Updated on 2024/09/06

写真a

 
NAKAGOSHI Hideki
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Professor
Position
Professor
External link

Degree

  • 薬学博士 ( 東京理科大学 )

Research Interests

  • 精液

  • 代謝

  • ショウジョウバエ

  • 発生遺伝学

  • 妊性

Research Areas

  • Life Science / Neuroscience-general

  • Life Science / Molecular biology

  • Life Science / Genetics

  • Life Science / Developmental biology

Education

  • Tokyo University of Science   薬学研究科   薬学専攻

    - 1991

      More details

    Country: Japan

    researchmap

  • Tokyo University of Science   薬学部   薬学科

    - 1985

      More details

    Country: Japan

    researchmap

Research History

  • 岡山大学大学院 環境生命自然科学研究科   教授

    2024.4

      More details

  • 岡山大学大学院 自然科学研究科 教授

    2017 - 2024.3

      More details

  • 岡山大学大学院 自然科学研究科 准教授

    2007 - 2017

      More details

  • 岡山大学大学院 自然科学研究科 助教授

    2001 - 2007

      More details

  • Okayama University   Faculty of Science, Department of Biology

    1999 - 2001

      More details

  • 東京工業大学 フロンティア創造共同研究センター 研究員

    1999

      More details

  • 国立精神・神経センター 神経研究所 外来研究員,科学技術特別研究員,さきがけ研究21研究員,CREST 研究員

    1992 - 1999

      More details

  • 理化学研究所 基礎科学特別研究員

    1991 - 1992

      More details

▼display all

Professional Memberships

 

Papers

  • Genetic mechanism regulating diversity in the placement of eyes on the head of animals. Reviewed International journal

    Oorvashi Roy Puli, Neha Gogia, Anuradha Venkatakrishnan Chimata, Takeshi Yorimitsu, Hideki Nakagoshi, Madhuri Kango-Singh, Amit Singh

    Proceedings of the National Academy of Sciences of the United States of America   121 ( 16 )   e2316244121   2024.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Despite the conservation of genetic machinery involved in eye development, there is a strong diversity in the placement of eyes on the head of animals. Morphogen gradients of signaling molecules are vital to patterning cues. During Drosophila eye development, Wingless (Wg), a ligand of Wnt/Wg signaling, is expressed anterolaterally to form a morphogen gradient to determine the eye- versus head-specific cell fate. The underlying mechanisms that regulate this process are yet to be fully understood. We characterized defective proventriculus (dve) (Drosophila ortholog of human SATB1), a K50 homeodomain transcription factor, as a dorsal eye gene, which regulates Wg signaling to determine eye versus head fate. Across Drosophila species, Dve is expressed in the dorsal head vertex region where it regulates wg transcription. Second, Dve suppresses eye fate by down-regulating retinal determination genes. Third, the dve-expressing dorsal head vertex region is important for Wg-mediated inhibition of retinal cell fate, as eliminating the Dve-expressing cells or preventing Wg transport from these dve-expressing cells leads to a dramatic expansion of the eye field. Together, these findings suggest that Dve regulates Wg expression in the dorsal head vertex, which is critical for determining eye versus head fate. Gain-of-function of SATB1 exhibits an eye fate suppression phenotype similar to Dve. Our data demonstrate a conserved role for Dve/SATB1 in the positioning of eyes on the head and the interocular distance by regulating Wg. This study provides evidence that dysregulation of the Wg morphogen gradient results in developmental defects such as hypertelorism in humans where disproportionate interocular distance and facial anomalies are reported.

    DOI: 10.1073/pnas.2316244121

    PubMed

    researchmap

  • Functional opsin patterning for Drosophila color vision is established through signaling pathways in adjacent object-detection neurons Reviewed

    Manabu Kitamata, Yoshiaki Otake, Hideaki Kitagori, Xuanshuo Zhang, Yusuke Maki, Rika Boku, Masato Takeuchi, Hideki Nakagoshi

    Development   151   dev202388   2024.3

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1101/2023.09.29.560118

    researchmap

  • Fecundity is optimized by levels of nutrient signal-dependent expression of Dve and EcR in Drosophila male accessory gland Reviewed

    Mirai Matsuka, Shinichi Otsune, Seiko Sugimori, Yasuhiro Tsugita, Hitoshi Ueda, Hideki Nakagoshi

    Developmental Biology   58   8 - 23   2024.1

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.ydbio.2024.01.004

    researchmap

  • Nutrient conditions sensed by the reproductive organ during development optimize male fecundity in Drosophila. Reviewed International journal

    Ayuko Kubo, Mirai Matsuka, Ryunosuke Minami, Fumika Kimura, Rumi Sakata-Niitsu, Akihiko Kokuryo, Kiichiro Taniguchi, Takashi Adachi-Yamada, Hideki Nakagoshi

    Genes to cells   23 ( 7 )   557 - 567   2018.7

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Nutrient conditions affect the reproductive potential and lifespan of many organisms through the insulin signaling pathway. Although this is well characterized in female oogenesis, nutrient-dependent regulation of fertility/fecundity in males is not known. Seminal fluid components synthesized in the accessory gland are required for high fecundity in Drosophila males. The accessory gland is composed of two types of binucleated cells: a main cell and a secondary cell (SC). The transcription factors Defective proventriculus (Dve) and Abdominal-B (Abd-B) are strongly expressed in adult SCs, whose functions are essential for male fecundity. We found that gene expression of both Dve and Abd-B was down-regulated under nutrient-poor conditions. In addition, nutrient conditions during the pupal stage affected the size and number of SCs. These morphological changes clearly correlated with fecundity, suggesting that SCs act as nutrient sensors. Here, we provide evidence that Dve associates nutrient conditions with optimal reproductive potential in a target of rapamycin signaling-dependent manner.

    DOI: 10.1111/gtc.12600

    PubMed

    researchmap

  • Binucleation of Accessory Gland Lobe Contributes to Effective Ejection of Seminal Fluid in Drosophila melanogaster Reviewed

    Taniguchi Kiichiro, Kokuryo Akihiko, Imano Takao, Nakagoshi Hideki, Adachi-Yamada Takashi

    Zoological Science   35 ( 5 )   446 - 458   2018

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.2108/zs170188

    Web of Science

    researchmap

  • Spalt-mediated dve repression is a critical regulatory motif and coordinates with Iroquois complex in Drosophila vein formation Reviewed

    Seiko Sugimori, Aya Hasegawa, Hideki Nakagoshi

    MECHANISMS OF DEVELOPMENT   141   25 - 31   2016.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Veins are longitudinal cuticular structures that maintain shape of the wing. Drosophila melanogaster has six longitudinal veins (L1-L6) and two cross veins. The Zn-finger transcription factors of Spalt-complex (Sal) are required for positioning of the L2 and L5, and the homeodomain transcription factors of Iroquois complex (Iro-C) are required for formation of the L3 and L5 veins.
    The homeodomain transcriptional repressor Defective proventriculus (Dve) is uniformly expressed in the wing pouch of the larval imaginal disc. However, dve mutant wings showed loss of the L2 and L5, but not of the L3 and L4 veins. Temporal dve knockdown experiments indicate that the Dve activity is required for vein formation from late third larval instar to the prepupal stage. In the prepupal wing, Dve expression becomes nearly complementary to that of Sal through the Sal-mediated dve repression. Furthermore, coexpression of Dve and Iro-C relieved of Sal-mediated repression is required for the L5 formation in a dose-dependent manner. The relationship between Sal, Dve, and Iro-C in wing vein specification is quite similar to that in ommatidial cell-type specification. Our results provide information about the conserved function of dve regulatory motifs in cell differentiation. (C) 2016 Elsevier Ireland Ltd. All rights reserved.

    DOI: 10.1016/j.mod.2016.06.004

    Web of Science

    researchmap

  • Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells Reviewed

    Kiichiro Taniguchi, Akihiko Kokuryo, Takao Imano, Ryunosuke Minami, Hideki Nakagoshi, Takashi Adachi-Yamada

    BMC DEVELOPMENTAL BIOLOGY   14   46   2014.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BIOMED CENTRAL LTD  

    Background: In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate.
    Results: The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and MudS oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs.
    Conclusions: We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate cell rounding, spindle orientation and central spindle assembly in binucleation. We also propose that Mud(S) is a key regulator triggering cytokinesis skipping in binucleation processes.

    DOI: 10.1186/s12861-014-0046-5

    Web of Science

    researchmap

  • A vertex specific dorsal selector Dve represses the ventral appendage identity in Drosophila head Reviewed

    Naruto Kiritooshi, Takeshi Yorimitsu, Tetsuya Shirai, Oorvashi Roy Puli, Amit Singh, Hideki Nakagoshi

    MECHANISMS OF DEVELOPMENT   133   54 - 63   2014.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    Developmental fields are subdivided into lineage-restricted cell populations, known as compartments. In the eye imaginal disc of Drosophila, dorso-ventral (DV) lineage restriction is the primary event, whereas antero-posterior compartment boundary is the first lineage restriction in other imaginal discs. The Iroquois complex (Iro-C) genes function as dorsal selectors and repress the default, ventral, identity in the eye-head primordium. In Iro-C mutant clones, change of the dorsal identity to default ventral fate leads to generation of ectopic DV boundary, which results in dorsal eye enlargement, and duplication of ventral appendages like antenna and maxillary palp. Similar phenotypes were observed in heads with defective proventriculus (dve) mutant clones. Here, we show that the homeobox gene dve is a downstream effector of Iro-C in the dorsal head capsule (vertex) specification and represses the ventral (antennal) identity. Two homeodomain proteins Distal-less (Dll) and Homothorax (Hth) are known to be determinants of the antennal identity. Ectopic antenna formation in heads with dve mutant clones was associated with ectopic Dll expression and endogenous Hth expression in the vertex region. Interestingly, dve Dll double mutant clones could also induce ectopic antennae lacking the distal structures, suggesting that the Dve activity is crucial for repressing inappropriate antenna-forming potential in the vertex region. Our results clearly indicate that not only the activation of effector genes to execute developmental program but also the repression of inappropriate program is crucial for establishment of the organ identity. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

    DOI: 10.1016/j.mod.2014.06.002

    Web of Science

    researchmap

  • The Homeodomain Protein Defective Proventriculus Is Essential for Male Accessory Gland Development to Enhance Fecundity in Drosophila Reviewed

    Ryunosuke Minami, Miyuki Wakabayashi, Seiko Sugimori, Kiichiro Taniguchi, Akihiko Kokuryo, Takao Imano, Takashi Adachi-Yamada, Naoko Watanabe, Hideki Nakagoshi

    PLOS ONE   7 ( 3 )   e32302   2012.3

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    The Drosophila male accessory gland has functions similar to those of the mammalian prostate gland and the seminal vesicle, and secretes accessory gland proteins into the seminal fluid. Each of the two lobes of the accessory gland is composed of two types of binucleate cell: about 1,000 main cells and 40 secondary cells. A well-known accessory gland protein, sex peptide, is secreted from the main cells and induces female postmating response to increase progeny production, whereas little is known about physiological significance of the secondary cells. The homeodomain transcriptional repressor Defective proventriculus (Dve) is strongly expressed in adult secondary cells, and its mutation resulted in loss of secondary cells, mononucleation of main cells, and reduced size of the accessory gland. dve mutant males had low fecundity despite the presence of sex peptide, and failed to induce the female postmating responses of increased egg laying and reduced sexual receptivity. RNAi-mediated dve knockdown males also had low fecundity with normally binucleate main cells. We provide the first evidence that secondary cells are crucial for male fecundity, and also that Dve activity is required for survival of the secondary cells. These findings provide new insights into a mechanism of fertility/fecundity.

    DOI: 10.1371/journal.pone.0032302

    Web of Science

    researchmap

  • Binucleation of Drosophila adult male accessory gland cells increases plasticity of organ size for effective reproduction Reviewed

    Taniguchi, K., Kokuryo, A., Imano, T., Minami, R., Nakagoshi, H., Adachi-Yamada, T.

    Biol. Syst.   1   e101   2012

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.4172/BSO.1000e101

    researchmap

  • Blocking synaptic transmission with tetanus toxin light chain reveals modes of neurotransmission in the PDF-positive circadian clock neurons of Drosophila melanogaster Reviewed

    Yujiro Umezaki, Kouji Yasuyama, Hideki Nakagoshi, Kenji Tomioka

    JOURNAL OF INSECT PHYSIOLOGY   57 ( 9 )   1290 - 1299   2011.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PERGAMON-ELSEVIER SCIENCE LTD  

    Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons. (C) 2011 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.jinsphys.2011.06.004

    Web of Science

    researchmap

  • Defective proventriculus specifies the ocellar region in the Drosophila head Reviewed

    Takeshi Yorimitsu, Naruto Kiritooshi, Hideki Nakagoshi

    DEVELOPMENTAL BIOLOGY   356 ( 2 )   598 - 607   2011.8

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    A pair of the Drosophila eye-antennal disc gives rise to four distinct organs (eyes, antennae, maxillary palps, and ocelli) and surrounding head cuticle. Developmental processes of this imaginal disc provide an excellent model system to study the mechanism of regional specification and subsequent organogenesis. The dorsal head capsule (vertex) of adult Drosophila is divided into three morphologically distinct subdomains: ocellar, frons, and orbital. The homeobox gene orthodenticle (otd) is required for head vertex development, and mutations that reduce or abolish ad expression in the vertex primordium lead to ocelliless flies. The homeodomain-containing transcriptional repressor Engrailed (En) is also involved in ocellar specification, and the En expression is completely lost in otd mutants. However, the molecular mechanism of ocellar specification remains elusive. Here, we provide evidence that the homeobox gene defective proventriculus (dye) is a downstream effector of Otd, and also that the repressor activity of Dye is required for en activation through a relief-of-repression mechanism. Furthermore, the Dye activity is involved in repression of the frons identity in an incoherent feedforward loop of Otd and Dye. (C) 2011 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ydbio.2011.06.015

    Web of Science

    researchmap

  • Interlocked Feedforward Loops Control Cell-Type-Specific Rhodopsin Expression in the Drosophila Eye Reviewed

    Robert J. Johnston, Yoshiaki Otake, Pranidhi Sood, Nina Vogt, Rudy Behnia, Daniel Vasiliauskas, Elizabeth McDonald, Baotong Xie, Sebastian Koenig, Reinhard Wolf, Tiffany Cook, Brian Gebelein, Edo Kussell, Hideki Nakagoshi, Claude Desplan

    CELL   145 ( 6 )   956 - 968   2011.6

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    How complex networks of activators and repressors lead to exquisitely specific cell-type determination during development is poorly understood. In the Drosophila eye, expression patterns of Rhodopsins define at least eight functionally distinct though related subtypes of photoreceptors. Here, we describe a role for the transcription factor gene defective proventriculus (dve) as a critical node in the network regulating Rhodopsin expression. dve is a shared component of two opposing, interlocked feedforward loops (FFLs). Orthodenticle and Dve interact in an incoherent FFL to repress Rhodopsin expression throughout the eye. In R7 and R8 photoreceptors, a coherent FFL relieves repression by Dve while activating Rhodopsin expression. Therefore, this network uses repression to restrict and combinatorial activation to induce cell-type-specific expression. Furthermore, Dve levels are finely tuned to yield cell-type-and region-specific repression or activation outcomes. This interlocked FFL motif may be a general mechanism to control terminal cell-fate specification.

    DOI: 10.1016/j.cell.2011.05.003

    Web of Science

    researchmap

  • Spatial and temporal requirement of Defective proventriculus activity during Drosophila midgut development Reviewed

    Yoshiki Nakagawa, Shinobu Fujiwara-Fukuta, Takeshi Yorimitsu, Suzuka Tanaka, Ryunosuke Minami, Lily Shimooka, Hideki Nakagoshi

    MECHANISMS OF DEVELOPMENT   128 ( 5-6 )   258 - 267   2011.5

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    The Drosophila middle midgut cells derived from the endoderm develop into four distinct types of cell. Of these cells, copper cells have invaginated microvillar membranes on their apical surface, and they are involved in two distinct functions, i.e., copper absorption and acid secretion. The homeobox gene defective proventriculus (dve) is expressed in the midgut, and two transcripts, type A (similar to 4.9 kb) and type B (similar to 3.5 kb), have been identified. We isolated the deletion allele dve(E181) that completely removes the first exon for type-A (dve-A) transcript. Dve expression pattern in dve-A mutant background indicates that isoform switching is dynamically regulated in a cell-type specific manner. Using RNAi for dve-A, we examined spatial and temporal requirement of the Dve-A activity. Early Dve-A activity is required to repress isoform switching in copper cells, and for establishment of two gut functions. Late Dve-A activity in copper cells, but not in adjacent interstitial cells, is required for acid secretion, while the activity is redundantly required in both cells for the copper absorptive function. Furthermore, ectopic type-B expression in larval copper cells specifically impaired the copper absorptive function. These results provide insight into molecular mechanisms to establish functional specificity. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

    DOI: 10.1016/j.mod.2011.02.003

    Web of Science

    researchmap

  • Notch signaling relieves the joint-suppressive activity of defective proventriculus in the Drosophila leg Reviewed

    Tetsuya Shirai, Takeshi Yorimitsu, Naruto Kiritooshi, Fumio Matsuzaki, Hideki Nakagoshi

    DEVELOPMENTAL BIOLOGY   312 ( 1 )   147 - 156   2007.12

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Segmentation plays crucial roles during morphogenesis. Drosophila legs are divided into segments along the proximal-distal axis by flexible structures called joints. Notch signaling is necessary and sufficient to promote leg growth and joint fort-nation, and is activated in distal cells of each segment in everting prepupal leg discs. The homeobox gene defective proventriculus (dve) is expressed in regions both proximal and distal to the intersegmental folds at 4 h after puparium formation (APF). Dve-expressing region partly overlaps with the Notch-activated region, and they become a complementary pattern at 6 It APF. Interestingly, dve mutant legs resulted in extra joint formation at the center of each tarsal segment, and the forced expression of dve caused a jointless phenotype. We present evidence that Dve suppresses the potential joint-forming activity, and that Notch signaling represses Dve expression to form joints. (C) 2007 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ydbio.2007.09.003

    Web of Science

    researchmap

  • Notch-, Wingless-, and Dpp-mediated signaling pathways are required for functional specification of Drosophila midgut cells Reviewed

    Ryushin Tanaka, Yoshikazu Takase, Masamitsu Kanachi, Rie Enomoto-Katayama, Tetsuya Shirai, Hideki Nakagoshi

    DEVELOPMENTAL BIOLOGY   304 ( 1 )   53 - 61   2007.4

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    The mechanisms for cell fate determination have been extensively studied whereas little is known about the mechanism through which functional specificity is established. In the Drosophila midgut, copper cells provide an excellent model system to examine this mechanism. Copper is an essential element for the activity of a number of physiologically important enzymes including Cu/Zn-superoxide dismutase, cytochrome c oxidase, and dopamine-beta-hydroxylase. Drosophila copper cells are involved in two distinct functions, i.e., copper absorption and acid secretion, which are visualized as a fluorescent signal and a color change of a pH indicator dye, respectively. Here we show that the absorptive function is established through two independent pathways, the Notch signaling pathway in adjacent interstitial cells and the Wingless signaling pathway in copper cells. Furthermore, the other function, acid secretion, is regulated through the Decapentaplegic and Wingless signaling pathways in interstitial cells. Our results clearly indicate that normal morphological development is insufficient for functional maturation, and that subsequent functional specification is achieved through several independent pathways. These results provide valuable insights into the molecular mechanism underlying functional specification. (c) 2006 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ydbio.2006.12.018

    Web of Science

    researchmap

  • Functional specification in the Drosophila endoderm Invited

    H Nakagoshi

    DEVELOPMENT GROWTH & DIFFERENTIATION   47 ( 6 )   383 - 392   2005.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING  

    The discovery of homeobox gene clusters led us to realize that the mechanisms for body patterning and other developmental programs are evolutionally-conserved in vertebrates and invertebrates. The endoderm contributes to the lining of the gut and associated organs such as the liver and pancreas, which are critical for physiological functions. Our knowledge of endoderm development is limited; however, recent studies suggest that cooperation between the HNF3/Fork head and GATA transcription factors is crucial for endoderm specification. It is necessary to further understand the mechanism through which cells become functionally organized. Molecular genetic analyses of the Drosophila endoderm would provide insights into this issue. During proventriculus morphogenesis, a simple epithelial tube is folded into a functional multilayered structure, while two functions of midgut copper cells (i.e. copper absorption and acid secretion) can be easily visualized. The homeobox gene defective proventriculus (dve) plays key roles in these functional specifications.

    DOI: 10.1111/j.1440-169X.2005.00811.x

    Web of Science

    researchmap

  • Differential requirement of EGFR signaling for the expression of defective proventriculus gene in the Drosophila endoderm and ectoderm Reviewed

    T Shirai, A Maehara, N Kiritooshi, F Matsuzaki, H Handa, H Nakagoshi

    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS   311 ( 2 )   473 - 477   2003.11

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    A homeobox gene, defective proventriculus (dve), is expressed in various tissues including the ventral ectoderm and midgut. Here, we show the expression pattern of due in the ventral ectoderm, in which dve expression is induced by Spitz, a ligand for Drosophila epidermal growth factor receptor (EGFR). In spitz mutants, due expression is only lost in the ventral ectoderm and overexpression of Spitz induces ectopic due activation in the ventral ectoderm. Dve expression in the middle midgut depends on Decapentaplegic (Dpp) signaling, while expression of a dominant-negative form of Drosophila EGFR (DERDN) also causes a marked decrease in due expression in the middle midgut. Furthermore, heterozygous mutation of thick veins (tkv), a Dpp receptor, strongly enhances the effect of DERDN. These results indicate that EGFR signaling is crucial for dve expression in the ventral ectoderm and is required in the middle midgut where it cooperates with Dpp signaling. (C) 2003 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.bbrc.2003.10.017

    Web of Science

    researchmap

  • Characterization of the dCaMKII-GAL4 driver line whose expression is controlled by the Drosophila Ca2+/calmodulin-dependent protein kinase II promoter Reviewed

    Y Takamatsu, H Nakagoshi, M Rachidi, C Lopes, Y Nishida, S Ohsako

    CELL AND TISSUE RESEARCH   310 ( 2 )   237 - 252   2002.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER-VERLAG  

    Transgenic flies that can drive GAL4 expression under the control of the 7 kb 5'-region of the Drosophila Ca2+/calmodulin-dependent protein kinase II (dCaMKII) gene (dCaMKII-GAL4) were established. Characteristic features of this dCaMKII-GAL4 driven reporter expression were compatible with the endogenous dCaMKII expression pattern: The dCaMKII-GAL4 driven reporter gene was expressed preferentially in the central nervous system of the embryo and larvae. Reporter expression was also observed in the brain, thoracic ganglion, and gut of the adult. The whole-brain distribution and projections of dCaMKII-GAL4-expressing cells in the adults were visualized three-dimensionally by using UAS-linked reporter genes. Prominent signals of nuclear-localized beta-Gal reporter gene expression were found in extensive brain regions, especially in the Kenyon cells of the mushroom body (MB), cells in the pars intercerebralis, and subesophageal ganglion (SOG). tau reporter gene expression highlighting neurite projections was detected in the MB lobes, median bundle, antennal lobe glomeruli, and fibers of clusters in the SOG, ventrolateral protocerebrum and superior lateral protocerebrum. These observations agree with those of a previous study mapping the dCaMKII-dependent memory circuits in courtship conditioning. Interestingly, green fluorescent protein reporter gene expression in adult MB lobes was predominantly observed in the alpha and beta lobes with a core-deficient pattern, but not in the alpha' and beta' lobes, similar to Fasciclin II immunoreactivity.

    DOI: 10.1007/s00441-002-0631-y

    Web of Science

    researchmap

  • GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps Reviewed

    S Hayashi, K Ito, Y Sado, M Taniguchi, A Akimoto, H Takeuchi, T Aigaki, F Matsuzaki, H Nakagoshi, T Tanimura, R Ueda, T Uemura, M Yoshihara, S Goto

    GENESIS   34 ( 1-2 )   58 - 61   2002.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-LISS  

    DOI: 10.1002/gene.10137

    Web of Science

    PubMed

    researchmap

  • Refinement of wingless expression by a Wingless- and Notch-responsive homeodomain protein, defective proventriculus Reviewed

    H Nakagoshi, T Shirai, Y Nabeshima, F Matsuzaki

    DEVELOPMENTAL BIOLOGY   249 ( 1 )   44 - 56   2002.9

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product. (C) 2002 Elsevier Science (USA).

    DOI: 10.1006/dbio.2002.0746

    Web of Science

    researchmap

  • A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells Reviewed

    H Nakagoshi, M Hoshi, Y Nabeshima, F Matsuzaki

    GENES & DEVELOPMENT   12 ( 17 )   2724 - 2734   1998.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:COLD SPRING HARBOR LAB PRESS  

    Morphogen gradients of secreted molecules play critical roles in the establishment of the spatial pattern of gene expression. During midgut development in Drosophila, secreted molecules of Decapentaplegic (Dpp) and Wingless (Wg) establish unique transcriptional regulation within target cells to specify the resultant cell types. Here we report the identification of a novel homeobox gene, defective proventriculus (dve), which is required for the midgut specification under the control of Dpp and Wg. In dye mutants, two distinct parts of the midgut, the proventriculus and middle midgut, are abnormally organized. The Wg signal regulates dve? expression during proventriculus development. On the other hand, dye is a downstream target of Dpp in the middle midgut and defines the functional specificity of copper cells along with another Dpp target gene, labial. Thus, the dye gene acts under the two distinct extracellular signals at distant parts of the midgut primordia.

    Web of Science

    researchmap

  • Inactivation of a c-Myb/estrogen receptor fusion protein in transformed primary cells leads to granulocyte/macrophage differentiation and down regulation of c-kit but not c-myc or cdc2 Reviewed

    A Hogg, S Schirm, H Nakagoshi, P Bartley, S Ishii, JM Bishop, TJ Gonda

    ONCOGENE   15 ( 24 )   2885 - 2898   1997.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:STOCKTON PRESS  

    Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.

    DOI: 10.1038/sj.onc.1201472

    Web of Science

    researchmap

  • Still life, a protein in synaptic terminals of Drosophila homologous to GDP-GTP exchangers Reviewed

    M Sone, M Hoshino, E Suzuki, S Kuroda, K Kaibuchi, H Nakagoshi, K Saigo, Y Nabeshima, C Hama

    SCIENCE   275 ( 5299 )   543 - 547   1997.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER ASSOC ADVANCEMENT SCIENCE  

    The morphology of axon terminals changes with differentiation into mature synapses. A molecule that might regulate this process was identified by a screen of Drosophila mutants for abnormal motor activities. The still life (sif) gene encodes a protein homologous to guanine nucleotide exchange factors, which convert Rho-like guanosine triphosphatases (GTPases) from a guanosine diphosphate-bound inactive state to a guanosine triphosphate-bound active state. The SIF proteins are found adjacent to the plasma membrane of synaptic terminals. Expression of a truncated SIF protein resulted in defects in neuronal morphology and induced membrane ruffling with altered actin localization in human KB cells. Thus, SIF proteins may regulate synaptic differentiation through the organization of the actin cytoskeleton by activating Rho-like GTPases.

    DOI: 10.1126/science.275.5299.543

    Web of Science

    researchmap

  • ASYMMETRIC SEGREGATION OF THE HOMEODOMAIN PROTEIN PROSPERO DURING DROSOPHILA DEVELOPMENT Reviewed

    J HIRATA, H NAKAGOSHI, Y NABESHIMA, F MATSUZAKI

    NATURE   377 ( 6550 )   627 - 630   1995.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MACMILLAN MAGAZINES LTD  

    ASYMMETRIC divisions that produce two distinct cells play fundamental roles in generating different cell types during development(1,2). In the Drosophila central nervous system, neural stem cells called neuroblasts divide unequally into another neuroblast and a ganglion mother cell which is Subsequently cleaved into neurons. Correct gene expression of ganglion mother tells requires the transcription factor Prospero(3-5). Here we demonstrate the asymmetric segregation of Prospero on neuroblast division, Prospero synthesized in neuroblasts is retained in the cytoplasm and at mitosis is exclusively partitioned to ganglion mother cells, in which it is translocated to the nucleus, Differential segregation of Prospero was also found in the endoderm. We have identified a region in Prospero that is responsible for this event, The region shares a common motif with Numb(6), which also shows unequal segregation(7). We propose that asymmetric segregation of transcription factors is an intrinsic mechanism for establishing asymmetry in gene expression between sibling cells.

    DOI: 10.1038/377627a0

    Web of Science

    researchmap

  • HUMAN A-MYB GENE ENCODES A TRANSCRIPTIONAL ACTIVATOR CONTAINING THE NEGATIVE REGULATORY DOMAINS Reviewed

    T TAKAHASHI, H NAKAGOSHI, A SARAI, N NOMURA, T YAMAMOTO, S ISHII

    FEBS LETTERS   358 ( 1 )   89 - 96   1995.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER SCIENCE BV  

    The myb gene family has three members, c-myb, A-myb, and B-myb. A-myb mRNA is mainly expressed in testis and peripheral blood leukocytes. A-Myb can activate transcription from the promoter containing Myb-binding sites in all cells examined. In addition to the two domains (a DNA-binding domain and a transcriptional activation domain), two negative regulatory domains have been identified in A-Myb. These results indicate that A-Myb functions as a transcriptional activator mainly in testis and peripheral blood cells, and the regulatory mechanism of A-Myb activity is similar to that of c-Myb.

    DOI: 10.1016/0014-5793(94)01402-M

    Web of Science

    researchmap

  • DEGENERATION OF SKELETAL AND CARDIAC MUSCLES IN C-MYB TRANSGENIC MICE Reviewed

    Y FURUTA, S AIZAWA, Y SUDA, Y IKAWA, H NAKAGOSHI, Y NISHINA, S ISHII

    TRANSGENIC RESEARCH   2 ( 4 )   199 - 207   1993.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CHAPMAN HALL LTD  

    In order to reveal cellular processes sensitive to abnormal c-myb expression in vivo, transgenic mice were produced by introducing the c-myb nuclear proto-oncogene under the ubiquitous transcriptional regulatory unit of the cytoplasmic beta-actin gene. Expression of c-myb in thymus did not cause apparent abnormality, but the mice unexpectedly developed degenerative abnormalities in skeletal and cardiac muscles; this occurred predominantly in males. Expression of c-myb in skeletal muscle was correlated with an inflammation of muscle and was accompanied by vacuolar degeneration of muscle fibres, their regeneration, and lymphocyte infiltration. The identical pathological progression in cardiac muscle was associated with cardiomegaly.

    Web of Science

    researchmap

  • FUNCTIONAL DOMAINS OF THE HUMAN-B-MYB GENE-PRODUCT Reviewed

    H NAKAGOSHI, Y TAKEMOTO, S ISHII

    JOURNAL OF BIOLOGICAL CHEMISTRY   268 ( 19 )   14161 - 14167   1993.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Three members of the human myb gene family (c-myb, A-myb, and B-myb) encode transcriptional regulators that can bind to specific DNA sequences. High levels of c-myb expression are usually found in immature hemopoietic cells, but the B-myb is more commonly expressed in many types of cells. To understand the regulation of the activity of B-myb gene product (B-Myb), its functional domains were analyzed. Like c-Myb, B-Myb also has a transcriptional activation domain containing a cluster of acidic amino acids in the region downstream of the DNA-binding domain, which consists of three tandem repeats of 51-52 amino acids. In contrast to c-Myb, B-Myb does not contain a negative regulatory domain. Furthermore, the multiple nuclear localization signals are in at least two regions in the COOH-terminal half of B-Myb, and one of them is adjacent to a potential cdc2 kinase site. These results indicate that B-Myb contains DNA-binding and transcriptional activation domains similar to those of c-Myb, but a regulatory mechanism of B-Myb activity is quite different from that for c-Myb.

    Web of Science

    researchmap

  • TRANSCRIPTIONAL ACTIVATION OF THE C-MYC GENE BY THE C-MYB AND B-MYB GENE-PRODUCTS Reviewed

    H NAKAGOSHI, C KANEIISHII, T SAWAZAKI, G MIZUGUCHI, S ISHII

    ONCOGENE   7 ( 6 )   1233 - 1240   1992.6

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:STOCKTON PRESS  

    To identify the target genes modulated by the myb gene product (Myb), a co-transfection assay with a Myb expression plasmid was performed. Both c-Myb and B-Myb, another member of the myb gene family, trans-activated the human c-myc promoter. DNAase I footprint analysis using the bacterially expressed c-Myb, identified multiple c-Myb binding sites in the c-myc promoter region. Deletion analysis of the c-myc promoter suggested that some number of Myb binding sites, not a specific Myb binding site, is important for the c-Myb-induced trans-activation of the c-myc promoter. Using the c-myc-chloramphenicol acetyltransferase (CAT) construct as a reporter in a co-transfection assay, the domains of c-Myb required for trans-activation were examined. The functional domains of c-Myb identified using the c-myc promoter were almost the same as those identified previously with the artificial target gene containing Myb binding sites, but unlike the case with the artificial target gene the N-terminal half of the previously identified negative regulatory domains and the C-terminal 136 amino acids were required for the maximal trans-activation of the c-myc promoter. These results indicate that there are some differences in the regulation of Myb-dependent trans-activation in different target genes.

    Web of Science

    researchmap

  • OVERLAP OF THE P53-RESPONSIVE ELEMENT AND CAMP-RESPONSIVE ELEMENT IN THE ENHANCER OF HUMAN T-CELL LEUKEMIA-VIRUS TYPE-I Reviewed

    N AOYAMA, T NAGASE, T SAWAZAKI, G MIZUGUCHI, H NAKAGOSHI, JI FUJISAWA, M YOSHIDA, S ISHII

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   89 ( 12 )   5403 - 5407   1992.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD PRESS  

    The wild-type p53 protein suppresses transformation, but certain missense mutants of p53 can transform cells. Although the wild-type p53 protein contains a transcriptional activation domain, no p53-responsive element has been identified. Here, we identified the p53-responsive element within the Tax-responsive element [21-base-pair (bp) enhancer] of human T-cell leukemia virus type I. Mutation analysis of the 21-bp enhancer indicated that the 16-bp sequence containing the cAMP-responsive element and its surrounding sequence was responsible for p53-induced transactivation. This 16-bp sequence was demonstrated to bind specifically to wild-type human p53 protein in vitro. Using a series of deletion mutants of p53, we showed that almost the entire region of p53 is needed for the transactivating capacity. Furthermore, the transforming mutants of p53 were unable to act as transcriptional activators. The p53-responsive element identified here should be useful to analyze the mechanism by which p53 regulates expression of a set of genes with a negative effect on cellular growth.

    DOI: 10.1073/pnas.89.12.5403

    Web of Science

    researchmap

  • EFFECTS OF PROKARYOTIC TERMINATION SIGNALS ON RNA POLYMERASE-II TRANSCRIPTION IN HELA-CELLS Reviewed

    H NAKAGOSHI, Y UENO, F IMAMOTO

    JOURNAL OF BIOCHEMISTRY   110 ( 1 )   159 - 162   1991.7

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPAN BIOCHEMICAL SOC  

    Three prokaryotic termination signals, the Escherichia coli trp attenuator, lambda-4S RNA terminator, and lambda-tR1 terminator, were examined as to their effects on transcription in vivo in HeLa cells. The trp attenuator inhibited the expression of downstream genes in an orientation-dependent manner, but both the lambda-4S RNA and lambda-tR1 terminators did not. Furthermore, a point mutation of the attenuator that disrupted the secondary structure of mRNA abolished this inhibitory effect. These results suggest that an attenuator-like secondary structure is effective in inhibiting transcriptional elongation by RNA polymerase II.

    Web of Science

    researchmap

  • THE TRYPTOPHAN CLUSTER - A HYPOTHETICAL STRUCTURE OF THE DNA-BINDING DOMAIN OF THE MYB PROTOONCOGENE PRODUCT Reviewed

    C KANEIISHII, A SARAI, T SAWAZAKI, H NAKAGOSHI, DN HE, K OGATA, Y NISHIMURA, S ISHII

    JOURNAL OF BIOLOGICAL CHEMISTRY   265 ( 32 )   19990 - 19995   1990.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Web of Science

    researchmap

  • DNA-BINDING ACTIVITY AND TRANSCRIPTIONAL ACTIVATOR FUNCTION OF THE HUMAN B-MYB PROTEIN COMPARED WITH C-MYB Reviewed

    G MIZUGUCHI, H NAKAGOSHI, T NAGASE, N NOMURA, T DATE, Y UENO, S ISHII

    JOURNAL OF BIOLOGICAL CHEMISTRY   265 ( 16 )   9280 - 9284   1990.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Web of Science

    researchmap

  • BINDING OF THE C-MYB PROTO-ONCOGENE PRODUCT TO THE SIMIAN VIRUS-40 ENHANCER STIMULATES TRANSCRIPTION Reviewed

    H NAKAGOSHI, T NAGASE, C KANEIISHII, Y UENO, S ISHII

    JOURNAL OF BIOLOGICAL CHEMISTRY   265 ( 6 )   3479 - 3483   1990.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Web of Science

    researchmap

  • TRANSCRIPTIONAL TRANS-REPRESSION BY THE C-MYB PROTO-ONCOGENE PRODUCT Reviewed

    H NAKAGOSHI, T NAGASE, Y UENO, S ISHII

    NUCLEIC ACIDS RESEARCH   17 ( 18 )   7315 - 7324   1989.9

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS UNITED KINGDOM  

    DOI: 10.1093/nar/17.18.7315

    Web of Science

    researchmap

  • DELINEATION OF 3 FUNCTIONAL DOMAINS OF THE TRANSCRIPTIONAL ACTIVATOR ENCODED BY THE C-MYB PROTOONCOGENE Reviewed

    H SAKURA, KI CHIE, T NAGASE, H NAKAGOSHI, TJ GONDA, S ISHII

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   86 ( 15 )   5758 - 5762   1989.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    DOI: 10.1073/pnas.86.15.5758

    Web of Science

    researchmap

  • TRANS-ACTIVATION BY THE C-MYB PROTO-ONCOGENE Reviewed

    Y NISHINA, H NAKAGOSHI, F IMAMOTO, TJ GONDA, S ISHII

    NUCLEIC ACIDS RESEARCH   17 ( 1 )   107 - 117   1989.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS UNITED KINGDOM  

    DOI: 10.1093/nar/17.1.107

    Web of Science

    researchmap

  • MOLECULAR-CLONING AND EXPRESSION OF A GENE FOR A FACTOR WHICH STABILIZES FORMATION OF INHIBITOR-MITOCHONDRIAL ATPASE COMPLEX FROM SACCHAROMYCES-CEREVISIAE Reviewed

    A AKASHI, Y YOSHIDA, H NAKAGOSHI, K KUROKI, T HASHIMOTO, K TAGAWA, F IMAMOTO

    JOURNAL OF BIOCHEMISTRY   104 ( 4 )   526 - 530   1988.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:JAPANESE BIOCHEMICAL SOC  

    Web of Science

    researchmap

▼display all

Books

  • Nutrient conditions optimize male fecundity in Drosophila melanogaster.(In Advances in Medicine and Biology)

    Mirai Matsuka, Hideki Nakagoshi( Role: Contributor ,  Chapter 6)

    Nova Science Publishers  2019.4  ( ISBN:9781536156379

     More details

    Responsible for pages:191-211   Language:English Book type:Scholarly book

    researchmap

MISC

  • ショウジョウバエ眼における細胞種特異的なロドプシン発現は重複的な制御ループによって厳密に規定される Invited

    中越英樹, Claude Desplan

    新着論文レビュー   2011

     More details

  • ショウジョウバエの消化管形成と機能分化 Invited

    中越英樹, 松野健治

    蛋白質・核酸・酵素   52 ( 2 )   119 - 125   2007

     More details

    Authorship:Lead author, Corresponding author  

    researchmap

Presentations

  • ショウジョウバエ附属腺における第二細胞成熟を促すシグナル経路の同定

    大常真一, 松家未来, 中越英樹

    日本分子生物学会第46回年会  2023.12.8 

     More details

    Event date: 2023.12.6 - 2023.12.8

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ幼虫脂肪体細胞の栄養環境応答的な倍数化の制御

    韓若亜, 松家未来, 山口侑希, 中越英樹

    日本分子生物学会第46回年会  2023.12.7 

     More details

    Event date: 2023.12.6 - 2023.12.8

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ脳における dve 発現細胞の解剖学的解析

    河又瑛良, 中越英樹

    日本分子生物学会第46回年会  2023.12.6 

     More details

    Event date: 2023.12.6 - 2023.12.8

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエのオス附属腺におけるストレス応答制御

    白樫千怜, 鈴江陽一郎, 中越英樹

    日本分子生物学会第45回年会  2022.12.2 

     More details

    Event date: 2022.11.30 - 2022.12.2

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 転写抑制因子 Dve によるショウジョウバエ雌の交尾受容性の制御

    藤本鉄馬, 次田康弘, 中越英樹

    日本分子生物学会第45回年会  2022.11.30 

     More details

    Event date: 2022.11.30 - 2022.12.2

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • オスのショウジョウバエにおける栄養依存的な妊性の調節はエクダイソンシグナルによって微調整される

    松家未来, 上田均, 中越英樹

    日本分子生物学会第43回年会 (オンライン)  2020 

     More details

    Event date: 2020.12.2 - 2020.12.4

    Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ附属腺におけるオスの妊性を制御するストレス応答

    鈴江陽一郎, 松家未来, 中越英樹

    日本分子生物学会第43回年会 (オンライン)  2020 

     More details

    Event date: 2020.12.2 - 2020.12.4

    Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ個眼におけるギャップ結合を介したロドプシン発現制御

    張軒碩, 新城綾樹, 中越英樹

    日本分子生物学会第45回年会  2022.12.1 

     More details

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエのオスの妊性は附属腺における栄養依存的な Dve と EcR 発現レベルによって最適化される

    松家未来, 上田均, 中越英樹

    日本分子生物学会第44回年会ワークショップ「統合的な栄養学研究で紡ぐ次世代栄養学」  2021.12 

     More details

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • ショウジョウバエのオス附属腺における過剰栄養へのストレス応答

    鈴江陽一郎, 松家未来, 中越英樹

    日本分子生物学会第44回年会  2021.12 

     More details

    Language:Japanese   Presentation type:Poster presentation  

    researchmap

  • Male fecundity is plastically optimized by nutrient conditions

    Matsuka, M, Kubo, A, Nakagoshi, H

    60th Annual Drosophila Research Conference, Dallas, U.S.A.  2019 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエの交尾受容性を制御する細胞群の解析

    次田康弘, 北脇真岐, 中越英樹

    日本分子生物学会第42回年会,博多  2019 

     More details

    Presentation type:Poster presentation  

    researchmap

  • ストレス応答における転写制御因子 Dveの機能

    荻野裕人, 中越英樹

    日本分子生物学会第42回年会,博多  2019 

     More details

    Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ附属腺の栄養依存的な分化制御シグナル

    松家未来, 上田均, 中越英樹

    日本分子生物学会第42回年会,博多  2019 

     More details

    Presentation type:Poster presentation  

    researchmap

  • 栄養依存的な附属腺第二細胞の分化制御シグナル

    松家未来, 上田均, 中越英樹

    日本分子生物学会第41回年会,横浜  2018 

     More details

    Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ雄の同性愛行動を抑制するDE細胞

    山田芳, 田中陵暉, 山元大輔, 中越英樹

    日本分子生物学会第41回年会,横浜  2018 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Nutrient sensor in the reproductive organ regulates male fecundity in Drosophila

    Matsuka, M, Kubo, A, Taniguchi, K, Adachi-Yamada, T, Nakagoshi, H

    RIKEN CDB Symposium 2018, Kobe, Japan  2018 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ雄の求愛行動を制御する dve 発現細胞の解析

    山田芳, 田中陵暉, 山元大輔, 中越英樹

    日本遺伝学会第89回大会,岡山  2017 

     More details

    Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ生殖器官の栄養センサーはオスの妊性を制御する

    松家 未来, 久保 愛結子, 谷口 喜一郎, 安達 卓, 中越 英樹

    ConBio2017: 生命科学系学会合同年次大会,神戸  2017 

     More details

    Presentation type:Oral presentation (general)  

    researchmap

  • Nutrient condition modulates male fecundity through changes of accessory gland cells in Drosophila

    Kubo, A, Taniguchi, K, Adachi-Yamada, T, Nakagoshi, H

    The 22nd International Congress of Zoology, Okinawa, Japan  2016 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ附属腺での小胞体ストレスの制御

    高橋紗央里, 木村文香, 谷口喜一郎, 安達卓, 中越英樹

    日本分子生物学会第39回年会,横浜  2016 

     More details

    Presentation type:Poster presentation  

    researchmap

  • Neuronal circuitry of fru-dve-expressing neurons regulates Drosophila male courtship behavior

    Tanaka, R, Yamamoto, D, Nakagoshi, H

    The 22nd International Congress of Zoology, Okinawa, Japan  2016 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • ショウジョウバエ中腸細胞の機能分化制御 Invited

    中越英樹

    第 58 回 日本応用動物昆虫学会大会  2014 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • Functional analysis of the transcription factor Dve in Drosophila malpighian tubules

    Kifuku, N, Nakagoshi, H

    2nd Asia-Pacific Drosophila Research Conference, Seoul, Korea  2013 

     More details

    Language:English   Presentation type:Poster presentation  

    researchmap

  • Roles of the homeobox gene dve in Drosophila cell differentiation Invited

    Nakagoshi, H.

    Swiss-Japananese Developmental Meeting, Kyoto, Japan  2012 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  • ショウジョウバエ中腸細胞の機能分化 Invited

    日本発生生物学会第 38 回大会ワークショップ 「消化管の部域化機構と進化的保存性」  2005 

     More details

  • dve 遺伝子によるモルフォゲン濃度勾配の確立 Invited

    日本分子生物学会第 21 回年会ワークショップ 、「細胞からみた器官形成のメカニズム」  1998 

     More details

▼display all

Research Projects

  • 過剰栄養シグナルが精子運動性低下を招くメカニズムの解明

    Grant number:22K06334  2022.04 - 2025.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    中越 英樹

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    researchmap

  • Mechanism of reduced fecundity due to obesity

    Grant number:18K06351  2018.04 - 2022.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Nakagoshi Hideki

      More details

    Grant amount:\4290000 ( Direct expense: \3300000 、 Indirect expense:\990000 )

    The male reproductive organ accessory gland in Drosophila produces components of seminal fluid. Excess nutrient signaling reduces fecundity through changes in gene expression that are mediated by inhibition of degradation of the transcriptional regulator Dve. Microarray analysis identified Dve target gene candidates.
    In addition, a novel feedback mechanism is proposed that the strong stress induces accumulation of Dve proteins and suppresses the expression of the initial stress response genes (molecular chaperon, ER stress sensor Xbp1).

    researchmap

  • Regulatory mechanism of male fertility by seminal fluid

    Grant number:15K07159  2015.04 - 2018.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Nakagoshi Hideki

      More details

    Grant amount:\5070000 ( Direct expense: \3900000 、 Indirect expense:\1170000 )

    The male reproductive organ accessory glands in Drosophila make components of seminal fluid. We examined the possibility that accessory gland cells function as a nutrient sensor when controlling reproductive ability (fecundity) in response to nutrient conditions. Of the main cells (~ 1,000) and the secondary cells (~ 60), we showed that the nutrient conditions during development change the number and size of secondary cells to optimize male fecundity. In addition, Dve and Abd-B were identified as factors that control gene expression in a nutrient-dependent manner.

    researchmap

  • Regulation of homeostasis by absorption and excretion in the digestive tract

    Grant number:23570006  2011 - 2013

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    NAKAGOSHI Hideki

      More details

    Grant amount:\5330000 ( Direct expense: \4100000 、 Indirect expense:\1230000 )

    Malpighian tubules of Drosophila melanogaster have functions homologous to those of mammalian kidney, and maintain homeostasis by excreting waste matter from the body fluid. This study has shown that the homeodomain transcription factor Defective proventriculus (Dve) is essential for functional differentiation of these cells and their stress response to high-salt diet.

    researchmap

  • Mechanisms of functional differentiation in the Drosophila midgut

    Grant number:20570004  2008 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    NAKAGOSHI Hideki

      More details

    Grant amount:\4030000 ( Direct expense: \3100000 、 Indirect expense:\930000 )

    The Drosophila middle midgut has two functions, copper absorption and acid secretion. These functions are established by intercellular communication between copper and interstitial cells. The transcription factor Dve has two isoforms (Dve-A, Dve-B), and the spatio-temporal regulation of isoform switching is cricial for functional differentiation of the midgut. In addition, the cell-type specific activities of Rho GTPase and V-ATPase are also required for the midgut functions.

    researchmap

  • 内胚葉系の発生・分化・再生の分子基盤

    Grant number:17637003  2005

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    菊池 裕, 粂 昭苑, 福田 公子, 横内 裕二, 中越 英樹, 高橋 淑子

      More details

    Grant amount:\3400000 ( Direct expense: \3400000 )

    本企画調査では,平成18年度に科学研究費補助金特定領域研究を組織するため、6名の研究代表者・分担者による研究会議・国内外の学会における情報収集・外国人研究者との意見交換を行った。
    1.研究会議;6・7・8・10月に、特定領域研究申請の為の研究打ち合わせを東京で行った。会議では、申請書の打ち合わせだけでなく内胚葉研究全般に関する情報交換や議論も行い、研究者同士の活発な議論が5〜6時間続けられた。
    2.学会における情報収集
    発生生物学会;6月、仙台、参加者(全員参加)
    国際発生生物学会;9月、オーストラリア・シドニー、参加者(菊池・粂)
    分子生物学会;12月、福岡、参加者(菊池・粂・横内・中越・高橋)
    発生生物における国内外の代表的な学会に参加し、内胚葉研究の現状と今後の方向性に関し、多くの国内外の研究者と活発な議論を行った。学会の参加により得られた様々な研究情報は、会議で報告し情報の共有化を行った。
    3.特定領域研究の申請;平成18年度発足の特定領域研究に「消化器形成の分子基盤」として研究計画書を作成し申請を行った。申請では、4つの研究項目(変異体作製・解析、基本デザイン・多様性、器官形成・細胞分化、再構築系)を設け、総勢16人による研究計画を立案した。
    本企画調査で行われた4回の研究会議では、内胚葉研究に関する議論・意見交換が活発に行われ、極めて有益であった。今後はこの会議の話し合いで得られた研究の方向性や共同研究等の実現を目指した活動を続けて行く予定である。

    researchmap

  • 脚・触角の分節形成から探る形態形成の協調的制御機構

    Grant number:16027233  2004 - 2005

    日本学術振興会  科学研究費助成事業 特定領域研究  特定領域研究

    中越 英樹

      More details

    Grant amount:\5500000 ( Direct expense: \5500000 )

    ショウジョウバエのdefective proventriculus (dve)遺伝子は,形態形成因子Wingless (Wg), Decapentaplegic (Dpp)に依存して発現するホメオボックス遺伝子である。脚原ににおいてNotchシグナルは同心円状に活性化され,脚原基の増殖および分節化に関与する。蛹期の脚原基喧おいて,Notch活性化領域は脚分節様構造の遠位部側であり,Dveは分節構造をまたいで発現するため,両者は分節構造の遠位部側で部分的な重複を示す。発生の進行に伴ってこの重複部分でのDve発現が抑制されることが,成虫脚分節間をつなぐジョイントと呼ばれる構造を形成するために必要である。この過程において,NotchシグナルとEGFRシグナルの拮抗作用,細胞内平面極性(Planer Cell Polarity ; PCP)によるDve発現の維持も必要とされる。dve変異体やEGFR, PCPシグナル因子の変異体では,異所的なジョイント構造が形成されるが,dve変異モザイククローン内での異所的なNotch活性の上昇は認められなかったことから,dve遺伝子発現の抑制がジョイント形成のための十分条件であるか否かについて検討を行った。ジョイント形成領域におけるNotch活性の阻害によって誘導されるジョイント構造の欠失は,dve変異によって回復することはなかったため,ジョイント形成にはdve発現抑制とは独立にNotch活性が必要とされることが明らかとなった。
    触角と脚はともに明確な分節構造を有し,触角が脚に転換する変異体が存在することや遺伝子発現パターンの類似性などから,形成メカニズムの共通性が指摘されている。Dve発現領域は第3節よりも遠位部側で,二重または三重のリング状に発現していた。しかし,この発現は触角形成そのものには必要ではなく,dve変異モザイク個体においては,正常に形成された本来の触角構造の背側に異所触角が鏡像対称に出現した。変異体が同様の表現型を示すIroquois complexとdveとの関連を調べたところ,それぞれの変異体において明確な遺伝子発現の変化は観察されず,両者が独立の経路で協調的に作用しているという可能性が示唆された。

    researchmap

  • 視覚認識に関わる神経回路網形成機構の解析

    Grant number:15029244  2003 - 2004

    日本学術振興会  科学研究費助成事業 特定領域研究  特定領域研究

    中越 英樹

      More details

    Grant amount:\5200000 ( Direct expense: \5200000 )

    キイロショウジョウバエの複眼は約800個の個眼から構成され、その中には8種類の光受容細胞(R1-R8)が存在している。これらは受容する光波長の違いや形態的な特徴から次の2つに大別できる。(1)外側光受容細胞(R1-R6)はRhodopsin1(Rh1)を発現することで物体のイメージ形成に必要な波長の光を受容し、神経軸索を脳薄層(ラミナ;lamina)に投射する。(2)内側光受容細胞(R7,R8)は主に色覚情報を与えるとされ、yellow typeはRh4/Rh6(in R7/R8)、pale typeはRh3/Rh5(in R7/R8)を発現し、軸索を脳髄層(メダラ;medulla)に投射する。defective proventriculus(dve)遺伝子は、視覚認識行動異常の原因遺伝子として同定されたホメオドメイン転写因子である。まず、ショウジョウバエ視覚神経系発生の初期(3齢幼虫〜蛹初期)のラミナと、後期(蛹中期〜成虫)の複眼においてDveを発現する細胞を確認した。前者はラミナニューロンの前駆細胞由来でありながら神経細胞には分化せず、また既知のグリア細胞とも一致しないため、これらの細胞群をDPL(Dve-positive cells in lamina)と呼ぶことにした。蛹初期にDPLを除去した成虫個体では成虫ラミナニューロンの数が減少し、DPLが存在するラミナ表層においてBrdUの取り込み活性を蛹期に検出することができた。また、DPLはラディアルグリアと類似の突起を有し、細胞系譜追跡実験により、娘細胞がニューロンに分化している可能性を示唆する結果を得た。これらの結果から、DPLは神経前駆細胞の性格を保持し、新規ニューロンの産出によって蛹発生中にラミナ神経系を構築する神経幹細胞であるという可能性が示唆された。
    複眼におけるdve遺伝子発現はR1-R7で検出されたが、dve変異複眼では外側光受容細胞に関する異常は確認できなかった。一方、内側光受容細胞では、全てのR7がRh3を、R8がRh6を発現していた。つまり、ロドプシン発現パターンの初期状態はRh3/Rh6(in R7/R8)であり、Dveを介した誘導シグナルによって内側光受容細胞の機能的分化が制御されていることが明らかとなった。

    researchmap

  • 細胞増殖と形態形成の協調的制御機構の解析

    Grant number:14034236  2002 - 2003

    日本学術振興会  科学研究費助成事業 特定領域研究  特定領域研究

    中越 英樹

      More details

    Grant amount:\5900000 ( Direct expense: \5900000 )

    形態形成因子(モルフォゲン)の拡散によって生じる濃度勾配は、個々の細胞に異なる位置情報を与え、各生物に個有な形態を作りあげていく。ショウジョウバエのdefective proventriculus(dve)遺伝子は、形態形成因子Wingless(Wg)、Decapentaplegic(Dpp)に依存して発現するホメオボックス遺伝子である。翅原基においてDveが一過性に発現する背腹境界は、翅の辺縁部を形成し、機械刺激を受容するための特殊な剛毛を生じる。この翅の辺縁部はNotchシグナルによって誘導され、このシグナルは細胞増殖とも密接に関連し、翅原基の増殖とパターン形成を制御している。また、脚原基においてNotchシグナルは同心円状に活性化され、脚原基の増殖および分節化に関与する。蛹期の脚原基において、Notch活性化領域は脚分節様構造の遠位部側で、Dveは分節様構造をまたいで発現するため、両者は分節様構造の遠位部側で部分的な重複を示す。発生の進行に伴ってこの重複部分でのDve発現が抑制されることが、成虫脚分節間をつなぐジョイントと呼ばれる構造を形成するために重要であることをこれまで明らかにしてきた。EGFRシグナルを活性化するリガンド分子Veinは、脚原基の遠位部で発現し、近遠軸に沿った活性勾配を作ることによって、脚の遠位部のパターン形成に関与するという報告がなされている。胚発生期や翅原基におけるdve遺伝子発現はEGFRシグナルによっても制御されているという知見に基づき、今回、Dve発現抑制領域にEGFRシグナルを活性化させる分子を発現させたところ、Notchシグナルを阻害した時と同じようなジョイント構造の欠失が観察された。蛹期におけるEGFRシグナルの活性化領域は、Notch活性化領域ときれいに相補的なパターンを示すことから、EGFRリガンド分子Veinは近遠軸に沿った活性勾配を作ることによって遠位部のパターンニングを行うだけでなく、Notchシグナルとの拮抗作用によりEGFRシグナル活性化領域が周期的なパターンで抑制されることが、Notch活性化、dve発現抑制とともにジョイント形成シグナルを形成しているものと考えられる。

    researchmap

  • 視覚認識に関わる神経回路網形成機構の解析

    Grant number:13041046  2001 - 2002

    日本学術振興会  科学研究費助成事業 特定領域研究  特定領域研究

    中越 英樹

      More details

    Grant amount:\5300000 ( Direct expense: \5300000 )

    ショウジョウバエの視覚認識行動に異常を示す突然変異体の原因遺伝子として同定したdefective proventriculus(dve)遺伝子は、ホメオボックスを持つ転写制御因子である。dve遺伝子上流の発現制御領域によって標識される神経細胞群(Dve標識細胞)の軸索は視覚中枢に投射しており、Dve標識細胞にテタヌス毒素を発現させ、その神経活動を阻害すると、視覚認識行動が異常になる傾向が認められている。
    Dve標識細胞の染色は、光受容細胞(R1-R6)の投射先であるlaminaにおいても確認されたが、その遺伝子発現は蛹後期から成虫にかけてのみ観察された。一方、Dve抗体による染色では、同時期におけるlaminaでの発現は検出されず、蛹初期lamina予定域の細胞群で発現が確認された。つまり、Dveタンパク質は、蛹初期のlaminaにおいて一過性に発現し、その後の発現は抑制されているようである(Dve_+細胞)。腸管および翅原基における解析の結果、dve遺伝子の一過性発現が細胞機能特性を付与するために重要であることから、蛹期のlaminaにおける一過性のdve発現が視覚認識に関わる神経回路網形成に重要であるものと考えられる。Dve^+細胞は、laminaニューロンマーカー(Dac)の発現と一致しないことから、グリア細胞である可能性が高い。また、蛹後期以降は、光受容細胞(R1-R6)においてもdve遺伝子発現が誘導されることが明らかとなった。この時期には光受容細胞の運命決定、軸索の投射などはすでに完了しているため、光受容細胞(R1-R6)の投射先に存在するDve標識細胞とともに何らかの神経機能の制御に関与している可能性が考えられた。

    researchmap

  • 細胞の機能特性を制御するゲノム情報の網羅的解析

    Grant number:13202047  2001

    日本学術振興会  科学研究費助成事業 特定領域研究(C)  特定領域研究(C)

    中越 英樹

      More details

    Grant amount:\6000000 ( Direct expense: \6000000 )

    ショウジョウバエのホメオボックス遺伝子dveは、腸管の吸収機能特性を制御している。銅イオンをキレートしたポルフィリン系化合物等を吸収する性質からcopper cellと命名されている腸管細胞があり、この細胞は酸を分泌することによって消化の促進にも関与している。吸収活性は蛍光シグナルとして、酸分泌能はpH指示薬の変色として可視化することができるため、機能解析の優れたモデル系となる。この細胞が吸収機能を獲得するためには、dve遺伝子の一過性発現が必要である。つまり、dve遺伝子の発現が抑制されるべき時期に強制的にdve遺伝子を発現させると、形態的な異常を伴うことなく、吸収特性のみが阻害される。このように、吸収機能特性のみが選択的に阻害された個体群と対照群との間で、発現の変化する遺伝子群(吸収機能制御に関わる遺伝子群)を網羅的に検索し、機能特性制御のメカニズムを解析する。
    吸収機能の選択的阻害の条件として、copper cellの示すもう1つの機能である酸分泌能に関して検討を加えた。昨年度、吸収機能を選択的に阻害できる系統として同定していた2系統のうち1系統は、酸分泌能も強く阻害してしまうことが明らかとなった。再スクリーニングの結果、形態に及ぼす影響が比較的少なく、酸分泌能も正常だが、吸収機能を阻害できる系統として、最終的にNP3538,NP3012の2系統を同定することができた。
    control幼虫とdve発現幼虫の間で、発現量に差のある遺伝子群を比較するため、約1,500匹の1齢幼虫を集め、幼虫全体から調製したmRNAサンプルを用いて、RT-PCR法によってdve発現量の顕著な増加を確認することができた。

    researchmap

  • 細胞増殖と形態形成の協調的制御機構の解析

    Grant number:13045028  2001

    日本学術振興会  科学研究費助成事業 特定領域研究(A)  特定領域研究(A)

    中越 英樹

      More details

    Grant amount:\3100000 ( Direct expense: \3100000 )

    形態形成因子(モルフォゲン)の拡散によって生じる濃度勾配は、個々の細胞に異なる位置情報を与え、各生物に個有な形態を作りあげていく。ショウジョウバエのdefective proventriculus(dve)遺伝子は、形態形成因子Wingless(Wg)、Decapentaplegic(Dpp)に依存して発現するホメオボックス遺伝子である。翅や肢の形態形成にはWg, Dppといったモルフォゲンが重要な役割を果たしており、翅原基においてDveが一過性に発現する背腹境界は、翅の辺縁部を形成し、機械刺激を受容するための特殊な剛毛を生じる。この翅の辺縁部は、Notchシグナルによって誘導されることが知られている。Notchシグナルは細胞増殖とも密接に関連しており、翅原基の増殖とパターン形成を制御している。また、肢原基年おいては、Notchシグナルは同心円状に活性化され、肢原基の増殖および分節化に関与する。つまり、翅および肢原基におけるNotchシグナルの解析は、細胞増殖と形態形成が協調的に制御されるメカニズムを理解するための優れたモデル系となり得る。肢原基におけるdve遺伝子の発現は同心円状に観察され、強制発現クローン解析の結果、翅原基と同様にWg, Dppによる制御を受けている可能性が示唆された。三齢幼虫期の肢原基においては、翅原基で観察されたようなNotch活性化領域とDve発現領域の相補的な対応関係は認められなかったが、蛹期の肢原基においては、NotchリガンドであるDeltaとDveの発現がほぼ相補的なパターンを示すことが明らかとなった。肢原基の前後境界に沿ってdve'遺伝子の強制発現を行うと、肢の分節化が阻害され、短い肢が形成された。翅原基の背腹境界、肢原基の前後境界に沿ってNotchシグナルを阻害した場合にも同じ表現型が誘導されることから、Notchシグナルとdveの相互関係が増殖とパターン形成に重要であることが明らかとなった。

    researchmap

  • "ものを見分ける"ために必要な遺伝的プログラムの解析

    Grant number:12780512  2000 - 2001

    日本学術振興会  科学研究費助成事業 奨励研究(A)  奨励研究(A)

    中越 英樹

      More details

    Grant amount:\500000 ( Direct expense: \500000 )

    ショウジョウバエ視覚認識行動に異常を示す突然変異体の原因遺伝子として単離されたdefective proventriculus (dve)遺伝子の上流発現制御領域によって発現が支配される神経細胞群(Dve標識細胞)は、視覚系の介在神経および視覚中枢に投射する神経細胞を含み、これらDve標識細胞の機能は視覚認識能の獲得に重要な役割を果たしていると考えられる。Dve標識細胞がGAL4発現細胞として標識されたdve-GAL4系統に、UAS-TNT系統を交配した子孫では、Dve標識細胞においてテタヌス毒素(tetanus toxin ; TNT)を発現し、Dve標識細胞の神経活動が阻害される。このような個体における視覚認識行動を予備的に調べた結果では、明らかな行動異常が観察されていた。しかし、昨年度の解析から、この結果の再現性を確認する必要性が出てきたため、飼育密度、照明などの条件を検討してみたが、明確な原因を特定できるには至らなかった。しかし、dve発現レベルを変化させた場合には、視覚認識行動の異常が誘導されており、より詳細な検討を継続することが必要であると考えられた。
    一方、神経機能の制御においては、シナプス間の細胞間相互作用が重要であるため、dve変異体において細胞間相互作用の異常によって形態異常が誘導される前胃での機能制御に注目した。前胃での発現を示すエンハンサートラップ系統のGAL4発現をdve変異体において観察したところ、2系統において遺伝子発現の減少が認められた。トランスポゾン挿入部位近傍の配列をもとに近傍の遺伝子を推定してみると、いずれも神経機能と深く関わる遺伝子の発現を反映している可能性が考えられた。

    researchmap

  • 細胞の機能特性を制御するゲノム情報の網羅的解析

    Grant number:12202038  2000

    日本学術振興会  科学研究費助成事業 特定領域研究(C)  特定領域研究(C)

    中越 英樹

      More details

    ショウジョウバエのホメオボックス遺伝子dveは、腸管の吸収機能特性を制御している。銅イオンをキレートしたポルフィリン系化合物を選択的に吸収する性質からcopper cellと命名されている腸管細胞があり、この細胞が吸収機能を獲得するためには、dve遺伝子の一過性発現が必要である。つまり、dve遺伝子の発現が抑制されるべき時期に強制的にdve遺伝子を発現させると、形態的な異常を伴うことなく、吸収特性のみが阻害される。このように、吸収機能特性のみが選択的に阻害された個体群を安定的に得るための条件について検討を行った。
    500系統のGAL4エンハンサートラップ系統をスクリーニングし、copper cellを含む中腸細胞で発現のある系統を29系統同定した。GAL4依存的にGreen Fluorescent Protein(GFP)とdveを同時に発現できる系統を用い、dve遺伝子を持続的に発現するdve発現幼虫、およびGFPのみを発現できるコントロール幼虫について、吸収機能(copper fluorescence;UV光の照射によりオレンジ色の蛍光を発する)を測定した。6系統において吸収阻害効果が認められ、形態的特徴を保持できる条件について詳細に検討した結果、2系統について至適条件を決定できた。
    同定した2系統のうち、1系統は吸収は完全に阻害されるが低頻度で形態異常が誘導されてしまう系統、もう1系統は形態は正常だが低頻度で弱い吸収が認められてしまう系統である。これら2系統で誘導したdve発現幼虫とコントロール幼虫を比較し、2系統に共通して発現が変化している遺伝子は、吸収機能制御に関わる遺伝子として、解析の候補となり得るであろう。

    researchmap

  • 細胞増殖と形態形成の協調的制御機構の解析

    Grant number:12028226  2000

    日本学術振興会  科学研究費助成事業 特定領域研究(A)  特定領域研究(A)

    中越 英樹

      More details

    Grant amount:\2100000 ( Direct expense: \2100000 )

    ショウジョウバエの視覚認識行動に異常を示す突然変異体の原因遺伝子としてクローニングしたdefective proventriculus(dve)遺伝子は、翅を形成する領域(wing pouch)においても発現し、発現誘導には、Wingless(Wg),Decapentaplegicの両シグナルが必要であった。その後、背腹境界においてdve遺伝子の発現はNotchシグナルによって抑制されることが明らかとなった。背腹境界において抑制されたDveの発現はwgと相補的な発現パターンを示し、この過程において、背腹境界にまたがるdve変異モザイクを作成すると、wg発現領域がdve変異クローン内に拡がることから、Dveはwg発現領域を背腹境界の狭い領域に限定する働きがあることがわかった。
    GAL4/UASシステムを用いて、背腹境界にdve遺伝子を強制発現させ、Notchシグナルによる発現抑制を阻害したところ、翅がまったく形成されなくなったり、翅の辺縁部が欠けるといった表現型を示した。つまり、Notchシグナルによるdve遺伝子の発現抑制は翅原基の細胞増殖、パターン形成のいずれにおいても重要であることがわかった。また、活性化型Notchを異所発現させると、Wgの活性化、Dveの発現抑制に伴って、細胞増殖の促進が誘導された。しかし、Wgの活性化、Dveの発現抑制を起こすことができなかった細胞クローンでは細胞増殖の誘導は観察されなかった。つまり、Dveの発現を抑制できるNotchシグナルの閾値が細胞増殖の促進に重要であるものと考えられる。

    researchmap

  • 神経分化の多様性とprospero 遺伝子による制御

    Grant number:07262227  1995

    日本学術振興会  科学研究費助成事業 重点領域研究  重点領域研究

    松崎 文雄, 中越 英樹

      More details

    Grant amount:\2500000 ( Direct expense: \2500000 )

    prospero遺伝子は、神経系の幹細胞から非対称分裂により生じる2次前駆細胞で、一過的に機能するホメオボックス遺伝子であり、神経発生に必須な役割を果たす。この遺伝子の転写は幹細胞と二次前駆細胞とで等しく行われるにもかかわらず、翻訳産物は幹細胞の細胞核には見られず、2次前駆細胞の細胞核に局在するように観察される。我々は、このようなprosperoの転写と蛋白局在の非対称性について解析してきた。
    prospero蛋白は神経幹細胞で翻訳されているが、核には決して移行せず、細胞周期の進行に伴いダイナミックに細胞内で局在を変える。神経幹細胞で合成されたprosperoは、細胞分裂に伴って娘細胞の一方にのみ分配され、そこで機能することが明らかになった。この不等分配の分子機構を解析する第一歩として、不等分配に働く機能ドメインを決定したところ、中央部分の120アミノ酸からなる領域('非対称'領域)にその活性があることが分かった。非対称領域のなかで、32アミノ酸からなる極めて限定された領域だけがこの活性に必須である。prosperoタンパク質と同様に不等分配されるnumbタンパク質にも、この必須な領域に相同な配列が見い出されることから、これら二つの分子は同じ機構によって非対称に分配されるのかも知れない。細胞が増殖しながら多様な細胞が形成される発生において、細胞分裂により異なる二つの細胞が生まれる非対称分裂は最も基本的な過程である。prosperoは、細胞分裂に伴い非対称に分配される転写因子の最初の例であり、二つの娘細胞が異なる遺伝子発現をするために、転写因子が一方の娘細胞だけに分配されるという新しいメカニズムの存在する事を明らかにすることができた。prosperoの非対称分配は、外胚葉の神経系以外に内胚葉でも観察されることから、この機構が発生にひろく機能すると考えられる。

    researchmap

▼display all

 

Class subject in charge

  • Molecular and Developmental Genetics (2023academic year) Prophase  - その他

  • Seminar in Molecular Genetics (2023academic year) Year-round  - その他

  • Seminar in Molecular Genetics (2023academic year) Year-round  - その他

  • Basic Biology B1 (2023academic year) Third semester  - 水3~4

  • Biology Seminar B (2023academic year) special  - その他

  • Advanced Study in Biology (2023academic year) Year-round  - その他

  • Seminar in Behavioral Genetics (2023academic year) Other  - その他

  • Behavioral Genetics (2023academic year) Prophase  - 火3~4

  • Genetics 1 (2023academic year) 3rd and 4th semester  - 木3~4

  • Genetics IA (2023academic year) Third semester  - 木3~4

  • Genetics IB (2023academic year) Fourth semester  - 木3~4

  • Genetics IIA (2023academic year) 1st semester  - 木3~4

  • (T12)Behavioral Genetics (2023academic year) special  - その他

  • Molecular and Developmental Genetics (2022academic year) Prophase  - その他

  • Seminar in Molecular Genetics (2022academic year) Year-round  - その他

  • Basic Biology B1 (2022academic year) Third semester  - 水3~4

  • Biology Seminar A (2022academic year) special  - その他

  • Biology Seminar B (2022academic year) special  - その他

  • Introduction to Biology II (2022academic year) Second semester  - 水3~4

  • 生物学実験B (2022academic year) 3・4学期

  • 生物学実験C (2022academic year) 1・2学期

  • 生物学実験D (2022academic year) 3・4学期

  • Behavioral Genetics (2022academic year) Prophase  - 火3~4

  • Genetics 1 (2022academic year) 3rd and 4th semester  - 木3~4

  • Genetics IA (2022academic year) Third semester  - 木3~4

  • Genetics IB (2022academic year) Fourth semester  - 木3~4

  • Genetics IIA (2022academic year) 1st semester  - 木3~4

  • Molecular and Developmental Genetics (2021academic year) Prophase  - その他

  • Seminar in Molecular Genetics (2021academic year) Year-round  - その他

  • Basic Biology B (2021academic year) 3rd and 4th semester  - 水3,水4

  • Basic Biology B1 (2021academic year) Third semester  - 水3,水4

  • Basic Biology C (2021academic year) 1st and 2nd semester  - 水3,水4

  • Biology Seminar A (2021academic year) special  - その他

  • Biology Seminar B (2021academic year) special  - その他

  • Introduction to Biology II (2021academic year) Second semester  - 水3,水4

  • Laboratory Course D (2021academic year) special  - その他

  • Laboratory Course D (2021academic year) 3rd and 4th semester  - その他

  • Seminar in Biology (2021academic year) Year-round  - その他

  • Seminar in Biological Sciences Supervisor (2021academic year) Year-round  - その他

  • Advanced Study in Biology (2021academic year) Year-round  - その他

  • Behavioral Genetics (2021academic year) Prophase  - 火3,火4

  • Thesis Research (2021academic year) special  - その他

  • Genetics 1 (2021academic year) 3rd and 4th semester  - 木3,木4

  • Genetics IA (2021academic year) Third semester  - 木3,木4

  • Genetics IB (2021academic year) Fourth semester  - 木3,木4

  • Genetics 2 (2021academic year) 1st and 2nd semester  - 木3,木4

  • Genetics IIA (2021academic year) 1st semester  - 木3,木4

  • Molecular and Developmental Genetics (2020academic year) Prophase  - その他

  • Seminar in Molecular Genetics (2020academic year) Year-round  - その他

  • Basic Biology B (2020academic year) 3rd and 4th semester  - 水3,水4

  • Basic Biology B1 (2020academic year) Third semester  - 水3,水4

  • Basic Biology C (2020academic year) 1st and 2nd semester  - 水3,水4

  • Biology Seminar A (2020academic year) special  - その他

  • Biology Seminar B (2020academic year) special  - その他

  • Biology Seminar B (2020academic year) Other  - その他

  • Introduction to Biology II (2020academic year) Second semester  - 水3,水4

  • Laboratory Course D (2020academic year) special  - その他

  • Laboratory Course D (2020academic year) 3rd and 4th semester  - その他

  • Seminar in Biology (2020academic year) Other  - その他

  • Seminar in Biology (2020academic year) 1st and 2nd semester  - その他

  • Seminar in Biology (2020academic year) Year-round  - その他

  • Seminar in Biological Sciences Supervisor (2020academic year) Other  - その他

  • Seminar in Biological Sciences Supervisor (2020academic year) Year-round  - その他

  • Advanced Study in Biology (2020academic year) Other  - その他

  • Advanced Study in Biology (2020academic year) 1st and 2nd semester  - その他

  • Advanced Study in Biology (2020academic year) Year-round  - その他

  • Behavioral Genetics (2020academic year) Prophase  - 火3,火4

  • Thesis Research (2020academic year) special  - その他

  • Thesis Research (2020academic year) Other  - その他

  • Genetics 1 (2020academic year) 3rd and 4th semester  - 木3,木4

  • Genetics IA (2020academic year) Third semester  - 木3,木4

  • Genetics IB (2020academic year) Fourth semester  - 木3,木4

  • Genetics 2 (2020academic year) 1st and 2nd semester  - 木3,木4

  • Genetics IIA (2020academic year) 1st semester  - 木3,木4

▼display all