Updated on 2024/02/02

写真a

 
NISHIDA Mikako
 
Organization
Faculty of Medicine, Dentistry and Pharmaceutical Sciences Assistant Professor
Position
Assistant Professor
External link

Degree

  • 博士(医学) ( 岡山大学 )

Research Interests

  • 腫瘍免疫・代謝

Research Areas

  • Life Science / Immunology

Education

  • Okayama University   大学院医歯薬学総合研究科   博士課程

      More details

    Country: Japan

    Notes: 博士(医学)

    researchmap

Research History

  • 岡山大学大学学術研究院医歯薬学域   助教

    2021.4

      More details

  • 岡山大学大学院医歯薬学総合研究科   助教

    2020.4 - 2021.3

      More details

  • 岡山大学大学院医歯薬学総合研究科   非常勤研究員

    2016.4 - 2020.3

      More details

    Country:Japan

    researchmap

Professional Memberships

 

Papers

  • Evidence for Hypoxia-Induced Shift in ATP Production from Glycolysis to Mitochondrial Respiration in Pulmonary Artery Smooth Muscle Cells in Pulmonary Arterial Hypertension. Reviewed International journal

    Satoshi Akagi, Kazufumi Nakamura, Megumi Kondo, Satoshi Hirohata, Heiichiro Udono, Mikako Nishida, Yukihiro Saito, Masashi Yoshida, Toru Miyoshi, Hiroshi Ito

    Journal of clinical medicine   12 ( 15 )   2023.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND: The metabolic state of pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) is not well understood. In this study, we examined the balance between glycolysis and mitochondrial respiration in non-PAH-PASMCs and PAH-PASMCs under normoxia and hypoxia. METHODS: We investigated the enzymes involved in glycolysis and mitochondrial respiration, and studied the two major energy-yielding pathways (glycolysis and mitochondrial respiration) by measuring extracellular acidification rate (ECAR) and cellular oxygen consumption rate (OCR) using the Seahorse extracellular flux technology. RESULTS: Under both normoxia and hypoxia, the mRNA and protein levels of pyruvate dehydrogenase kinase 1 and pyruvate dehydrogenase were increased in PAH-PASMCs compared with non-PAH-PASMCs. The mRNA and protein levels of lactate dehydrogenase, as well as the intracellular lactate concentration, were also increased in PAH-PASMCs compared with non-PAH-PASMCs under normoxia. However, these were not significantly increased in PAH-PASMCs compared with non-PAH-PASMCs under hypoxia. Under normoxia, ATP production was significantly lower in PAH-PASMCs (59 ± 5 pmol/min) than in non-PAH-PASMCs (70 ± 10 pmol/min). On the other hand, ATP production was significantly higher in PAH-PASMCs (31 ± 5 pmol/min) than in non-PAH-PASMCs (14 ± 3 pmol/min) under hypoxia. CONCLUSIONS: There is an underlying change in the metabolic strategy to generate ATP production under the challenge of hypoxia.

    DOI: 10.3390/jcm12155028

    PubMed

    researchmap

  • Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells. Reviewed International journal

    Yoichiro Harada, Yu Mizote, Takehiro Suzuki, Akiyoshi Hirayama, Satsuki Ikeda, Mikako Nishida, Toru Hiratsuka, Ayaka Ueda, Yusuke Imagawa, Kento Maeda, Yuki Ohkawa, Junko Murai, Hudson H Freeze, Eiji Miyoshi, Shigeki Higashiyama, Heiichiro Udono, Naoshi Dohmae, Hideaki Tahara, Naoyuki Taniguchi

    eLife   12   2023.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs). This metabolic remodeling impaired dormant origin firing required to rescue stalled forks by cisplatin, thus exacerbating replication stress. Importantly, pharmacological inhibition of de novo dNTP biosynthesis was sufficient to retard cell cycle progression, sensitize cells to cisplatin, and inhibit dormant origin firing, suggesting dNTP loss-induced genomic instability as a central mechanism for the anticancer activity of mannose.

    DOI: 10.7554/eLife.83870

    PubMed

    researchmap

  • Metformin-ROS-Nrf2 connection in the host defense mechanism against oxidative stress, apoptosis, cancers, and ageing Reviewed

    Heiichiro Udono, Mikako Nishida

    Biochimica et Biophysica Acta (BBA) - General Subjects   1866 ( 8 )   130171 - 130171   2022.8

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.bbagen.2022.130171

    researchmap

  • Blocking EP4 downregulates tumor metabolism and synergizes with anti-PD-1 therapy to activate natural killer cells in a lung adenocarcinoma model. Reviewed International journal

    Miho Tokumasu, Mikako Nishida, Takamasa Kawaguchi, Ikuru Kudo, Tohru Kotani, Kazuhiko Takeda, Takao Yoshida, Heiichiro Udono

    International immunology   2022.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Prostaglandin E2 (PGE2), a product of the cyclooxygenase (COX) pathway, is produced by tumors and surrounding stromal cells. It stimulates tumor progression, promotes angiogenesis, and suppresses the antitumor response. Pharmacological inhibition of PGE2 synthesis has been shown to suppress tumor initiation and growth in vivo. In the current study, we demonstrated that the growth of the Ptgs2-deficient the 3LL lung adenocarcinoma cell line was downregulated in vivo through natural killer (NK) cell activation and a reduction in the population of polymorphonuclear leukocyte-myeloid-derived suppressor cells (PMN-MDSCs) and tumor associated macrophages (TAMs). Based on these results, the therapeutic effect of ONO-AE3-208 (EP4i), an inhibitor of EP4 (a PGE2 receptor), combined with anti-PD-1Ab was evaluated. EP4i, but not anti-PD-1 Ab, decreased tumor metabolism including glycolysis, fatty acid oxidation, and oxidative phosphorylation. EP4i induced IFNγ production from only NK cells (not from T cells) and a shift from M2- to M1-like macrophages in TAMs. These effects were further enhanced by anti-PD-1 Ab treatment. Although CD8T cell infiltration was increased, IFNγ production was not significantly altered, even with combination therapy. Tumor hypoxia was ameliorated by either EP4i or anti-PD-1 Ab treatment, which was further affected by the combination. Normalization of tumor vessels was significant only for the combination therapy. The results indicate a novel effect of EP4i for the metabolic reprogramming of tumors, revealed unique features of EP4i that can synergize with anti-PD-1Ab to promote IFNγ production of NK cells, polarize TAMs into the M1-phenotype, and reduce hypoxia through normalization of the tumor vasculature. (250 words).

    DOI: 10.1093/intimm/dxac004

    PubMed

    researchmap

  • Nutrient Condition in the Microenvironment Determines Essential Metabolisms of CD8+ T Cells for Enhanced IFNγ Production by Metformin. Reviewed International journal

    Ruoyu Chao, Mikako Nishida, Nahoko Yamashita, Miho Tokumasu, Weiyang Zhao, Ikuru Kudo, Heiichiro Udono

    Frontiers in immunology   13   864225 - 864225   2022

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Metformin (Met), a first-line drug for type 2 diabetes, lowers blood glucose levels by suppressing gluconeogenesis in the liver, presumably through the liver kinase B1-dependent activation of AMP-activated protein kinase (AMPK) after inhibiting respiratory chain complex I. Met is also implicated as a drug to be repurposed for cancers; its mechanism is believed identical to that of gluconeogenesis inhibition. However, AMPK activation requires high Met concentrations at more than 1 mM, which are unachievable in vivo. The immune-mediated antitumor response might be the case in a low dose Met. Thus, we proposed activating or expanding tumor-infiltrating CD8+ T cells (CD8TILs) in a mouse model by orally administering Met in free drinking water. Here we showed that Met, at around 10 μM and a physiologically relevant concentration, enhanced production of IFNγ,TNFα and expression of CD25 of CD8+ T cells upon TCR stimulation. Under a glucose-rich condition, glycolysis was exclusively involved in enhancing IFNγ production. Under a low-glucose condition, fatty acid oxidation or autophagy-dependent glutaminolysis, or both, was also involved. Moreover, phosphoenolpyruvate carboxykinase 1 (PCK1), converting oxaloacetate to phosphoenolpyruvate, became essential. Importantly, the enhanced IFNγ production was blocked by a mitochondrial ROS scavenger and not by an inhibitor of AMPK. In addition, IFNγ production by CD8TILs relied on pyruvate translocation to the mitochondria and PCK1. Our results revealed a direct effect of Met on IFNγ production of CD8+ T cells that was dependent on differential metabolic pathways and determined by nutrient conditions in the microenvironment.

    DOI: 10.3389/fimmu.2022.864225

    PubMed

    researchmap

  • Pharmacological effects on anaplerotic pathways alters the metabolic landscape in the tumor microenvironment, causing unpredictable, sustained antitumor immunity. Reviewed International journal

    Heiichiro Udono, Mikako Nishida

    International immunology   2021.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    To achieve sustained antitumor immunity, tumor-infiltrating effector CD8 T lymphocytes (CD8 TILs) must be able to produce cytokines, including IFNγ and proliferate robustly within the local tumor tissue upon antigen recognition. IFNγ production by CD8 TILs depends on glycolysis, whereas their proliferation additionally requires oxidative phosphorylation (OxPhos). The level of OxPhos, and hence the oxygen consumption rate, depends on mitochondrial biogenesis and requires the loading of metabolic precursors into the tricarboxylic acid cycle to keep it functioning. This is referred to as anaplerosis. Recent advances in the field of immuno-metabolism have shown the impact of pharmacological agents on anaplerotic pathways, resulting in metabolic downregulation in tumor cells; in contrast, the agents trigger sustained antitumor immunity by upregulating both glycolysis and OxPhos in CD8 TILs. The opposing effects of pharmacological inhibition (and/or activation) on anaplerosis in tumor cells and CD8 TILs are unpredictable. Careful dissection of the underlying mechanism might confer important knowledge, helping us to step into a new era for cancer immunotherapy.

    DOI: 10.1093/intimm/dxab067

    PubMed

    researchmap

  • Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. Reviewed International journal

    Mikako Nishida, Nahoko Yamashita, Taisaku Ogawa, Keita Koseki, Eiji Warabi, Tomoyuki Ohue, Masaaki Komatsu, Hirokazu Matsushita, Kazuhiro Kakimi, Eiryo Kawakami, Katsuyuki Shiroguchi, Heiichiro Udono

    Journal for immunotherapy of cancer   9 ( 9 )   2021.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND: Metformin (Met) is the first-line treatment for type 2 diabetes mellitus and plays an effective role in treating various diseases, such as cardiovascular disease, neurodegenerative disease, cancer, and aging. However, the underlying mechanism of Met-dependent antitumor immunity remains to be elucidated. METHODS: MitoTEMPO, a scavenger of mitochondrial superoxide, abolished the antitumor effect of Met, but not antiprogrammed cell death (PD-1) antibody (Ab) treatment. Consequently, we studied the mechanism of the Met-induced antitumor effect. Expressions of glucose transporter (Glut)-1, mitochondrial reactive oxygen species (mtROS), interferon (IFN)-γ, Ki67, autophagy markers, activation markers for NF-E2-related factor 2 (Nrf2), and mammalian target of rapamaycin complex 1 (mTORC1) in CD8+ tumor-infiltrating T lymphocytes (CD8TILs) were examined by flow cytometry analysis. In addition, conditional knockout mice for Nrf2 and p62 were used to detect these markers, together with the monitoring of in vivo tumor growth. RNA sequencing was performed for CD8TILs and tumor cells. Melanoma cells containing an IFN-γ receptor (IFNγR) cytoplasmic domain deletion mutant was overexpressed and used for characterization of the metabolic profile of those tumor cells using a Seahorse Flux Analyzer. RESULTS: Met administration elevates mtROS and cell surface Glut-1, resulting in the production of IFN-γ in CD8TILs. mtROS activates Nrf2 in a glycolysis-dependent manner, inducing activation of autophagy, glutaminolysis, mTORC1, and p62/SQSTM1. mTORC1-dependent phosphorylation of p62 at serine 351 (p-p62(S351)) is also involved in activation of Nrf2. Conditional deletion of Nrf2 in CD8TILs abrogates mTORC1 activation and antitumor immunity by Met. In synergy with the effect of anti-PD-1 Ab, Met boosts CD8TIL proliferation and IFN-γ secretion, resulting in decreased glycolysis and oxidative phosphorylation in tumor cells. Consequently, Glut-1 is elevated in CD8TILs, together with the expansion of activated dendritic cells. Moreover, tumor cells lacking in IFNγR signaling abolish IFN-γ production and proliferation of CD8TILs. CONCLUSIONS: We found that Met stimulates production of mtROS, which triggers Glut-1 elevation and Nrf2 activation in CD8TILs. Nrf2 activates mTORC1, whereas mTORC1 activates Nrf2 in a p-p62(S351)-dependent manner, thus creating a feedback loop that ensures CD8TILs' proliferation. In combination with anti-PD-1 Ab, Met stimulates robust proliferation of CD8TILs and IFN-γ secretion, resulting in an IFN-γ-dependent reprogramming of the tumor microenvironment.

    DOI: 10.1136/jitc-2021-002954

    PubMed

    researchmap

  • Metformin Prevents Peritoneal Dissemination via Immune-suppressive Cells in the Tumor Microenvironment. Reviewed International journal

    Takanori Hirayama, Yasuhiro Nagata, Mikako Nishida, Mitsutoshi Matsuo, Shinichiro Kobayashi, Akira Yoneda, Kengo Kanetaka, Heiichiro Udono, Susumu Eguchi

    Anticancer research   39 ( 9 )   4699 - 4709   2019.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    BACKGROUND/AIM: Metformin, a drug for type 2 diabetes, also exerts anticancer effects. This study addressed the immunological effects of metformin on peritoneal dissemination. MATERIALS AND METHODS: We developed a mouse model of peritoneal dissemination via intraperitoneal injection of RLmale1, an X-ray-induced leukemia cell line, into BALB/c mice. Cell-surface markers, cytokine production, and myeloid-derived suppressor cells (MDSCs) were examined in cells from spleen and peritoneal lavage fluid. RESULTS: Metformin-treated mice exhibited suppressed intraperitoneal tumor growth and extended survival, and these effects were lost in mice with severe combined immunodeficiency. MDSCs induction was inhibited in metformin-treated mice. Although MDSC mobilization into the peritoneal cavity was correlated with suppression of interferon-γ production by tumor-infiltrating lymphocytes, the T-helper 1 ability of these lymphocytes was preserved in metformin-treated mice. CONCLUSION: Our findings demonstrate the action of metformin on both intraperitoneal tumors and immune-suppressive cells and might contribute to the development of immunotherapy against peritoneal dissemination.

    DOI: 10.21873/anticanres.13652

    PubMed

    researchmap

  • Metformin induces CD11b+-cell-mediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Reviewed International journal

    Takenori Uehara, Shingo Eikawa, Mikako Nishida, Yuki Kunisada, Aki Yoshida, Tomohiro Fujiwara, Toshiyuki Kunisada, Toshifumi Ozaki, Heiichiro Udono

    International immunology   31 ( 4 )   187 - 198   2019.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    CD11b+ myeloid subpopulations, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), play crucial roles in the suppression of T-cell-mediated anti-tumor immunity. Regulation of these cell types is a primary goal for achieving efficient cancer immunotherapy. We found that metformin (Met) induces CD11b+-cell-mediated growth inhibition of a K7M2neo osteosarcoma independent of T cells, as growth inhibition of K7M2neo was still observed in wild-type (WT) mice depleted of T cells by antibodies and in SCID; this contrasted with the effect of Met on Meth A fibrosarcoma, which was entirely T-cell-dependent. Moreover, the inhibitory effect seen in SCID was abrogated by anti-CD11b antibody injection. PMN-MDSCs were significantly reduced in both spleens and tumors following Met treatment. In TAMs, production of IL-12 and TNF-α, but not IL-10, became apparent, and elevation of MHC class II with reduction of CD206 was observed, indicating a shift from an M2- to M1-like phenotype via Met administration. Metabolically, Met treatment decreased basal respiration and the oxygen consumption rate (OCR)/extracellular acidification rate (ECAR) ratio of CD11b+ cells in tumors, but not in the spleen. In addition, decreased reactive oxygen species (ROS) production and proton leakage in MDSCs and TAMs were consistently observed in tumors. Uptake of both 2-deoxy-2-d-glucose (2-NBDG) and BODIPY® decreased in MDSCs, but only BODIPY® incorporation was decreased in TAMs. Overall, our results suggest that Met redirects the metabolism of CD11b+ cells to lower oxidative phosphorylation (OXPHOS) while elevating glycolysis, thereby pushing the microenvironment to a state that inhibits the growth of certain tumors.

    DOI: 10.1093/intimm/dxy079

    PubMed

    researchmap

  • Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Reviewed International journal

    Shingo Eikawa, Mikako Nishida, Shusaku Mizukami, Chihiro Yamazaki, Eiichi Nakayama, Heiichiro Udono

    Proceedings of the National Academy of Sciences of the United States of America   112 ( 6 )   1809 - 14   2015.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    Metformin, a prescribed drug for type 2 diabetes, has been reported to have anti-cancer effects; however, the underlying mechanism is poorly understood. Here we show that this mechanism may be immune-mediated. Metformin enabled normal but not T-cell-deficient SCID mice to reject solid tumors. In addition, it increased the number of CD8(+) tumor-infiltrating lymphocytes (TILs) and protected them from apoptosis and exhaustion characterized by decreased production of IL-2, TNFα, and IFNγ. CD8(+) TILs capable of producing multiple cytokines were mainly PD-1(-)Tim-3(+), an effector memory subset responsible for tumor rejection. Combined use of metformin and cancer vaccine improved CD8(+) TIL multifunctionality. The adoptive transfer of antigen-specific CD8(+) T cells treated with metformin concentrations as low as 10 μM showed efficient migration into tumors while maintaining multifunctionality in a manner sensitive to the AMP-activated protein kinase (AMPK) inhibitor compound C. Therefore, a direct effect of metformin on CD8(+) T cells is critical for protection against the inevitable functional exhaustion in the tumor microenvironment.

    DOI: 10.1073/pnas.1417636112

    PubMed

    researchmap

▼display all

MISC

  • 代謝 IV.代謝と免疫 代謝介入による抗腫瘍免疫の変化

    鵜殿平一郎, CHAO Ruoyu, 徳増美穂, 西田充香子

    生体の科学   74 ( 5 )   2023.10

  • Cytotoxic T cell activation mechanism via metabolic reprogramming by metformin.

    西田充香子, CHAO Ryoyu, 鵜殿平一郎

    月刊臨床免疫・アレルギー科   80 ( 2 )   2023.8

  • 腫瘍細胞とエフェクターT細胞の代謝競合改善を介した腫瘍免疫の向上

    西田 充香子, 鵜殿 平一郎

    先進医療NAVIGATOR がん免疫療法最前線   34 - 36   2023.7

     More details

  • IFNγを介したCD8TILと腫瘍血管のクロストーク促進、及び腫瘍微小環境の代謝改変

    鵜殿 平一郎, 工藤 生, 西田 充香子

    日本がん免疫学会総会プログラム・抄録集   27回   58 - 58   2023.6

     More details

    Language:Japanese   Publisher:日本がん免疫学会  

    researchmap

  • 代謝介入による抗腫瘍免疫応答の向上(Metabolic intervention facilitates anti-tumor immunity)

    西田 充香子, 鵜殿 平一郎

    日本癌学会総会記事   81回   S5 - 3   2022.9

     More details

    Language:English   Publisher:(一社)日本癌学会  

    researchmap

  • The 2021 Incentive Award of the Okayama Medical Association in Cancer Research (2021 Hayashibara Prize and Yamada Prize)

    Mikako Nishida

    Okayama Igakkai Zasshi (Journal of Okayama Medical Association)   134 ( 2 )   73 - 75   2022.8

     More details

    Publisher:Okayama Medical Association  

    DOI: 10.4044/joma.134.73

    researchmap

  • 腫瘍微小環境の代謝制御によるT細胞疲弊の解除

    西田充香子, 鵜殿平一郎

    炎症と免疫   30 ( 4 )   301 - 303   2022.7

     More details

  • がん免疫、代謝、腸内細菌 腫瘍微小環境の代謝改変と抗腫瘍免疫応答の向上メカニズム

    西田 充香子

    日本がん免疫学会総会プログラム・抄録集   26回   57 - 57   2022.6

     More details

    Language:Japanese   Publisher:日本がん免疫学会  

    researchmap

  • 腫瘍組織GLUT1の発現不均一性とIFNγ依存性腫瘍血管正常化との関係性

    工藤 生, Xingda Zhang, 西田 充香子, 鵜殿 平一郎

    日本がん免疫学会総会プログラム・抄録集   26回   93 - 93   2022.6

     More details

    Language:Japanese   Publisher:日本がん免疫学会  

    researchmap

  • 【腫瘍免疫 免疫ネットワークから考える基礎と臨床】 腫瘍微小環境の “3低”の改善による腫瘍免疫の向上

    西田充香子, 鵜殿平一郎

    医学のあゆみ   281 ( 5 )   408 - 414   2022.4

     More details

    Language:Japanese  

    researchmap

  • 【がん免疫療法研究の進歩】基礎研究からみたがん免疫療法の将来性

    鵜殿 平一郎, 西田 充香子

    腫瘍内科   29 ( 2 )   130 - 136   2022.2

     More details

    Language:Japanese   Publisher:(有)科学評論社  

    researchmap

  • 肺腺癌マウスのEP-4阻害剤と抗PD-1抗体の併用療法の解析

    徳増 美穂, 西田 充香子, 川口 高正, 吉田 隆雄, 工藤 生, 鵜殿 平一郎

    日本がん免疫学会総会プログラム・抄録集   25回   114 - 114   2021.5

     More details

    Language:Japanese   Publisher:日本がん免疫学会  

    researchmap

  • Metabolic Intervention to Tumor microenvironment for Cancer Immunotherapy

    鵜殿平一郎, 西田充香子, 工藤生

    リンパ学   44 ( Supplement )   2021

  • メトホルミンはROS依存的にNrf2/mTORC1経路を活性化しCD8TILsを賦活する

    西田充香子, 鵜殿平一郎

    日本癌学会学術総会抄録集(Web)   80th   2021

  • メトホルミンと抗PD-1抗体併用によるCD8T細胞依存性の腫瘍血管正常化

    工藤生, ZHANG Xingda, 西田充香子, 鵜殿平一郎

    日本がん免疫学会総会プログラム・抄録集   25th   2021

  • 【イムノメタボリズムとT細胞の疲弊・老化 免疫機能不全を克服する新たなターゲット】腫瘍微小環境の代謝制御によるT細胞疲弊の解除

    西田 充香子, 鵜殿 平一郎

    実験医学   38 ( 19 )   3204 - 3210   2020.12

     More details

    Language:Japanese   Publisher:(株)羊土社  

    免疫治療を実施した患者の腫瘍組織において、T細胞が浸潤しているにもかかわらず腫瘍免疫が破綻している例がある。その一因として腫瘍局所における持続的な抗原刺激による免疫疲弊が考えられるが、近年、T細胞の代謝変化が免疫疲弊を誘導するとの報告もあり、有効な免疫治療を行うためには免疫細胞そして腫瘍細胞の代謝状態を把握し、それぞれの代謝を腫瘍退縮に有利な方向へと制御することが重要である。本稿では腫瘍微小環境における免疫細胞、腫瘍細胞の代謝について理解を深め、さらにその制御法についても解説する。(著者抄録)

    researchmap

  • 【免疫リプログラミングと細胞デザイン】免疫代謝リプログラミング 腫瘍微小環境の代謝制御による腫瘍免疫の向上

    西田 充香子, 鵜殿 平一郎

    医学のあゆみ   275 ( 1 )   42 - 48   2020.10

     More details

    Language:Japanese   Publisher:医歯薬出版(株)  

    腫瘍局所は低酸素、高乳酸による低pH、さらに低栄養といった特殊な環境を構築している。エフェクター細胞が機能を発揮するためには栄養、とくにグルコースを必要としている。皮肉なことに、腫瘍細胞も大量にグルコースを消費し、増大する。このように腫瘍微小環境においては、エフェクター細胞と腫瘍との間にグルコースの奪い合い、すなわち代謝競合が起こっている。競合に負けたエフェクター細胞は次第にその機能を失い、腫瘍は増大へと向かう。このように代謝が腫瘍の運命を決定付けているということは興味深い知見である。見方を変えれば、個々の細胞の代謝を上手く制御することができれば腫瘍退縮へと導くことが可能となり、代謝制御は新たな免疫治療のターゲットとなりうる可能性がある。(著者抄録)

    researchmap

    Other Link: https://search.jamas.or.jp/index.php?module=Default&action=Link&pub_year=2020&ichushi_jid=J00060&link_issn=&doc_id=20201005020007&doc_link_id=%2Faa7ayuma%2F2020%2F027501%2F008%2F0042b0048%26dl%3D3&url=http%3A%2F%2Fwww.medicalonline.jp%2Fjamas.php%3FGoodsID%3D%2Faa7ayuma%2F2020%2F027501%2F008%2F0042b0048%26dl%3D3&type=MedicalOnline&icon=https%3A%2F%2Fjk04.jamas.or.jp%2Ficon%2F00004_4.gif

  • 代謝制御による腫瘍免疫の向上

    西田充香子、鵜殿 平一郎

    ドージンニュース   2020.6

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (other)  

    researchmap

  • 糖尿尿薬メトホルミンによる腫瘍微小環境の代謝改変と抗腫瘍免疫応答の誘導

    鵜殿平一郎, 西田充香子

    日本分子生物学会年会プログラム・要旨集(Web)   43rd   2020

  • メトホルミンによる糖代謝バランスの改善と腫瘍微小環境の変化に関する組織学的解析

    工藤生, 西田充香子, 鵜殿平一郎

    日本がん免疫学会総会プログラム・抄録集   24th   2020

  • メトホルミン誘導性ミトコンドリア活性酸素によるがん免疫再起動

    鵜殿平一郎, 西田充香子, 工藤生

    糖尿病(Web)   63 ( Suppl )   2020

  • ROS依存的なNrf2/mTORC1経路の活性化はメトホルミンと抗PD-1抗体の併用効果を誘導する

    西田充香子, 山下奈穂子, 鵜殿平一郎

    日本がん免疫学会総会プログラム・抄録集   24th   2020

  • 【がん免疫療法の個別化を支える 新・腫瘍免疫学】第I部 腫瘍免疫応答の基本とその制御メカニズム (第1章)腫瘍免疫応答の正負の調節機構 腫瘍微小環境の代謝改変による腫瘍免疫の向上 代謝で読み解く免疫細胞と腫瘍細胞の攻防

    西田 充香子, 鵜殿 平一郎

    実験医学   37 ( 15 )   2484 - 2488   2019.9

     More details

    Language:Japanese   Publisher:(株)羊土社  

    腫瘍微小環境では免疫細胞と腫瘍細胞の間で栄養素、特にグルコースをめぐる激しい攻防を繰り広げており、代謝競合に負けた免疫エフェクター細胞は本来の機能を失い、その結果、腫瘍は増大へと向かう。これは腫瘍微小環境下の細胞の代謝が腫瘍の運命を決定することを示唆している。このような背景から近年、腫瘍を制圧するために代謝制御を視野に入れた治療が重要であるとの概念が広がってきた。本稿では腫瘍微小環境に存在する免疫細胞そして腫瘍細胞の代謝についての理解を深め、腫瘍免疫における代謝制御による治療法について解説する。(著者抄録)

    researchmap

  • メトホルミンによる糖代謝バランスの改善と腫瘍微小環境の変化に関する組織学的解析

    工藤生, 西田充香子, 鵜殿平一郎

    日本がん免疫学会総会プログラム・抄録集   23rd   2019

  • ストレスが拓く腫瘍微小環境の代謝改変とがん免疫治療研究への応用

    鵜殿平一郎, 西田充香子

    臨床ストレス応答学会大会抄録集   13th   2018

  • 腫瘍微小環境の代謝改変によるがん免疫治療研究

    鵜殿平一郎, 西田充香子

    日本生化学会大会(Web)   91st   2018

  • 【腫瘍免疫と癌免疫療法】メトホルミンによるCD8+TILの代謝改変におけるreactive oxygen species(ROS)の関与

    西田 充香子, 鵜殿 平一郎

    臨床免疫・アレルギー科   68 ( 6 )   583 - 588   2017.12

     More details

    Language:Japanese   Publisher:(有)科学評論社  

    researchmap

  • 癌性腹膜炎における抗腫瘍免疫応答を介したメトホルミンの効果

    平山 昂仙, 永田 康浩, 西田 充香子, 小林 慎一郎, 米田 晃, 金高 賢悟, 松尾 光敏, 鵜殿 平一郎, 江口 晋

    日本癌学会総会記事   76回   P - 1217   2017.9

     More details

    Language:English   Publisher:(一社)日本癌学会  

    researchmap

  • 腫瘍微小環境の代謝改変によるがん免疫治療研究

    鵜殿平一郎, 榮川伸吾, 西田充香子

    がんと代謝研究会プログラム&抄録集   5th   2017

  • 【がん免疫療法 腫瘍免疫学の最新知見から治療法のアップデートまで 免疫学の基礎知識と、免疫チェックポイント阻害薬、T細胞療法、個別化・複合免疫療法、臨床開発の最前線】(第I部)腫瘍免疫応答の基本とその制御メカニズム (第1章)腫瘍免疫における免疫細胞と免疫分子 腫瘍免疫におけるT細胞 免疫疲弊とその代謝制御を中心に

    西田 充香子, 榮川 伸吾, 鵜殿 平一郎

    実験医学   34 ( 12 )   1878 - 1883   2016.8

     More details

    Language:Japanese   Publisher:(株)羊土社  

    免疫療法において腫瘍に対する免疫応答は患者体内で誘導されるが、腫瘍局所ではその機能が十分に発揮できないことが問題となっている。その一因として腫瘍局所は持続的な抗原刺激に加え、免疫抑制的な環境にあり、腫瘍免疫において要となるCD8+T細胞が疲弊状態に陥りその機能を発揮できないことが考えられる。したがって有効な免疫治療を行うためにはCD8+T細胞の状態を把握し、腫瘍局所においてその機能を維持させることが重要である。本稿では主に腫瘍免疫におけるCD8+T細胞の機能制御について免疫疲弊そして免疫代謝の観点から解説する。(著者抄録)

    researchmap

  • 抗PD-1抗体とメトホルミン併用による抗腫瘍効果の検討

    西田 充香子, 周 悦, 榮川 伸吾, 山崎 千尋, 一柳 朋子, 鵜殿 平一郎

    日本がん免疫学会総会プログラム・抄録集   20回   160 - 160   2016.6

     More details

    Language:Japanese   Publisher:日本がん免疫学会  

    researchmap

  • 酸化ストレスはメトホルミンによる抗腫瘍効果を誘導する

    西田充香子, 周悦, 山崎千尋, 榮川伸吾, 鵜殿平一郎

    臨床ストレス応答学会大会抄録集   11th   2016

▼display all

Industrial property rights

  • 「免疫疲弊CD8+T細胞の機能改善薬、がん治療薬及びメタボリック症候群の予防または治療薬」

     More details

    Application no:特願2013-090431 

    Patent/Registration no:特許第6242071号 

    researchmap

  • 「がんの進行抑制治療、予防及び/又は再発予防剤」

     More details

    Application no:特願2017-242435 

    researchmap

Awards

  • 第44回 公益財団法人 両備檉園記念財団・生物学研究奨励賞

    2022.10  

     More details

  • 岡山医学会賞 がん研究奨励賞(林原賞・山田賞)

    2022.6  

     More details

  • 第22回 日本がん免疫学会総会 若手研究奨励賞

    2018.8  

     More details

  • 第45回 内藤コンファレンス 優秀ポスター賞

    2018.6  

     More details

  • 第1回 がんと代謝研究会(若手の会)優秀賞

    2018.1  

     More details

  • 第11回日本臨床ストレス応答学会 若手研究奨励賞

    2016.11  

     More details

▼display all

Research Projects

  • メトホルミンとファスティング併用による腫瘍微小環境改変に関する研究

    Grant number:21K19409  2021.07 - 2024.03

    日本学術振興会  科学研究費助成事業 挑戦的研究(萌芽)  挑戦的研究(萌芽)

    鵜殿 平一郎, 工藤 生, 西田 充香子

      More details

    Grant amount:\6500000 ( Direct expense: \5000000 、 Indirect expense:\1500000 )

    researchmap

  • IFNγによる腫瘍微小環境の代謝改変メカニズムの解明

    Grant number:21K15505  2021.04 - 2024.03

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    西田 充香子

      More details

    Grant amount:\4550000 ( Direct expense: \3500000 、 Indirect expense:\1050000 )

    これまでに我々はメトホルミンによる免疫治療によって腫瘍浸潤CD8 TILs (CD8 TILs)の代謝は上昇し、腫瘍細胞の代謝は低下するという現象を見出した。さらに治療によりCD8 TILs のIFNγ産生が増加しており、代謝変化を誘導している因子は活性化されたCD8 TILsから分泌されるIFNγではないかと考え検討を行ってきた。事実、in vitro で腫瘍細胞にIFNγを処置した際の代謝能を評価したところ、解糖能ならびにミトコンドリア代謝が低下していた。そこで本研究ではまず、B16-fucci(WT腫瘍)並びにB16-fucciδIC (IFNγR1シグナル欠損腫瘍)を用いた腫瘍移植実験を行った。興味深いことにメトホルミンによる免疫治療の抗腫瘍効果はIFNγR1シグナル欠損腫瘍では消失し、さらにCD8 TILsのIFNγ産生能ならびに増殖も低下していた。また、IFNγ産生には解糖系が亢進することが重要であることからグルコースのトランスポーターであるGlut-1 発現も確認したところ、IFNγR1シグナル欠損腫瘍では治療をおこなってもCD8 TILsにおけるGlut-1の発現上昇は見られなかった。さらに腫瘍細胞自身においてはCD8TILsとは逆の反応を示し、IFNγR1シグナル欠損腫瘍のGlut-1 発現は上昇すなわち解糖能は常に高く、治療抵抗性になっていた。このことからメトホルミンによる免疫治療効果にIFNγならびに腫瘍細胞のIFNγR1シグナルが関わっていることがin vivo で証明された。また、in vitro においてIFNγ処置時の代謝関連分子のタンパク発現をウエスタンブロッティングで確認したところ、WT腫瘍とIFNγR1シグナル欠損腫瘍では解糖系ならびにミトコンドリア機能に関わる分子のタンパク発現に大きな違いがあることも明らかとなってきた。

    researchmap

  • 新規糖代謝改善薬アスコクロリン誘導体によるがん免疫治療薬の開発

    2021.04 - 2022.03

    AMED  2021年度「橋渡し研究戦略的推進プログラム」シーズA 

    西田充香子

      More details

    Authorship:Principal investigator 

    researchmap

  • Molecular mechanism underlying the metabolic reprogramming of tumor microenvironment by the combination therapy of metformin and anti-PD-1 antibody

    Grant number:19K23887  2019.08 - 2021.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Research Activity Start-up

    Nishida Mikako

      More details

    Grant amount:\2860000 ( Direct expense: \2200000 、 Indirect expense:\660000 )

    In the combination therapy model with metformin and anti-PD-1 Ab, we tried to identify the intrinsic factor(s) of tumor infiltrating CD8+ T lymphocytes (CD8TILs) , which was involved in the metabolic reprogramming of the tumor microenvironment. To this end, we performed FACS analysis of both CD8TILs and tumor cells simultaneously. We found that metformin-induced mitochondrial ROS (mtROS) elevates Glut-1 on the cell surfaced and Nrf2/mTORC1 in CD8TILs, which induced glycolysis elevation and cell proliferation, respectively. Intriguingly, the robust production of IFNγ by the combination therapy, not by the monotherapy, was found involved in downregulation of the glycolysis and the oxidative phosphorylation (OxPhos) of tumor cells. Thus, we could successfully identify the molecular mechanism of the combination therapy-induced metabolic reprogramming of the tumor microenvironment.

    researchmap

  • IFNγ による腫瘍微小環境の代謝変化を介した獲得耐性誘導メカニズムの解明

    公益財団法人 両備てい園記念財団 

    西田充香子

      More details

 

Class subject in charge

  • Cancer Microenvironment Management (2023academic year) special  - その他

  • Immunology (2023academic year) special  - その他

  • Practice in Immunology (2023academic year) special  - その他

  • Practicals: Immunology (2023academic year) special  - その他

  • Research Projects: Immunology (2023academic year) special  - その他

  • Research Projects and Practicals: Immunology I (2023academic year) special  - その他

  • Lecture and Research Projects: Immunology I (2023academic year) special  - その他

  • Research Projects and Practicals: Immunology II (2023academic year) special  - その他

  • Lecture and Research Projects: Immunology II (2023academic year) special  - その他

  • Parasitorogy (2023academic year) special  - その他

  • Immunology (2022academic year) special  - その他

  • Practice in Immunology (2022academic year) special  - その他

  • Research Projects and Practicals: Immunology I (2022academic year) special  - その他

  • Lecture and Research Projects: Immunology I (2022academic year) special  - その他

  • Research Projects and Practicals: Immunology II (2022academic year) special  - その他

  • Lecture and Research Projects: Immunology II (2022academic year) special  - その他

  • Immunology (2021academic year) special  - その他

  • Practice in Immunology (2021academic year) special  - その他

  • Research Projects and Practicals: Immunology I (2021academic year) special  - その他

  • Lecture and Research Projects: Immunology I (2021academic year) special  - その他

  • Research Projects and Practicals: Immunology II (2021academic year) special  - その他

  • Lecture and Research Projects: Immunology II (2021academic year) special  - その他

▼display all