2024/12/25 更新

写真a

ハラダ タロウ
原田 太郎
HARADA Taro
所属
教育学域 准教授
職名
准教授
外部リンク

学位

  • 博士(生命科学) ( 東北大学 )

研究キーワード

  • シュベルトマナイト

  • エチレン

  • カーネーション

  • 収穫後生理

  • 花き

  • 園芸学

  • スクロース代謝

  • 低酸素ストレス

  • 水生植物

  • 植物生理学

  • ESD

  • 生物教育

  • 環境DNA

  • Plant awareness disparity

研究分野

  • 環境・農学 / 園芸科学

  • ライフサイエンス / 植物分子、生理科学

  • 人文・社会 / 教科教育学、初等中等教育学

所属学協会

  • 日本植物学会

    2022年5月 - 現在

      詳細を見る

  • 園芸学会中四国支部会

    2022年3月 - 現在

      詳細を見る

  • 日本生物教育学会

    2020年4月 - 現在

      詳細を見る

  • 園芸学会

      詳細を見る

  • 日本植物生理学会

      詳細を見る

  • 日本生物環境工学会

      詳細を見る

▼全件表示

委員歴

  • 園芸学会   The Horticulture Journal編集委員  

    2020年4月 - 2023年3月   

      詳細を見る

    団体区分:学協会

    researchmap

 

論文

  • Low-Oxygen Responses of Cut Carnation Flowers Associated with Modified Atmosphere Packaging 招待 査読

    Misaki Nakayama, Nao Harada, Ai Murai, Sayaka Ueyama, Taro Harada

    Plants   12 ( 14 )   2738 - 2738   2023年7月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MDPI AG  

    Gaseous factors affect post-harvest physiological processes in horticultural crops, including ornamental flowers. However, the molecular responses of cut flowers to the low-oxygen conditions associated with modified atmosphere packaging (MAP) have not yet been elucidated. Here, we show that storage of cut carnation flowers in a sealed polypropylene bag decreased the oxygen concentration in the bag to 3–5% and slowed flower opening. The vase life of carnation flowers after storage for seven days under MAP conditions was comparable to that without storage and was improved by the application of a commercial-quality preservative. The adenylate energy charge (AEC) was maintained at high levels in petals from florets stored under MAP conditions. This was accompanied by the upregulation of four hypoxia-related genes, among which the HYPOXIA-RESPONSIVE ETHYLENE RESPONSE FACTOR and PHYTOGLOBIN genes (DcERF19 and DcPGB1) were newly identified. These results suggest that hypoxia-responsive genes contribute to the maintenance of the energy status in carnation flowers stored under MAP conditions, making this gas-controlling technique potentially effective for maintaining cut flower quality without cooling.

    DOI: 10.3390/plants12142738

    researchmap

  • Successive Induction of Invertase Isoforms During Flower Development in Eustoma 査読

    Taro Harada, Yu Eguchi, Yuma Inada, Keiichi Onishi, Kota Hishikawa

    The Horticulture Journal   90 ( 3 )   334 - 340   2021年7月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Japanese Society for Horticultural Science  

    DOI: 10.2503/hortj.utd-265

    researchmap

  • Development of an SSR marker-based genetic linkage map and identification of a QTL associated with flowering time in Eustoma 査読

    Kyoko Kawakatsu, Masafumi Yagi, Taro Harada, Hiroyasu Yamaguchi, Takeshi Itoh, Masahiko Kumagai, Ryutaro Itoh, Hisataka Numa, Yuichi Katayose, Hiroyuki Kanamori, Kanako Kurita, Naoko Fukuta

    Breeding Science   71 ( 3 )   344 - 353   2021年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Japanese Society of Breeding  

    DOI: 10.1270/jsbbs.20100

    researchmap

  • Comprehensive analysis of sucrolytic enzyme gene families in carnation (Dianthus caryophyllus L.) 査読

    Taro Harada, Itsuku Horiguchi, Sayaka Ueyama, Ai Murai, Chie Tsuzuki

    Phytochemistry   185   112607 - 112607   2021年5月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.phytochem.2020.112607

    researchmap

  • 気象学と植物学との連携による自然環境系のESD的理解への学際的アプローチ―大学における授業実践の試み―

    原田太郎, 加藤内藏進

    岡山大学教師教育開発センター紀要   11   149 - 163   2021年3月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:日本語   掲載種別:研究論文(大学,研究機関等紀要)  

    researchmap

  • Anoxia tolerance of the rhizomes of three Japanese Iris species with different habitat 査読

    Haruna Itogawa, Taro Harada

    Aquatic Botany   167   103276 - 103276   2020年10月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.aquabot.2020.103276

    researchmap

  • Thermal Control Suitable for Increasing Petals in Eustoma grandiflorum (Raf.) Shinn 査読

    Kyoko Kawakatsu, Taro Harada, Ayuko Ushio, Mitsuru Dozono, Naoko Fukuta

    HORTICULTURE JOURNAL   87 ( 3 )   395 - 405   2018年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    The number of petals in a flower is one of the most important appearance qualities of ornamental flowers. In Eustoma, the number of petals fluctuates significantly and little is known about how it is controlled. We investigated the cultivating conditions that affect the number of petals in double flowers and tried to develop a technique for growing splendid corolla. High temperature in the reproductive phase reduces the number of petals. The transient treatment of high temperature just prior to the petal initiation stage is sufficient to control such a reduction. The measurement of flower bud growth showed that one week of temperature treatment is necessary to control the number of petals in a flower. The integration of our results demonstrated that both daytime and nighttime temperatures affected the number of petals and that the number of petals was clearly correlated with average daily temperature within the range of 20 degrees C < x < 25 degrees C. This phenomenon applies to various cultivars in Eustoma grandiflorum. We propose the greenhouse conditions necessary to achieve both high quality flowers and reduced energy consumption by considering the temperature and stages of flower development.

    DOI: 10.2503/hortj.OKD-138

    Web of Science

    researchmap

  • Effects of Neutralized Schwertmannite from the Disused Yanahara Mine as a New Agricultural Material for Reducing the Transfer of Radiocesium from Soil to Crops 査読

    Teruhiko Ishikawa, Taro Harada, Fumio Akahori, Yasumasa Sakurai

    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY   50 ( 3 )   235 - 240   2016年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN INT RESEARCH CENTER AGRICULTURAL SCIENCES  

    Following the accident at the Fukushima Daiichi Nuclear Power Plant, agricultural fields in Fukushima Prefecture were subject to severe radioactive contamination. Given the fact that radiocesium is readily transferred along the food chain and potentially poses a radiation risk to humans, effective methods of lowering the transfer of radioactivity from soil to crops are needed. We examined the effect of neutralized schwertmannite (NS) produced in the disused Yanahara mine as a new agricultural material for reducing radiocesium uptake by crops. The application of NS to soil at 1% or 5% showed inhibitory effects on radiocesium accumulation in the harvests of four upland crops (sweet potato, radish, turnip, and Chinese cabbage) and rice. Substantial amounts of radiocesium were detected in brown rice and hulls following cultivation in soil with recommended levels of exchangeable potassium (&gt; 200 mg kg(-1)). Decreased levels of radiocesium were observed in both tissues following the application of 5% NS, suggesting additional effects of NS application in potassium-rich soil. Our results indicated the efficacy of NS application and suggest its practical use in minimizing the radioactivity in crops cultivated in radiocesium-contaminated soil.

    Web of Science

    researchmap

  • Effects of Long-Day Treatment Using Fluorescent Lamps and Supplemental Lighting Using White LEDs on the Yield of Cut Rose Flowers 査読

    Taro Harada, Tomoyuki Komagata

    JARQ-JAPAN AGRICULTURAL RESEARCH QUARTERLY   48 ( 4 )   443 - 448   2014年10月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN INT RESEARCH CENTER AGRICULTURAL SCIENCES  

    During arching cultivation of roses in autumn and winter, long-day treatment using fluorescent lamps placed above the base of the plants slightly increased the number of cut flowers and also tended to increase the cut flower length in the first year. To further investigate these effects, the light condition of assimilation shoots was modified by supplemental lighting using white light-emitting diodes (LEDs) placed above the assimilation shoots. Supplemental lighting at two different levels of photosynthetic photon flux density (PPFD), 100 and 250 mu mol m(-2) s(-1), increased the number of cut flowers from the middle portion of the assimilation shoots, and the total number and weight of cut flowers according to the light intensity. Irradiation at 250 mu mol m(-2) s(-1) PPFD also increased the number of cut flowers over 80 cm long and the length, weight and stem diameter of cut flowers over 60 cm long. Long-day treatment using fluorescent lamps did not affect the number of cut flowers in the second year. These results indicate that long-day treatment using fluorescent lamps can effectively increase the yield of cut rose flowers in some years, while supplemental lighting using white LEDs for assimilation shoots is a method of increasing it more strongly.

    Web of Science

    researchmap

  • Sequence Analysis of the Genome of Carnation (Dianthus caryophyllus L.) 査読

    Masafumi Yagi, Shunichi Kosugi, Hideki Hirakawa, Akemi Ohmiya, Koji Tanase, Taro Harada, Kyutaro Kishimoto, Masayoshi Nakayama, Kazuo Ichimura, Takashi Onozaki, Hiroyasu Yamaguchi, Nobuhiro Sasaki, Taira Miyahara, Yuzo Nishizaki, Yoshihiro Ozeki, Noriko Nakamura, Takamasa Suzuki, Yoshikazu Tanaka, Shusei Sato, Kenta Shirasawa, Sachiko Isobe, Yoshinori Miyamura, Akiko Watanabe, Shinobu Nakayama, Yoshie Kishida, Mitsuyo Kohara, Satoshi Tabata

    DNA RESEARCH   21 ( 3 )   231 - 241   2014年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was similar to 98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties.

    DOI: 10.1093/dnares/dst053

    Web of Science

    researchmap

  • Role of ABA in Triggering Ethylene Production in the Gynoecium of Senescing Carnation Flowers: Changes in ABA Content and Expression of Genes for ABA Biosynthesis and Action 査読

    Yoshihiro Nomura, Taro Harada, Shigeto Morita, Satoshi Kubota, Masaji Koshioka, Hiroyasu Yamaguchi, Koji Tanase, Masafumi Yagi, Takashi Onozaki, Shigeru Satoh

    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE   82 ( 3 )   242 - 254   2013年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    In senescing carnation (Dianthus caryophyllus L.) flowers, ethylene production begins in the gynoecium, and the resulting ethylene acts on petals, inducing autocatalytic ethylene production. We investigated the role of abscisic acid (ABA) in ethylene production in the gynoecium of flowers. First, cDNAs of major genes involved in ABA biosynthesis and signaling were cloned from carnation flower tissues. Then, changes in ABA content and gene expression of ABA biosynthesis and signaling in the ovary were examined using three cultivars, 'Light Pink Barbara (LPB)' and 'Excerea', whose cut flowers produce ethylene during senescence and have an ordinary vase-life of about one week, and 'Miracle Rouge', whose cut flowers produce no detectable ethylene during senescence and have a vase-life of about three weeks. ABA content in the ovary was 530-710 pmol.g(-1) fresh weight (FW) from Os 2 (early opening stage) to Os 6 (end of opening stage) in 'LPB', and at 200-380 pmol.g(-1) FW in 'Excerea' at the same stages; but 930 pmol.g(-1) FW at Ss 1 (early senescence stage). The ABA content remained at 70-160 pmol.g(-1) FW in 'Miracle Rouge'. The changes in ABA content were in parallel with the transcript levels of DcNCED1 (carnation gene for 9-cis-epoxycarotenoid dioxygenase). DcPYR1 (ABA receptor gene) transcript was 0.004-0.007 relative expression level (r.e.l.) in 'LPB' ovary at Os 1-Os 3, and 0.028 r.e.l. at Ss 1 (beginning of senescence stage). In 'Excerea' ovary,DcPYR1 transcript was 0.025-0.037 r.e.l. during flower opening and higher at Ss 1. By contrast, DcPYR1 transcript remained at 0.002-0.006 r.e.l. in 'Miracle Rouge' ovary during flower opening and senescence. The transcripts of DcACS1, the key gene for ethylene biosynthesis, were detected at Ss 1 in 'LPB', and at Ss 2 in 'Excerea', but not in 'Miracle Rouge' throughout flower opening and senescence stages. These findings suggest that ABA plays a causal role in inducing the expression of the DcACS1 gene in the gynoecium, leading to ethylene biosynthesis, and that both the ABA content and DcPYR1 expression must be above putative threshold levels for ABA to exert its action.

    Web of Science

    researchmap

  • Cloning and Expression of cDNAs for Biosynthesis of Very-long-chain Fatty Acids, the Precursors for Cuticular Wax Formation, in Carnation (Dianthus caryophyllus L.) Petals 査読

    Masaya Kawarada, Yoshihiro Nomura, Taro Harada, Shigeto Morita, Takehiro Masumura, Hiroyasu Yamaguchi, Koji Tanase, Masafumi Yagi, Takashi Onozaki, Shigeru Satoh

    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE   82 ( 2 )   161 - 169   2013年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    The cuticle, composed of cutin and associated waxes, probably acts as a barrier against water evaporation from the epidermal surface of flower petals. Cuticle formation begins with the biosynthesis of very-long-chain fatty acids (VLCFAs), catalyzed by a fatty acid elongase complex in epidermal cells. In the present study, cDNAs were cloned and analyzed for three enzymes (DcKCR1,DcHCD1, and DcECR1). Combined with the previously obtained cDNA for DcKCS1, the present study completes the identification of cDNAs for the fatty acid elongase complex in 'Light Pink Barbara' carnation for the first time. DcKCS1 transcripts were accumulated at flower opening stage (Os) 2 through Os 6 (full opening stage) with slight changes, but decreased markedly at senescence stage (Ss) 2 and Ss 4. Also, transcripts for DcKCR1, DcHCD1, and DcECR1 were present in considerable amounts during flower opening stages from Os 2 to Os 6. These findings suggested that the expressions of four genes are active during flower opening stage, which is concomitant with the expansion growth in petals requiring rapid formation of a waxy cuticle. Cut flowers of 'Miracle Rouge' carnation have an extremely long vase-life of about three weeks. The cuticle layer on the epidermal cells of 'Miracle Rouge' petals was thinner than that of 'Light Pink Barbara' petals, and 'Miracle Rouge' flowers had a depressed expression of DcKCS1,DcKCR1, and DcHCD1 in petals. These findings suggested that the prolonged vase-life of 'Miracle Rouge' flowers is not related to cuticle formation.

    Web of Science

    researchmap

  • Cloning, Characterization and Expression of Carnation (Dianthus caryophyllus L.) Ubiquitin Genes and Their Use as a Normalization Standard for Gene Expression Analysis in Senescing Petals 査読

    Yoshihiro Nomura, Shigeto Morita, Taro Harada, Shigeru Satoh

    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE   81 ( 4 )   357 - 365   2012年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    We cloned seven cDNAs coding for ubiquitin (polyubiquitin) (DcUbq1-7) from car-tuition petals: DcUbq1, 2, 3 encoded polyubiquitins consisting of five ubiquitin monomers; DcUbq4, three monomers and DcUbq5, 6, 7, a monomer. The 3'-UTR nucleotide sequences were separated into three groups; two were specific to DcUbq1 and DcUbq2, respectively, and the third was almost always common to other genes (DcUbq3-7). The transcript levels of DcUbq1 and DcUbq2 in petals fluctuated during flower opening, whereas those of DcUbq3-7 remained unchanged except for an increase in the last stage. On the other hand, during flower senescence, the transcript levels of DcUbq1 and DcUbq2 increased at later stages, and those of DcUbq3-7 remained almost constant during the process. Based on these findings, we suggest an association of ubiquitin gene expression with petal growth during flower opening and petal wilting during the senescence of carnation flowers through the degradation of specific proteins by the ubiquitin-proteasome system. Furthermore, we showed the successful use of DcUby3-7 transcripts as a normalizing standard in the determination of transcript levels of a target gene in senescing carnation petals, where massive degradation of RNA, such as actin mRNA and rRNA, usually occurs, causing inaccuracy in the estimation of transcript levels of interest.

    Web of Science

    researchmap

  • Early Flowering and Increased Expression of a FLOWERING LOCUS T-like Gene in Chrysanthemum Transformed with a Mutated Ethylene Receptor Gene mDG-ERS1(etr1-4) 査読

    Shigeto Morita, Yuino Murakoshi, Ai Hojo, Keiko Chisaka, Taro Harada, Shigeru Satoh

    JOURNAL OF PLANT BIOLOGY   55 ( 5 )   398 - 405   2012年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER HEIDELBERG  

    Ethylene has an inhibitory effect on flowering in a short-day (SD) plant chrysanthemum (Chrysanthemum morifolium Ramat.). In this study, we used a hexaploid chrysanthemum 'Sei-Marine' and found that its transgenic lines transformed with a mutated ethylene receptor gene mDG-ERS1(etr1-4), which conferred reduced ethylene sensitivity (J. Plant Biol. 51: 424-427, 2008), opened flowers earlier than the non-transformed control. We examined whether the accelerated flower induction in the transformant occurred through the enhanced expression of chrysanthemum genes homologous to FLOWERING LOCUS T (FT), a floral inducer gene in Arabidopsis. We cloned three cDNAs for FT homologs (CmFTL1, CmFTL2, and CmFTL3) from 'Sei-Marine'. CmFTL2 putatively encodes a non-functional gene product due to a frame shift caused by a 2 bp-deletion in the coding region. RT-PCR analysis revealed differential expression patterns of CmFTL genes in the transgenic and control lines, suggesting that these genes might be under the control of ethylene. CmFTL1/2 mRNA level was lower in a SD condition than a long-day (LD) condition. CmFTL3 mRNA accumulated abundantly under SD condition as compared with LD condition in the transgenic line. These results suggest the association of increased expression of CmFTL3 gene with the accelerated flowering in the transgenic line with reduced ethylene sensitivity.

    DOI: 10.1007/s12374-012-0109-8

    Web of Science

    researchmap

  • Possible Origin of Two Variants of a Carnation 1-Aminocyclopropane-1-carboxylate Synthase Gene, DcACS1a and DcACS1b, as Suggested by Intron Structure in Homologous Genes in Dianthus Species 査読

    Shigeru Satoh, Na Meng, Taro Harada, Yoshihiro Nomura, Masaya Kawarada, Shigeto Morita

    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE   80 ( 4 )   443 - 451   2011年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    The intron structures of two variants of 1-aminocyclopropane-1-carboxylate synthase (ACS) genes (DcACS1a and DcACS1b) in carnation (Dianthus caryophyllus) and genes homologous to them (ACS1 homologous genes) in other 110 Dianthus species (16 strains in total) were studied by comparing the sizes of the PCR amplificates and nucleotide sequence of the introns. All 16 sequenced homologous ACS1 genes, including DcACS1 genes themselves, had five exons and four introns. The exons had similar nucleotide sequences and consequently similar deduced amino-acid sequences.. The sizes of three introns (intron-1, -2, -3) were variable among the homologous genes, whereas that of the fourth intron (intron-4) was almost identical. The variation in introns was probably caused by the insertion (and deletion) of nucleotide fragments of given lengths. Interestingly, the 3'-UTR of DcACS1a was different from that of DcACS1b, and the latter was similar to other 14 ACS1 homologous genes. Moreover, the length of Thr repeat in the C-terminal region was long in DcACS1a protein but short in DcACS1b protein, and the latter resembled ACS1 homologous proteins in other Dianthus species. The present findings suggest that (1) the variation in intron structure between two variants of carnation DcACS1 is reminiscent of the variation that occurred universally in Dianthus species, (2) DcACS1a is probably a gene intrinsic to carnation, and (3) DcACS1b was acquired from another, as yet unknown, Dianthus species, in the course of breeding modern carnal ion cultivars.

    Web of Science

    researchmap

  • Cloning and Characterization of a cDNA Encoding Sucrose Synthase Associated with Flower Opening through Early Senescence in Carnation (Dianthus caryophyllus L.) 査読

    Shigeto Morita, Yuka Torii, Taro Harada, Masaya Kawarada, Reiko Onodera, Shigeru Satoh

    JOURNAL OF THE JAPANESE SOCIETY FOR HORTICULTURAL SCIENCE   80 ( 3 )   358 - 364   2011年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC HORTICULTURAL SCI  

    Flower opening in carnations (Dianthus caryophyllus L.) is the result of the enlargement of petal cells, which requires sugar metabolism. A cDNA encoding sucrose synthase (DcSUS1) was isolated from carnation petals as a candidate gene acting in the initial step of sugar metabolism in petal cells. DcSUS1 transcripts were detected abundantly in floral tissues of flowering carnation plants; the transcripts accumulated most in the petals and style followed by the ovary, whereas only small accumulation were found in stems, leaves, and calyces. Moreover, nearly constant accumulation of DcSUS1 transcripts was found in the petals during flower opening, fully open, and early senescence periods, whereas decreasing accumulation was detected in petals when senescence progressed. These findings suggested the involvement of DcSUS1 expression in petal cell growth during the opening of carnation flowers.

    Web of Science

    researchmap

  • Analysis of genomic DNA of DcACS1, a 1-aminocyclopropane-1-carboxylate synthase gene, expressed in senescing petals of carnation (Dianthus caryophyllus) and its orthologous genes in D. superbus var. longicalycinus 査読

    Taro Harada, Yuino Murakoshi, Yuka Torii, Koji Tanase, Takashi Onozaki, Shigeto Morita, Takehiro Masumura, Shigeru Satoh

    PLANT CELL REPORTS   30 ( 4 )   519 - 527   2011年4月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER  

    Carnation (Dianthus caryophyllus) flowers exhibit climacteric ethylene production followed by petal wilting, a senescence symptom. DcACS1, which encodes 1-aminocyclopropane-1-carboxylate synthase (ACS), is a gene involved in this phenomenon. We determined the genomic DNA structure of DcACS1 by genomic PCR. In the genome of &apos;Light Pink Barbara&apos;, we found two distinct nucleotide sequences: one corresponding to the gene previously shown as DcACS1, designated here as DcACS1a, and the other novel one designated as DcACS1b. It was revealed that both DcACS1a and DcACS1b have five exons and four introns. These two genes had almost identical nucleotide sequences in exons, but not in some introns and 3&apos;-UTR. Analysis of transcript accumulation revealed that DcACS1b is expressed in senescing petals as well as DcACS1a. Genomic PCR analysis of 32 carnation cultivars showed that most cultivars have only DcACS1a and some have both DcACS1a and DcACS1b. Moreover, we found two DcACS1 orthologous genes with different nucleotide sequences from D. superbus var. longicalycinus, and designated them as DsuACS1a and DsuACS1b. Petals of D. superbus var. longicalycinus produced ethylene in response to exogenous ethylene, accompanying accumulation of DsuACS1 transcripts. These data suggest that climacteric ethylene production in flowers was genetically established before the cultivation of carnation.

    DOI: 10.1007/s00299-010-0962-1

    Web of Science

    researchmap

  • Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening 査読

    Taro Harada, Yuka Torii, Shigeto Morita, Reiko Onodera, Yoshinao Hara, Ryusuke Yokoyama, Kazuhiko Nishitani, Shigeru Satoh

    JOURNAL OF EXPERIMENTAL BOTANY   62 ( 2 )   815 - 823   2011年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    Growth of petal cells is a basis for expansion and morphogenesis (outward bending) of petals during opening of carnation flowers (Dianthus caryophyllus L.). Petal growth progressed through elongation in the early stage, expansion with outward bending in the middle stage, and expansion of the whole area in the late stage of flower opening. In the present study, four cDNAs encoding xyloglucan endotransglucosylase/hydrolase (XTH) (DcXTH1-DcXTH4) and three cDNAs encoding expansin (DcEXPA1-DcEXPA3) were cloned from petals of opening carnation flowers and characterized. Real-time reverse transcription-PCR analyses showed that transcript levels of XTH and expansin genes accumulated differently in floral and vegetative tissues of carnation plants with opening flowers, indicating regulated expression of these genes. DcXTH2 and DcXTH3 transcripts were detected in large quantities in petals as compared with other tissues. DcEXPA1 and DcEXPA2 transcripts were markedly accumulated in petals of opening flowers. The action of XTH in growing petal tissues was confirmed by in situ staining of xyloglucan endotransglucosylase (XET) activity using a rhodamine-labelled xyloglucan nonasaccharide as a substrate. Based on the present findings, it is suggested that two XTH genes (DcXTH2 and DcXTH3) and two expansin genes (DcEXPA1 and DcEXPA2) are associated with petal growth and development during carnation flower opening.

    DOI: 10.1093/jxb/erq319

    Web of Science

    researchmap

  • Biological implications of the occurrence of 32 members of the XTH (xyloglucan endotransglucosylase/hydrolase) family of proteins in the bryophyte Physcomitrella patens 査読

    Ryusuke Yokoyama, Yohei Uwagaki, Hiroki Sasaki, Taro Harada, Yuji Hiwatashi, Mitsuyasu Hasebe, Kazuhiko Nishitani

    PLANT JOURNAL   64 ( 4 )   645 - 656   2010年11月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-BLACKWELL  

    P&gt;This comprehensive overview of the xyloglucan endotransglucosylase/hydrolase (XTH) family of genes and proteins in bryophytes, based on research using genomic resources that are newly available for the moss Physcomitrella patens, provides new insights into plant evolution. In angiosperms, the XTH genes are found in large multi-gene families, probably reflecting the diverse roles of individual XTHs in various cell types. As there are fewer cell types in P. patens than in angiosperms such as Arabidopsis and rice, it is tempting to deduce that there are fewer XTH family genes in bryophytes. However, the present study unexpectedly identified as many as 32 genes that potentially encode XTH family proteins in the genome of P. patens, constituting a fairly large multi-gene family that is comparable in size with those of Arabidopsis and rice. In situ localization of xyloglucan endotransglucosylase activity in this moss indicates that some P. patens XTH proteins exhibit biochemical functions similar to those found in angiosperms, and that their expression profiles are tissue-dependent. However, comparison of structural features of families of XTH genes between P. patens and angiosperms demonstrated the existence of several bryophyte-specific XTH genes with distinct structural and functional features that are not found in angiosperms. These bryophyte-specific XTH genes might have evolved to meet morphological and functional needs specific to the bryophyte. These findings raise interesting questions about the biological implications of the XTH family of proteins in non-seed plants.

    DOI: 10.1111/j.1365-313X.2010.04351.x

    Web of Science

    researchmap

  • Differential expression of genes identified by suppression subtractive hybridization in petals of opening carnation flowers 査読

    Taro Harada, Yuka Torii, Shigeto Morita, Takehiro Masumura, Shigeru Satoh

    JOURNAL OF EXPERIMENTAL BOTANY   61 ( 9 )   2345 - 2354   2010年5月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    Flower opening is an event accompanied by morphological changes in petals which include elongation, expansion, and outward-curving. Petal cell growth is a fundamental process that underlies such phenomena, but its molecular mechanism remains largely unknown. Suppression subtractive hybridization was performed between petals during the early elongation period (stage 1) and during the opening period (stage 5) in carnation flowers and a pair of subtraction libraries abundant in differentially expressed genes was constructed at each stage. 393 cDNA clones picked up by differential screening out of 1728 clones were sequenced and 235 different cDNA fragments were identified, among which 211 did not match any known nucleotide sequence of carnation genes in the databases. BLASTX search of nucleotide sequences revealed that putative functions of the translational products can be classified into several categories including transcription, signalling, cell wall modification, lipid metabolism, and transport. Open reading frames of 15 selected genes were successfully determined by rapid amplification of cDNA ends (RACE). Time-course analysis of these genes by real-time RT-PCR showed that transcript levels of several genes correlatively fluctuate in petals of opening carnation flowers, suggesting an association with the morphological changes by elongation or curving. Based on the results, it is suggested that the growth of carnation petals is controlled by co-ordinated gene expression during the progress of flower opening. In addition, the possible roles of some key genes in the initiation of cell growth, the construction of the cell wall and cuticle, and transport across membranes were discussed.

    DOI: 10.1093/jxb/erq064

    Web of Science

    researchmap

  • Anoxia-enhanced expression of genes isolated by suppression subtractive hybridization from pondweed (Potamogeton distinctus A. Benn.) turions 査読

    Taro Harada, Shigeru Satoh, Toshihito Yoshioka, Kimiharu Ishizawa

    PLANTA   226 ( 4 )   1041 - 1052   2007年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER  

    Pondweed (Potamogeton distinctus A. Benn.), a monocot aquatic plant species, has turions, which are overwintering buds forming underground as an asexual reproductive organ. Turions not only survive for more than one month but also elongate under strict anoxia, maintaining high-energy charge by activation of fermentation. We cloned 82 cDNA fragments of genes, that are up-regulated during anoxic growth of pondweed turions, by suppression subtractive hybridization. The transcript levels of 44 genes were confirmed to be higher under anoxia than those in air by both Northern blot analysis and a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) method. A homology search for their nucleotide sequences revealed that some of them are highly homologous to known sequences of genes from other plants. They included alcohol dehydrogenase, pyruvate decarboxylase (PDC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), vacuolar H+-translocating pyrophosphatase and a plasma membrane intrinsic protein. Time courses of transcript accumulation of some genes under anoxia were different from those in air. The activity of PDC increased under anoxic conditions but the activities of GAPDH and pyrophosphatase remained constant after anoxic treatment. Anoxically up-regulated genes are possibly involved in physiological events to control energy production, pH regulation and cell growth under anoxia. These results suggest that transcriptional regulation of these genes serves as an essential part of survival and growth of pondweed turions under anoxia.

    DOI: 10.1007/s00425-007-0537-8

    Web of Science

    researchmap

  • ヒルムシロ(Potamogeton distinctus A. Benn.)の嫌気耐性機構の研究

    原田太郎

    東北大学   2007年3月

     詳細を見る

    記述言語:英語   掲載種別:学位論文(博士)  

    researchmap

  • Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia 査読

    T Harada, S Satoh, T Yoshioka, K Ishizawa

    ANNALS OF BOTANY   96 ( 4 )   683 - 692   2005年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    Background and Aims Overwintering buds (turions) of the monocot aquatic pondweed species (Potamogeton distinctus) are highly tolerant to anoxic stress. Sucrose metabolism accompanied by enhanced activity of sucrose synthase (SuSy) operates actively during anaerobic elongation of pondweed turions. The aim of this study is to isolate SuSy genes from the turions and to investigate their transcriptional changes in response to anoxia and other stimuli.
    Methods SuSy genes were isolated from pondweed turions by PCR methods and transcript levels of SuSy genes were examined in response to anoxia, sugars and plant hormones. In addition, the effects of anoxia on SuSy activity were examined both in the soluble fraction and in the microsomal fraction.
    Key Results cDNAs of two SuSy genes (PdSUS1 and PdSUS2) were cloned from pondweed turions. The levels of PdSUS1 transcripts increased under anoxia but did not with sugar treatments. Anoxia-stimulated elongation of turions was further enhanced by 2,4-dichlorophenoxyacetic acid (2,4-D) and suppressed by treatments with sorbitol, 2-deoxyglucose (2-dGlc) and abscisic acid (ABA). The levels of PdSUS1 transcripts were increased by 2,4-D and decreased by sorbitol under anoxia. The levels of PdSUS2 transcripts were not significantly affected by anoxia and any other treatments. SuSy activity of turions under anoxia was enhanced in the soluble fraction, but not in the microsomal fraction.
    Conclusions Up-regulation of PdSUS1 transcription under anoxia may not be attributed to sugar starvation under anoxia. A positive correlation between stem elongation and the level of PdSUS1 transcripts was observed in turions treated with anoxic conditions, 2,4-D and sorbitol. The increase in SuSy activity in the cytosol may contribute to sugar metabolism and sustain stem elongation under anoxia.

    DOI: 10.1093/aob/mci220

    Web of Science

    researchmap

  • 水田雑草の越冬栄養生殖器官に見られる低酸素応答特性とその初期成長の制御 査読

    原田太郎, 大川原竜人, 吉岡俊人, 佐藤茂, 石澤公明

    東北の雑草   5 ( 5 )   29 - 35   2005年8月

     詳細を見る

    担当区分:筆頭著者   記述言語:日本語   出版者・発行元:東北雑草研究会  

    CiNii Article

    CiNii Books

    researchmap

  • Starch degradation and sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn.) turions 査読

    Taro Harada, Kimiharu Ishizawa

    Plant and Soil   253 ( 1 )   125 - 135   2003年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1023/A:1024585015697

    CiNii Article

    researchmap

  • 嫌気的環境に適応したヒルムシロ殖芽の成長と代謝 査読

    佐藤竜久, 原田太郎, 佐藤健一, 石澤公明

    東北の雑草   2 ( 2 )   24 - 33   2002年9月

     詳細を見る

    記述言語:日本語   出版者・発行元:東北雑草研究会  

    CiNii Article

    CiNii Books

    researchmap

  • Stimulation of glycolysis in anaerobic elongation of pondweed (Potamogeton distinctus) turions 査読

    T Sato, T Harada, K Ishizawa

    JOURNAL OF EXPERIMENTAL BOTANY   53 ( 376 )   1847 - 1856   2002年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    Stem segments prepared from pondweed (Potamo geton distinctus A. Benn.) turions (overwintering buds) elongate in anaerobic conditions, whereas there is almost no elongation in air. The anaerobic elongation was accompanied by a decrease in dry weights of stem segments, mainly due to consumption of storage starch in the amyloplasts of stem cells. On the other hand, total contents of amino acids increased in stem segments, in which contents of alanine, valine, leucine, and isoleucine increased, but contents of asparatic acid decreased. Moreover, contents of lactate in stem tissues increased at an early stage of anaerobic incubation. In tracer experiments with C-14-glucose, C-14 incorporation into stem tissues in anoxia was only half of that in normoxia. However, conversion of C-14 to ethanol occurred exclusively in anoxia. C-14-labelled metabolites were analysed by two-dimensional cellulose thin-layer chromatography. C-14 incorporation into sucrose and alanine was significantly increased in anoxia. The activity of alanine aminotransferase was enhanced by anoxia, suggesting that pyruvate is a precursor of alanine synthesis. The results suggest that pondweed turions produce energy necessary for anaerobic elongation by activating conversion of storage starch in the amyloplasts to ethanol, alanine and lactate.

    DOI: 10.1093/jxb/erf036

    Web of Science

    researchmap

▼全件表示

書籍等出版物

  • 教育科学を考える

    小川, 容子, 松多, 信尚, 清田, 哲男( 担当: 共著 ,  範囲: 岡大PBL実践の現在 PBLのマネジメント)

    岡山大学出版会  2023年3月  ( ISBN:9784904228777

     詳細を見る

    総ページ数:369p   記述言語:日本語

    CiNii Books

    researchmap

  • 植物細胞壁

    西谷和彦, 梅澤俊明( 担当: 分担執筆 ,  範囲: 7.1.8 XET活性の可視化)

    講談社サイエンティフィク  2013年3月 

     詳細を見る

MISC

  • 八重咲きトルコギキョウの花弁数を増加させる温度制御技術

    川勝恭子, 原田太郎, 牛尾亜由子, 道園美弦, 福田直子

    農研機構野菜花き研究部門成果情報(Web)   2018   2018年

     詳細を見る

  • 特集/宮城県の震災復興と施設園芸・植物工場 「白色LEDを用いた補光によりバラの収穫本数が増加」 招待

    原田太郎

    施設と園芸   161   25   2013年4月

     詳細を見る

    担当区分:筆頭著者   記述言語:日本語   掲載種別:記事・総説・解説・論説等(商業誌、新聞、ウェブメディア)  

    researchmap

講演・口頭発表等

  • ゲノム情報を利用したカーネーションの収穫後生理研究の新たな展開 ―花の低酸素応答を中心に― 招待

    原田太郎

    香川園芸研究協議会令和6年度第2回例会  2024年11月28日 

     詳細を見る

    開催年月日: 2024年11月28日

    記述言語:日本語   会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    researchmap

  • Exploration of honeybees’ flower visits in urban beekeeping by DNA metabarcoding

    Ayaha Takagi, Taro Harada

    Core-to-Core Programme Final Joint Seminar “Innovating Teacher Education for Sustainable Development: Collaborative Approach to the SDGs”  2024年11月6日 

     詳細を見る

    開催年月日: 2024年11月6日 - 2024年11月8日

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • カーネーションの花弁形成に関与するeuAP2遺伝子の発現および機能の解析

    田中伶意, 辻村歩希, 川浦祥太, 原田太郎

    園芸学会令和6年度秋季大会  2024年11月4日 

     詳細を見る

    開催年月日: 2024年11月3日 - 2024年11月5日

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

  • Tracing flower visits of honeybees in an urban beekeeping hive: A collaborative effort involving citizen science, inquiry-based learning, and biological research

    Ayaha Takagi, Kazuma Yoshimura, Shota Okamoto, Hiromasa Inoue, Taro Harada

    The 29th Biennial Conference of the Asian Association for Biology Education  2024年10月14日 

     詳細を見る

    開催年月日: 2024年10月12日 - 2024年10月14日

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • Reconsideration of the diverse interplay between plants and human beings for interdisciplinary education

    Taro Harada

    Core-to-Core Joint Seminar, Reframing Sustainability Learning - from net-zero to Net-Positive, Exploring the Roles of Education for Sustainable Development in Higher Education  2024年3月13日 

     詳細を見る

    開催年月日: 2024年3月13日 - 2024年3月15日

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • 自作通気培養装置を用いた植物の低酸素応答の解析

    原田太郎, 木田茉櫻, 中山実咲, 糸川はる奈, 手嶋美樹

    日本生物教育学会第108回全国大会  2024年1月7日 

     詳細を見る

    開催年月日: 2024年1月6日 - 2024年1月8日

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • カーネーションのAP2遺伝子ファミリーの同定および 八重花形成に関与するPET遺伝子の発現解析

    川浦祥太, 辻村歩希, 原田太郎

    第4回アジア園芸学会議(AHC2023)  2023年8月30日 

     詳細を見る

    開催年月日: 2023年8月28日 - 2023年8月31日

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • Introduction to botany experiments for science education

    Taro Harada, Khalifatulloh Fiel’ardh

    Core-to-Core Programme Second Joint Seminar, Bridging Ideas Between Asia and Europe for Promoting Education for Sustainable Development in Higher Education  2023年3月14日 

     詳細を見る

    開催年月日: 2023年3月13日 - 2023年3月17日

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(指名)  

    researchmap

  • 柵原休鉱山由来中和澱物の施用がペチュニアおよびトルコギキョウの生育に及ぼす影響

    原田太郎, 武田愛美, 浅越雅之, 後藤丹十郎, 稲谷博征, 赤堀文雄, 公文翔一, 石川彰彦

    園芸学会中四国支部令和4年度大会  2022年10月 

     詳細を見る

    開催年月日: 2022年10月1日

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • MAP がカーネーション切り花の開花および老化に及ぼす影響

    前田知穂, 原田菜央, 中山実咲, 村井亜衣, 原田太郎

    園芸学会中四国支部令和4年度大会  2022年10月 

     詳細を見る

    開催年月日: 2022年10月1日

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • Nurseries of plant biodiversity and the seeds for sustainability in a seminatural environment in Okayama

    Taro Harada

    Core-to-Core Programme Joint Seminar 2022 Bridging Ideas between Asia and Europe for Promoting Education for Sustainable Development in Higher Education  2022年9月 

     詳細を見る

    開催年月日: 2022年9月14日 - 2022年9月17日

    記述言語:英語   会議種別:口頭発表(一般)  

    researchmap

  • Genome-wide analysis of genes related to postharvest physiology in carnation

    Taro Harada, Ryota Ichikawa, Sayaka Ueyama, Itsuku Horiguchi

    The 3rd Asian Horticultural Congress  2020年12月 

     詳細を見る

    開催年月日: 2020年12月15日 - 2020年12月17日

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • Potential of floriculture as a bridge between plant science and education for sustainable development

    Ryota Ichikawa, Ai Murai, Korehito Arashiro, Minami Iwamuro, Misaki Nakayama, Kaori Tamura, Yuri Moritoki, Taro Harada

    2019 Global Conference on Teacher Education for Education for Sustainable Development  2019年11月 

     詳細を見る

    開催年月日: 2019年11月22日 - 2019年11月25日

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • Enhancement in anoxia tolerance of tobacco BY-2 cells overexpressed a sucrose synthase gene (PdSUS1) of pondweed (Tolerant to anoxia)

    Taro Harada, Ryusuke Yokoyama, Kazuhiko Nishitani, Kimiharu Ishizawa

    PLANT AND CELL PHYSIOLOGY  2007年  OXFORD UNIV PRESS

     詳細を見る

    開催年月日: 2007年

    記述言語:英語  

    researchmap

  • Induction of sucrose synthase and its roles during anaerobic growth in pondweed turions

    T Harada, S Satoh, T Yoshioka, K Ishizawa

    PLANT AND CELL PHYSIOLOGY  2004年  OXFORD UNIV PRESS

     詳細を見る

    開催年月日: 2004年

    記述言語:英語  

    researchmap

  • A role of sucrose metabolism during anaerobic growth of pondweed (Potamogeton distinctus A. Benn)

    T Harada, K Ishizawa

    PLANT AND CELL PHYSIOLOGY  2003年  OXFORD UNIV PRESS

     詳細を見る

    開催年月日: 2003年

    記述言語:英語  

    researchmap

  • カーネーションのエチレン依存性花弁老化に関与するエチレン応答因子遺伝子の同定

    市川涼太, 原田太郎

    園芸学会令和元年度秋季大会  2019年9月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • カーネーションのグループVIIエチレン応答因子遺伝子のガス環境応答性

    原田太郎, 植山沙也香, 市川涼太

    園芸学会平成31年度春季大会  2019年3月 

     詳細を見る

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

  • カーネーションのスクロース分解酵素遺伝子ファミリーの網羅的解析

    原田太郎, 堀口慈, 植山沙也香, 都築知恵

    園芸学会平成30年度春季大会  2018年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • トルコギキョウSSRマーカー開発と早晩性に関するQTL探索

    川勝恭子, 八木雅史, 原田太郎, 伊藤剛, 熊谷真彦, 伊藤龍太郎, 沼寿隆, 片寄裕一, 金森裕之, 栗田加奈子, 福田直子

    園芸学会平成29年度秋季大会  2017年9月 

     詳細を見る

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

  • Development of SSR markers and QTL analysis for flowering time in Eustoma

    Kawakatsu Kyoko, Yagi Masafumi, Harada Taro, Itoh Tsuyoshi, Kumagai Masahiko, Itoh Ryutaro, Numa Hisataka, Katayose Yuichi, Kanamori Hiroyuki, Kurita Kanako, Fukuta Naoko

    4th International Symposium on Molecular Markers in Horticulture  2017年3月 

     詳細を見る

    記述言語:英語   会議種別:ポスター発表  

    researchmap

  • 柵原休鉱山由来中和シュベルトマナイト施用による農作物への放射性セシウム移行抑制

    原田太郎, 石川彰彦, 赤堀文雄, 櫻井康祐

    日本生物環境工学会2016年大会  2016年9月 

     詳細を見る

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

  • トルコギキョウ花弁数に対する昼夜温の影響

    川勝恭子, 原田太郎, 牛尾亜由子, 福田直子

    園芸学会平成28年度春季大会  2016年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 温度および灌水条件が栄養成長期におけるトルコギキョウの糖含量およびインベルターゼ活性に及ぼす影響

    原田太郎, 牛尾亜由子, 福田直子

    園芸学会平成26年度春季大会  2014年3月 

     詳細を見る

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

  • カーネーションのゲノム解読

    八木雅史, 小杉俊一, 平川英樹, 大宮あけみ, 棚瀬幸司, 原田太郎, 岸本久太郎, 中山真義, 市村一雄, 小野崎隆, 山口博康, 佐々木伸大, 宮原平, 西崎雄三

    園芸学会平成26年度春季大会  2014年3月 

     詳細を見る

    記述言語:日本語   会議種別:口頭発表(一般)  

    researchmap

  • 高効率白色LEDによる補光がバラ・トルコギキョウの生育・切り花品質に及ぼす影響

    原田太郎, 駒形智幸

    園芸学会平成25年度春季大会  2013年3月 

     詳細を見る

    記述言語:日本語   会議種別:ポスター発表  

    researchmap

▼全件表示

産業財産権

  • 重金属の固定化方法および植物への重金属移行抑制方法

    赤堀文雄, 石川彰彦, 原田太郎

     詳細を見る

    出願番号:特願2016-182635  出願日:2016年9月20日

    特許番号/登録番号:特許第6716407号  登録日:2020年6月12日 

    権利者:DOWAホールディングス株式会社,国立大学法人岡山大学

    researchmap

受賞

  • 優秀発表賞

    2023年7月   園芸学会中四国支部   MAPがカーネーション切り花の開花および老化に及ぼす影響

    前田知穂, 原田菜央, 中山実咲, 村井亜衣, 原田太郎

     詳細を見る

  • Travel Award for Early-Career Researcher

    2004年9月   International Society for Plant Anaerobiosis  

    原田太郎

     詳細を見る

共同研究・競争的資金等の研究

  • AP2遺伝子の機能分化から探るカーネーションの花弁形成機構

    研究課題/領域番号:22K05631  2022年04月 - 2025年03月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    原田 太郎

      詳細を見る

    配分額:4030000円 ( 直接経費:3100000円 、 間接経費:930000円 )

    researchmap

  • SDGs達成に向けたESD(持続可能な開発のための教育)の教師教育の先端拠点形成

    2021年04月 - 2025年03月

    日本学術振興会  研究拠点形成事業ーA. 先端拠点形成型ー 

    藤井浩樹

      詳細を見る

    担当区分:連携研究者 

    researchmap

  • SDGs達成に向けたESDの教師教育の機関包括型アプローチの指標開発

    2021年04月 - 2023年03月

    日本学術振興会  二国間交流事業共同研究・セミナー 

      詳細を見る

  • エチレン応答因子で拓くカーネーションのポストゲノム収穫後生理研究

    研究課題/領域番号:19K06034  2019年04月 - 2022年03月

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    原田 太郎

      詳細を見る

    担当区分:研究代表者 

    配分額:4290000円 ( 直接経費:3300000円 、 間接経費:990000円 )

    カーネーションのエチレン依存性花弁老化および低酸素による咲き進みまたは老化の抑制(品質保持)へのエチレン応答因子(ERF)の関与を明らかにするため,カーネーションのERF遺伝子ファミリーの解析を進めた.
    第一に,32個のERF遺伝子のcDNA部分配列のクローニングおよび発現解析を行った.これまでにクローニングを終了していた8遺伝子に加え,新たに20遺伝子のクローニングを終了した.また,過去に得られたデータの再現性確認のため,新たに老化過程およびエチレン処理後の花弁サンプルを用意し,それらを用いてリアルタイムPCRによる発現解析を進めた.
    第二に,エチレン曝露下で発現上昇を示すDcERF4のタンパク質発現解析の準備として,抗体作製およびウェスタンブロットの予備実験を行った.抗体作製サービスを利用し,DcERF4を特異的に認識できる可能性の高い抗ウサギ抗体を得た.それを用いてウェスタンブロット解析を試みたところ,予測されるサイズ(約32 kDa)付近にバンドが得られ,そのシグナルが満開花弁サンプルに比べ,老化花弁サンプルにおいて強いという結果が得られた.
    第三に,DcERF4のプロモーター機能解析の準備として,DcERF4のプロモーター領域およびDcEIL3のクローニングを進めた.いずれも目的のサイズの断片が得られたため,現在クローニングを進めている.
    第四に,切り花の品質保持に有効なMA包装条件の検討と,低酸素応答性ERF遺伝子DcERF19の発現解析を行った.脱酸素剤を用いた低酸素包装では切り花の品質保持効果が得られないことが判明したため,MA包装すなわち切り花の呼吸のみによりバッグ内の酸素濃度を下げる包装を試したところ,封入本数の調節により品質保持効果が得られることがわかった.また,MA包装下の花弁でDcERF19の発現が上昇することを確認した.

    researchmap

  • 柵原休鉱山の中和澱物が植物に与える影響調査と産業資材への展開可能性研究

    2017年04月 - 2025年03月

    DOWAホールディングス株式会社  共同研究

      詳細を見る

  • 柵原休鉱山の中和澱物が植物に与える影響調査とそのメカニズムの解明

    2016年04月 - 2017年03月

    DOWAホールディングス株式会社  共同研究

      詳細を見る

  • 花きの生育・開花におけるスクロース代謝関連遺伝子の環境応答性と機能の解析

    2014年04月 - 2017年03月

    日本学術振興会  科学研究費助成事業 若手研究(B) 

    原田太郎

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • レーザーキャプチャーマイクロダイセクションを用いた花弁内組織別遺伝子発現解析

    2010年04月 - 2012年03月

    日本学術振興会  科学研究費助成事業 若手研究(B) 

    原田太郎

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

▼全件表示

 

担当授業科目

  • 中等理科内容構成Ⅱ (2024年度) 第2学期  - 水3~4

  • 中等理科内容構成Ⅳ (2024年度) 3・4学期  - その他

  • 中等理科内容構成基礎 (2024年度) 1・2学期  - 水3~4

  • 中等理科内容構成論Ⅰ(生物学Ⅱ) (2024年度) 第4学期  - 火1~2

  • 中等理科内容論(応用生物学B) (2024年度) その他  - その他

  • 中等理科内容論(応用生物学Ⅱ) (2024年度) その他  - その他

  • 中等理科内容論(植物学Ⅰ) (2024年度) 第2学期  - 金5~6

  • 中等理科内容論(植物学Ⅱ) (2024年度) 第2学期  - 金1~2

  • 中等理科内容論(植物学実験) (2024年度) 1~4学期  - その他

  • 中等理科内容論(植物学) (2024年度) 第2学期  - 金5~6

  • 中等理科内容論(生物学実験B) (2024年度) 第1学期  - 火5~8

  • 中等理科内容論(生物学実験Ⅱ) (2024年度) 第1学期  - 火5~8

  • 中等理科内容論(生物学概論A) (2024年度) 第3学期  - 金7~8

  • 中等理科内容論(生物学概論B) (2024年度) 第4学期  - 火1~2

  • 中等理科内容論(生物学概論) (2024年度) 第3学期  - 金7~8

  • 初等理科内容基礎 (2024年度) 第3学期  - 水1~2

  • 初等理科内容基礎 (2024年度) 第3学期  - 火3~4

  • 初等理科内容構成 (2024年度) 3・4学期  - その他

  • 初等理科内容構成論Ⅰ (2024年度) 第1学期  - 木3~4

  • 初等理科内容構成論Ⅰ (2024年度) 第2学期  - 木3~4

  • 初等理科内容構成論Ⅱ (2024年度) 第4学期  - 水3~4

  • 初等理科内容構成論Ⅱ (2024年度) 第4学期  - 木1~2

  • 初等理科内容論 (2024年度) 第3学期  - 火3~4

  • 初等理科内容論 (2024年度) 第3学期  - 水1~2

  • 創造性・多様性チャレンジⅠ (2024年度) 第3学期  - 金1~2

  • 創造性・多様性チャレンジⅡ (2024年度) 第3学期  - 金7~8

  • 創造性・多様性チャレンジⅢ (2024年度) 第4学期  - 金7~8

  • 創造性・多様性チャレンジⅣ (2024年度) 第1学期  - 金7~8

  • 教育科学プロジェクト研究概論 (2024年度) 第1学期  - 月1,月2

  • 教育科学特論演習(植物学A) (2024年度) 1~4学期  - その他

  • 教育科学特論演習(植物学B) (2024年度) 1~4学期  - その他

  • 教育科学特論(植物学ⅡA) (2024年度) 第3学期  - 火5,火6

  • 教育科学特論(植物学ⅡB) (2024年度) 第4学期  - 火5,火6

  • 教育科学課題研究 (2024年度) 1~4学期  - その他

  • 物質・生命・地球の環境科学 (2024年度) 第4学期  - その他

  • 理科基礎(生物学) (2024年度) 第1学期  - 月7~8

  • PBLⅠ (2024年度) 第2学期  - 月1,月2

  • PBLⅡ (2024年度) 第3学期  - 月1,月2

  • PBLⅢ (2024年度) 第1学期  - その他

  • PBLⅢ (2024年度) 第4学期  - 月1,月2

  • PBL特論Ⅰ (2024年度) 第1学期  - 金5,金6

  • PBL特論Ⅱ (2024年度) 第2学期  - その他

  • PBL特論Ⅲ (2024年度) 第3学期  - その他

  • PBL特論Ⅳ (2024年度) 第4学期  - その他

  • PBL特論Ⅴ (2024年度) 第1学期  - その他

  • PBL特論Ⅵ (2024年度) 第2学期  - その他

  • PBL特論Ⅶ (2024年度) 第3学期  - その他

  • PBL特論Ⅷ (2024年度) 第4学期  - その他

  • 中等理科内容構成Ⅱ (2023年度) 第2学期  - 木3~4

  • 中等理科内容構成Ⅳ (2023年度) 3・4学期  - その他

  • 中等理科内容構成基礎 (2023年度) 1・2学期  - 水3~4

  • 中等理科内容構成論Ⅰ(生物学Ⅱ) (2023年度) 第4学期  - 火1~2

  • 中等理科内容論(応用生物学B) (2023年度) 2~4学期  - その他

  • 中等理科内容論(植物学Ⅰ) (2023年度) 第1学期  - 金1~2

  • 中等理科内容論(植物学Ⅱ) (2023年度) 第2学期  - 金1~2

  • 中等理科内容論(植物学実験) (2023年度) 1~4学期  - その他

  • 中等理科内容論(生物学実験B) (2023年度) 第1学期  - 火5~6

  • 中等理科内容論(生物学実験Ⅱ) (2023年度) 第1学期  - 火5~8

  • 中等理科内容論(生物学概論B) (2023年度) 第4学期  - 金1~2

  • 中等理科内容論(生物学概論) (2023年度) 第3学期  - 金7~8

  • 初等理科内容基礎 (2023年度) 第3学期  - 水1~2

  • 初等理科内容基礎 (2023年度) 第3学期  - 火3~4

  • 初等理科内容構成 (2023年度) 3・4学期  - その他

  • 初等理科内容論 (2023年度) 第3学期  - 火3~4

  • 初等理科内容論 (2023年度) 第3学期  - 火3~4

  • 教職実践演習(小学校) (2023年度) 1~4学期  - 水7~8

  • 教育科学プロジェクト研究概論 (2023年度) 第1学期  - 火1,火2

  • 教育科学特論演習(植物学A) (2023年度) 1~4学期  - その他

  • 教育科学特論演習(植物学B) (2023年度) 1~4学期  - その他

  • 教育科学特論(植物学ⅠA) (2023年度) 第3学期  - 火5,火6

  • 教育科学特論(植物学ⅠB) (2023年度) 第4学期  - 火5,火6

  • 教育科学課題研究 (2023年度) 1~4学期  - その他

  • 物質・生命・地球の環境科学 (2023年度) 第4学期  - その他

  • 理科基礎(生物学) (2023年度) 第1学期  - 月7~8

  • PBLⅠ (2023年度) 第2学期  - 火1,火2

  • PBLⅡ (2023年度) 第3学期  - 火1,火2

  • PBLⅢ (2023年度) 第1学期  - 火1,火2

  • PBLⅢ (2023年度) 第4学期  - 火1,火2

  • 中等理科内容構成Ⅱ (2022年度) 第2学期  - 火1~2

  • 中等理科内容構成Ⅳ (2022年度) 3・4学期  - その他

  • 中等理科内容論(応用生物学B) (2022年度) 1~4学期  - その他

  • 中等理科内容論(植物学Ⅰ) (2022年度) 第1学期  - 金1,金2

  • 中等理科内容論(植物学Ⅱ) (2022年度) 第2学期  - 金1,金2

  • 中等理科内容論(植物学実験) (2022年度) 1~4学期  - その他

  • 中等理科内容論(生物学実験B) (2022年度) 第1学期  - 火5,火6,火7,火8

  • 中等理科内容論(生物学概論B) (2022年度) 第4学期  - 金1,金2

  • 中等理科内容論(生物学)B (2022年度) 第2学期  - 木7,木8

  • 中等理科内容開発(生物学)B (2022年度) 3・4学期  - その他

  • 初等理科内容構成 (2022年度) 3・4学期  - その他

  • 初等理科内容研究A (2022年度) 第3学期  - 火3,火4

  • 初等理科内容論 (2022年度) 第3学期  - 火3,火4

  • 学問の方法 (2022年度) 第1学期  - 火1~2

  • 応用生物学B (2022年度) 特別  - その他

  • 教育科学特論演習(植物学A) (2022年度) 1~4学期  - その他

  • 教育科学特論演習(植物学B) (2022年度) 1~4学期  - その他

  • 教育科学特論(植物学ⅡA) (2022年度) 第3学期  - 火5,火6

  • 教育科学特論(植物学ⅡB) (2022年度) 第4学期  - 火5,火6

  • 教育科学課題研究 (2022年度) 1~4学期  - その他

  • 植物学(1) (2022年度) 第1学期  - 金1,金2

  • 植物学(2) (2022年度) 第2学期  - 金1,金2

  • 植物学実験 (2022年度) 特別  - その他

  • 物質・生命・地球の環境科学 (2022年度) 第4学期  - その他

  • 理科基礎(生物学) (2022年度) 第1学期  - 月7,月8

  • 理科基礎(生物学) (2022年度) 第1学期  - 月7,月8

  • 生物学実験(コンピュータ活用を含む)B (2022年度) 第1学期  - 火5,火6,火7,火8

  • 生物学概論B (2022年度) 第4学期  - 金1,金2

  • 中等理科内容構成Ⅱ (2021年度) 第2学期  - 火1~2

  • 中等理科内容構成Ⅳ (2021年度) 3・4学期  - その他

  • 中等理科内容論(応用生物学B) (2021年度) 1~4学期  - その他

  • 中等理科内容論(植物学Ⅰ) (2021年度) 第1学期  - 金1,金2

  • 中等理科内容論(植物学Ⅱ) (2021年度) 第2学期  - 金1,金2

  • 中等理科内容論(植物学実験) (2021年度) 1~4学期  - その他

  • 中等理科内容論(生物学実験B) (2021年度) 第1学期  - 火5,火6,火7,火8

  • 中等理科内容論(生物学概論B) (2021年度) 第4学期  - 金1,金2

  • 中等理科内容論(生物学)B (2021年度) 第2学期  - 木7,木8

  • 中等理科内容開発(生物学)B (2021年度) 3・4学期  - その他

  • 初等理科内容構成 (2021年度) 3・4学期  - その他

  • 初等理科内容研究A (2021年度) 第3学期  - 火3,火4

  • 初等理科内容論 (2021年度) 第3学期  - 火3,火4

  • 応用生物学B (2021年度) 特別  - その他

  • 教職実践演習(小学校) (2021年度) 1~4学期  - 水7,水8

  • 教育科学特論演習(植物学A) (2021年度) 1~4学期  - その他

  • 教育科学特論演習(植物学B) (2021年度) 1~4学期  - その他

  • 教育科学特論(植物学ⅠA) (2021年度) 第3学期  - 火5,火6

  • 教育科学特論(植物学ⅠB) (2021年度) 第4学期  - 火5,火6

  • 教育科学課題研究 (2021年度) 1~4学期  - その他

  • 植物学(1) (2021年度) 第1学期  - 金1,金2

  • 植物学(2) (2021年度) 第2学期  - 金1,金2

  • 植物学実験 (2021年度) 特別  - その他

  • 気象・気候と植物からみる自然環境系 (2021年度) 第2学期  - 火7~8

  • 理科基礎(生物学) (2021年度) 第1学期  - 月7,月8

  • 理科基礎(生物学) (2021年度) 第1学期  - 月7,月8

  • 生物学実験(コンピュータ活用を含む)B (2021年度) 第1学期  - 火5,火6,火7,火8

  • 生物学概論B (2021年度) 第4学期  - 金1,金2

  • フィールド・チャレンジA (2020年度) 特別  - その他

  • フィールド・チャレンジA (2020年度) 1~4学期  - その他

  • フィールド・チャレンジA (2020年度) 特別  - その他

  • 中等理科内容構成Ⅱ (2020年度) 第2学期  - 火1,火2

  • 中等理科内容論(応用生物学B) (2020年度) 特別  - その他

  • 中等理科内容論(植物学Ⅰ) (2020年度) 第1学期  - 金1,金2

  • 中等理科内容論(植物学Ⅱ) (2020年度) 第2学期  - 金1,金2

  • 中等理科内容論(生物学実験B) (2020年度) 第1学期  - 火5,火6,火7,火8

  • 中等理科内容論(生物学概論B) (2020年度) 第4学期  - 金1,金2

  • 中等理科内容論(生物学)B (2020年度) 第2学期  - 木7,木8

  • 中等理科内容開発(生物学)B (2020年度) 3・4学期  - その他

  • 初等理科内容研究A (2020年度) 第3学期  - 火3,火4

  • 初等理科内容論 (2020年度) 第3学期  - 火3,火4

  • 学問の方法 (2020年度) 第1学期  - 火1,火2

  • 応用生物学B (2020年度) 特別  - その他

  • 教職実践演習(小学校) (2020年度) 1~4学期  - 水7,水8

  • 教育科学特論演習(植物学A) (2020年度) 1~4学期  - その他

  • 教育科学特論演習(植物学B) (2020年度) 1~4学期  - その他

  • 教育科学特論(植物学ⅡA) (2020年度) 第3学期  - 火5~6

  • 教育科学特論(植物学ⅡB) (2020年度) 第4学期  - 火5~6

  • 教育科学課題研究 (2020年度) 1~4学期  - その他

  • 植物学(1) (2020年度) 第1学期  - 金1,金2

  • 植物学(2) (2020年度) 第2学期  - 金1,金2

  • 植物学実験 (2020年度) 特別  - その他

  • 気象・気候と植物からみる自然環境系 (2020年度) 第2学期  - 火7,火8

  • 理科基礎(生物学) (2020年度) 第1学期  - 月7,月8

  • 理科基礎(生物学) (2020年度) 第1学期  - 月7,月8

  • 生物学実験(コンピュータ活用を含む) (2020年度) 1・2学期  - 火5,火6,火7,火8

  • 生物学実験(コンピュータ活用を含む)B (2020年度) 第1学期  - 火5,火6,火7,火8

  • 生物学概論B (2020年度) 第4学期  - 金1,金2

▼全件表示