic year) special  - その他

  • Lecture and Research Projects: Biochemistry II (2023academic year) special  - その他

  • 医学セミナー (2022academic year) 第1学期

  • 医学研究インターンシップ (2022academic year) 特別

  • Project-based Learning in Molecular Pathogenesis (2022academic year) special  - その他

  • Biochemistry (2022academic year) special  - その他

  • Biochemistry (2022academic year) Concentration  - その他

  • Practice in Biochemistry and Molecular Biology (2022academic year) special  - その他

  • Practice in Biochemistry (2022academic year) special  - その他

  • Research Projects and Practicals: Biochemistry I (2022academic year) special  - その他

  • Lecture and Research Projects: Biochemistry I (2022academic year) special  - その他

  • Research Projects and Practicals: Biochemistry II (2022academic year) special  - その他

  • Lecture and Research Projects: Biochemistry II (2022academic year) special  - その他

  • 医学セミナー (2021academic year) 第1学期

  • 医学研究インターンシップ (2021academic year) 特別

  • Project-based Learning in Molecular Pathogenesis (2021academic year) special  - その他

  • Biochemistry (2021academic year) special  - その他

  • Biochemistry (2021academic year) Concentration  - その他

  • Practice in Biochemistry and Molecular Biology (2021academic year) special  - その他

  • Practice in Biochemistry (2021academic year) special  - その他

  • Research Projects and Practicals: Biochemistry I (2021academic year) special  - その他

  • Lecture and Research Projects: Biochemistry I (2021academic year) special  - その他

  • Research Projects and Practicals: Biochemistry II (2021academic year) special  - その他

  • Lecture and Research Projects: Biochemistry II (2021academic year) special  - その他

  • Project-based Learning in Molecular Pathogenesis (2020academic year) special  - その他

  • Biochemistry (2020academic year) Concentration  - その他

  • Biochemistry (2020academic year) special  - その他

  • Practice in Biochemistry and Molecular Biology (2020academic year) special  - その他

  • Research Projects and Practicals: Biochemistry I (2020academic year) special  - その他

  • Lecture and Research Projects: Biochemistry I (2020academic year) special  - その他

  • Research Projects and Practicals: Biochemistry II (2020academic year) special  - その他

  • Lecture and Research Projects: Biochemistry II (2020academic year) special  - その他

▼display all