2024/03/11 更新

写真a

ヨシイ タイシ
吉井 大志
YOSHII Taishi
所属
環境生命自然科学学域 教授
職名
教授
外部リンク

学位

  • 博士(理学) ( 岡山大学 )

研究キーワード

  • 概日時計

  • 時間生物学

  • 体内時計

  • 概日リズム

  • ショウジョウバエ

研究分野

  • ライフサイエンス / 動物生理化学、生理学、行動学

学歴

  • 岡山大学   The Graduate School of Natural Science and Technology  

    2003年 - 2006年

      詳細を見る

  • 山口大学   Graduate School   of Science and Engineering

    2001年 - 2003年

      詳細を見る

  • 山口大学   Faculty of Science  

    - 2001年

      詳細を見る

経歴

  • 岡山大学   学術研究院環境生命自然科学学域   教授

    2022年4月 - 現在

      詳細を見る

    国名:日本国

    researchmap

  • 岡山大学   大学院自然科学研究科   准教授

    2014年2月 - 2022年3月

      詳細を見る

  • 岡山大学   大学院自然科学研究科   助教

    2011年 - 2014年

      詳細を見る

  • ヴュルツブルク大学   助教

    2010年 - 2011年

      詳細を見る

  • レーゲンスブルク大学   博士研究員

    2006年 - 2009年

      詳細を見る

所属学協会

委員歴

  • 日本動物学会   IT委員会  

    2016年 - 現在   

      詳細を見る

    団体区分:学協会

    researchmap

  • 日本動物学会   広報委員  

    2016年 - 現在   

      詳細を見る

    団体区分:学協会

    researchmap

  • SRBR   The Society for Research on Biological Rhythms Logo committee  

    2016年   

      詳細を見る

    団体区分:学協会

    researchmap

  • 日本動物学会中国四国支部   庶務幹事  

    2014年 - 2016年   

      詳細を見る

    団体区分:学協会

    researchmap

 

論文

  • The Trissin/TrissinR signaling pathway in the circadian network regulates evening activity in Drosophila melanogaster under constant dark conditions

    Manabu Sekiguchi, Shun Katoh, Tatsuya Yokosako, Aika Saito, Momoka Sakai, Ayumi Fukuda, Taichi Q. Itoh, Taishi Yoshii

    Biochemical and Biophysical Research Communications   704   149705 - 149705   2024年4月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.bbrc.2024.149705

    researchmap

  • Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. 査読 国際誌

    Giulia Manoli, Meet Zandawala, Taishi Yoshii, Charlotte Helfrich-Förster

    The Journal of comparative neurology   531 ( 15 )   1525 - 1549   2023年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.

    DOI: 10.1002/cne.25522

    PubMed

    researchmap

  • Synaptic and peptidergic connectomes of theDrosophilacircadian clock

    Nils Reinhard, Ayumi Fukuda, Giulia Manoli, Emilia Derksen, Aika Saito, Gabriel Möller, Manabu Sekiguchi, Dirk Rieger, Charlotte Helfrich-Förster, Taishi Yoshii, Meet Zandawala

    2023年9月

     詳細を見る

    出版者・発行元:Cold Spring Harbor Laboratory  

    The circadian clock of animals regulates various physiological and behavioral processes in anticipation of, and adaptation to, daily environmental fluctuations. Consequently, the circadian clock and its output pathways play a pivotal role in maintaining homeostasis and optimizing daily functioning. To obtain novel insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated the first comprehensive connectivity map of an animal circadian clock using theDrosophilaFlyWire brain connectome. We reveal hitherto unknown extensive contralateral synaptic connectivity between the clock neurons, which might contribute to the robustness of the clock by synchronizing clock neurons across the two hemispheres. In addition, we discover novel direct and indirect light input pathways to the clock neurons that could facilitate clock entrainment. Intriguingly, we observe sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate several behaviors and physiology. Therefore, we integrated single-cell transcriptomic analysis and receptor mapping to additionally decipher paracrine peptidergic signaling between clock neurons and with neurosecretory cells. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling greatly enriches the interconnectivity within the clock network. Neuropeptides also form the basis of output pathways which regulate rhythmic hormonal signaling. TheDrosophilacircadian clock and neurosecretory center connectomes provide the framework to understand more complex clock and hormonal networks, respectively, as well as the rhythmic processes regulated by them.

    DOI: 10.1101/2023.09.11.557222

    researchmap

  • A four-oscillator model of seasonally adapted morning and evening activities in Drosophila melanogaster. 招待 査読 国際誌

    Taishi Yoshii, Aika Saito, Tatsuya Yokosako

    Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology   2023年5月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The fruit fly Drosophila melanogaster exhibits two activity peaks, one in the morning and another in the evening. Because the two peaks change phase depending on the photoperiod they are exposed to, they are convenient for studying responses of the circadian clock to seasonal changes. To explain the phase determination of the two peaks, Drosophila researchers have employed the two-oscillator model, in which two oscillators control the two peaks. The two oscillators reside in different subsets of neurons in the brain, which express clock genes, the so-called clock neurons. However, the mechanism underlying the activity of the two peaks is complex and requires a new model for mechanistic exploration. Here, we hypothesize a four-oscillator model that controls the bimodal rhythms. The four oscillators that reside in different clock neurons regulate activity in the morning and evening and sleep during the midday and at night. In this way, bimodal rhythms are formed by interactions among the four oscillators (two activity and two sleep oscillators), which may judiciously explain the flexible waveform of activity rhythms under different photoperiod conditions. Although still hypothetical, this model would provide a new perspective on the seasonal adaptation of the two activity peaks.

    DOI: 10.1007/s00359-023-01639-5

    PubMed

    researchmap

  • Pigment-dispersing factor and CCHamide1 in the Drosophila circadian clock network. 査読 国際誌

    Riko Kuwano, Maki Katsura, Mai Iwata, Tatsuya Yokosako, Taishi Yoshii

    Chronobiology international   1 - 16   2023年2月

     詳細を見る

    担当区分:責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Animals possess a circadian central clock in the brain, where circadian behavioural rhythms are generated. In the fruit fly (Drosophila melanogaster), the central clock comprises a network of approximately 150 clock neurons, which is important for the maintenance of a coherent and robust rhythm. Several neuropeptides involved in the network have been identified, including Pigment-dispersing factor (PDF) and CCHamide1 (CCHa1) neuropeptides. PDF signals bidirectionally to CCHa1-positive clock neurons; thus, the clock neuron groups expressing PDF and CCHa1 interact reciprocally. However, the role of these interactions in molecular and behavioural rhythms remains elusive. In this study, we generated Pdf 01 and CCHa1SK8 double mutants and examined their locomotor activity-related rhythms. The single mutants of Pdf 01 or CCHa1SK8 displayed free-running rhythms under constant dark conditions, whereas approximately 98% of the double mutants were arrhythmic. In light-dark conditions, the evening activity of the double mutants was phase-advanced compared with that of the single mutants. In contrast, both the single and double mutants had diminished morning activity. These results suggest that the effects of the double mutation varied in behavioural parameters. The double and triple mutants of per 01, Pdf 01, and CCHa1SK8 further revealed that PDF signalling plays a role in the suppression of activity during the daytime under a clock-less background. Our results provide insights into the interactions between PDF and CCHa1 signalling and their roles in activity rhythms.

    DOI: 10.1080/07420528.2023.2166416

    PubMed

    researchmap

  • Timeless Plays an Important Role in Compound Eye-Dependent Photic Entrainment of the Circadian Rhythm in the Cricket Gryllus bimaculatus 査読

    Yoshiyuki Moriyama, Kazuki Takeuchi, Tsugumichi Shinohara, Koichi Miyagawa, Mirai Matsuka, Taishi Yoshii, Kenji Tomioka

    Zoological Science   39 ( 4 )   2022年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Zoological Society of Japan  

    DOI: 10.2108/zs220011

    researchmap

  • The lateral posterior clock neurons of Drosophila melanogaster express three neuropeptides and have multiple connections within the circadian clock network and beyond. 査読 国際共著 国際誌

    Nils Reinhard, Enrico Bertolini, Aika Saito, Manabu Sekiguchi, Taishi Yoshii, Dirk Rieger, Charlotte Helfrich-Förster

    The Journal of comparative neurology   530 ( 9 )   1507 - 1529   2022年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Drosophila's lateral posterior neurons (LPNs) belong to a small group of circadian clock neurons that is so far not characterized in detail. Thanks to a new highly specific split-Gal4 line, here we describe LPNs' morphology in fine detail, their synaptic connections, daily bimodal expression of neuropeptides, and propose a putative role of this cluster in controlling daily activity and sleep patterns. We found that the three LPNs are heterogeneous. Two of the neurons with similar morphology arborize in the superior medial and lateral protocerebrum and most likely promote sleep. One unique, possibly wakefulness-promoting, neuron with wider arborizations extends from the superior lateral protocerebrum toward the anterior optic tubercle. Both LPN types exhibit manifold connections with the other circadian clock neurons, especially with those that control the flies' morning and evening activity (M- and E-neurons, respectively). In addition, they form synaptic connections with neurons of the mushroom bodies, the fan-shaped body, and with many additional still unidentified neurons. We found that both LPN types rhythmically express three neuropeptides, Allostatin A, Allostatin C, and Diuretic Hormone 31 with maxima in the morning and the evening. The three LPN neuropeptides may, furthermore, signal to the insect hormonal center in the pars intercerebralis and contribute to rhythmic modulation of metabolism, feeding, and reproduction. We discuss our findings in the light of anatomical details gained by the recently published hemibrain of a single female fly on the electron microscopic level and of previous functional studies concerning the LPN.

    DOI: 10.1002/cne.25294

    PubMed

    researchmap

  • Dorsal clock networks drive temperature preference rhythms in Drosophila. 査読 国際共著 国際誌

    Shyh-Chi Chen, Xin Tang, Tadahiro Goda, Yujiro Umezaki, Abigail C Riley, Manabu Sekiguchi, Taishi Yoshii, Fumika N Hamada

    Cell reports   39 ( 2 )   110668 - 110668   2022年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Animals display a body temperature rhythm (BTR). Little is known about the mechanisms by which a rhythmic pattern of BTR is regulated and how body temperature is set at different times of the day. As small ectotherms, Drosophila exhibit a daily temperature preference rhythm (TPR), which generates BTR. Here, we demonstrate dorsal clock networks that play essential roles in TPR. Dorsal neurons 2 (DN2s) are the main clock for TPR. We find that DN2s and posterior DN1s (DN1ps) contact and the extent of contacts increases during the day and that the silencing of DN2s or DN1ps leads to a lower temperature preference. The data suggest that temporal control of the microcircuit from DN2s to DN1ps contributes to TPR regulation. We also identify anterior DN1s (DN1as) as another important clock for TPR. Thus, we show that the DN networks predominantly control TPR and determine both a rhythmic pattern and preferred temperatures.

    DOI: 10.1016/j.celrep.2022.110668

    PubMed

    researchmap

  • Artificial selections for death‐feigning behavior in beetles show correlated responses in amplitude of circadian rhythms, but the period of the rhythm does not 査読 国際共著

    Takahisa Miyatake, Masato S. Abe, Kentarou Matsumura, Taishi Yoshii

    Ethology   2022年3月

     詳細を見る

    担当区分:最終著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Wiley  

    DOI: 10.1111/eth.13279

    researchmap

    その他リンク: https://onlinelibrary.wiley.com/doi/full-xml/10.1111/eth.13279

  • The Neuronal Circuit of the Dorsal Circadian Clock Neurons in Drosophila melanogaster. 査読 国際共著 国際誌

    Nils Reinhard, Frank K Schubert, Enrico Bertolini, Nicolas Hagedorn, Giulia Manoli, Manabu Sekiguchi, Taishi Yoshii, Dirk Rieger, Charlotte Helfrich-Förster

    Frontiers in physiology   13   886432 - 886432   2022年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Drosophila's dorsal clock neurons (DNs) consist of four clusters (DN1as, DN1ps, DN2s, and DN3s) that largely differ in size. While the DN1as and the DN2s encompass only two neurons, the DN1ps consist of ∼15 neurons, and the DN3s comprise ∼40 neurons per brain hemisphere. In comparison to the well-characterized lateral clock neurons (LNs), the neuroanatomy and function of the DNs are still not clear. Over the past decade, numerous studies have addressed their role in the fly's circadian system, leading to several sometimes divergent results. Nonetheless, these studies agreed that the DNs are important to fine-tune activity under light and temperature cycles and play essential roles in linking the output from the LNs to downstream neurons that control sleep and metabolism. Here, we used the Flybow system, specific split-GAL4 lines, trans-Tango, and the recently published fly connectome (called hemibrain) to describe the morphology of the DNs in greater detail, including their synaptic connections to other clock and non-clock neurons. We show that some DN groups are largely heterogenous. While certain DNs are strongly connected with the LNs, others are mainly output neurons that signal to circuits downstream of the clock. Among the latter are mushroom body neurons, central complex neurons, tubercle bulb neurons, neurosecretory cells in the pars intercerebralis, and other still unidentified partners. This heterogeneity of the DNs may explain some of the conflicting results previously found about their functionality. Most importantly, we identify two putative novel communication centers of the clock network: one fiber bundle in the superior lateral protocerebrum running toward the anterior optic tubercle and one fiber hub in the posterior lateral protocerebrum. Both are invaded by several DNs and LNs and might play an instrumental role in the clock network.

    DOI: 10.3389/fphys.2022.886432

    PubMed

    researchmap

  • Decapentaplegic Acutely Defines the Connectivity of Central Pacemaker Neurons in Drosophila. 査読 国際共著 国際誌

    Sofía Polcowñuk, Taishi Yoshii, M Fernanda Ceriani

    The Journal of neuroscience : the official journal of the Society for Neuroscience   41 ( 40 )   8338 - 8350   2021年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Rhythmic rest-activity cycles are controlled by an endogenous clock. In Drosophila, this clock resides in ∼150 neurons organized in clusters whose hierarchy changes in response to environmental conditions. The concerted activity of the circadian network is necessary for the adaptive responses to synchronizing environmental stimuli. Thus far, work was devoted to unravel the logic of the coordination of different clusters focusing on neurotransmitters and neuropeptides. We further explored communication in the adult male brain through ligands belonging to the bone morphogenetic protein (BMP) pathway. Herein we show that the lateral ventral neurons (LNvs) express the small morphogen decapentaplegic (DPP). DPP expression in the large LNvs triggered a period lengthening phenotype, the downregulation of which caused reduced rhythmicity and affected anticipation at dawn and dusk, underscoring DPP per se conveys time-of-day relevant information. Surprisingly, DPP expression in the large LNvs impaired circadian remodeling of the small LNv axonal terminals, likely through local modulation of the guanine nucleotide exchange factor Trio. These findings open the provocative possibility that the BMP pathway is recruited to strengthen/reduce the connectivity among specific clusters along the day and thus modulate the contribution of the clusters to the circadian network.SIGNIFICANCE STATEMENT The circadian clock relies on the communication between groups of so-called clock neurons to coordinate physiology and behavior to the optimal times across the day, predicting and adapting to a changing environment. The circadian network relies on neurotransmitters and neuropeptides to fine-tune connectivity among clock neurons and thus give rise to a coherent output. Herein we show that decapentaplegic, a ligand belonging to the BMP retrograde signaling pathway required for coordinated growth during development, is recruited by a group of circadian neurons in the adult brain to trigger structural remodeling of terminals on a daily basis.

    DOI: 10.1523/JNEUROSCI.0397-21.2021

    PubMed

    researchmap

  • Antibodies Against the Clock Proteins Period and Cryptochrome Reveal the Neuronal Organization of the Circadian Clock in the Pea Aphid. 査読 国際共著 国際誌

    Francesca Sara Colizzi, Katharina Beer, Paolo Cuti, Peter Deppisch, David Martínez Torres, Taishi Yoshii, Charlotte Helfrich-Förster

    Frontiers in physiology   12   705048 - 705048   2021年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Circadian clocks prepare the organism to cyclic environmental changes in light, temperature, or food availability. Here, we characterized the master clock in the brain of a strongly photoperiodic insect, the aphid Acyrthosiphon pisum, immunohistochemically with antibodies against A. pisum Period (PER), Drosophila melanogaster Cryptochrome (CRY1), and crab Pigment-Dispersing Hormone (PDH). The latter antibody detects all so far known PDHs and PDFs (Pigment-Dispersing Factors), which play a dominant role in the circadian system of many arthropods. We found that, under long days, PER and CRY are expressed in a rhythmic manner in three regions of the brain: the dorsal and lateral protocerebrum and the lamina. No staining was detected with anti-PDH, suggesting that aphids lack PDF. All the CRY1-positive cells co-expressed PER and showed daily PER/CRY1 oscillations of high amplitude, while the PER oscillations of the CRY1-negative PER neurons were of considerable lower amplitude. The CRY1 oscillations were highly synchronous in all neurons, suggesting that aphid CRY1, similarly to Drosophila CRY1, is light sensitive and its oscillations are synchronized by light-dark cycles. Nevertheless, in contrast to Drosophila CRY1, aphid CRY1 was not degraded by light, but steadily increased during the day and decreased during the night. PER was always located in the nuclei of the clock neurons, while CRY was predominantly cytoplasmic and revealed the projections of the PER/CRY1-positive neurons. We traced the PER/CRY1-positive neurons through the aphid protocerebrum discovering striking similarities with the circadian clock of D. melanogaster: The CRY1 fibers innervate the dorsal and lateral protocerebrum and putatively connect the different PER-positive neurons with each other. They also run toward the pars intercerebralis, which controls hormone release via the neurohemal organ, the corpora cardiaca. In contrast to Drosophila, the CRY1-positive fibers additionally travel directly toward the corpora cardiaca and the close-by endocrine gland, corpora allata. This suggests a direct link between the circadian clock and the photoperiodic control of hormone release that can be studied in the future.

    DOI: 10.3389/fphys.2021.705048

    PubMed

    researchmap

  • Amplitude of circadian rhythms becomes weaken in the north, but there is no cline in the period of rhythm in a beetle. 査読 国際誌

    Masato S Abe, Kentarou Matsumura, Taishi Yoshii, Takahisa Miyatake

    PloS one   16 ( 1 )   e0245115   2021年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum.

    DOI: 10.1371/journal.pone.0245115

    PubMed

    researchmap

  • Dopamine Signaling in Wake-Promoting Clock Neurons Is Not Required for the Normal Regulation of Sleep in Drosophila 査読

    Florencia Fernandez-Chiappe, Christiane Hermann-Luibl, Alina Peteranderl, Nils Reinhard, Pingkalai R. Senthilan, Marie Hieke, Mareike Selcho, Taishi Yoshii, Orie T. Shafer, Nara I. Muraro, Charlotte Helfrich-Förster

    The Journal of Neuroscience   40 ( 50 )   9617 - 9633   2020年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Society for Neuroscience  

    DOI: 10.1523/jneurosci.1488-20.2020

    researchmap

  • Coupling Neuropeptide Levels to Structural Plasticity in Drosophila Clock Neurons. 査読 国際誌

    Anastasia Herrero, Taishi Yoshii, Juan Ignacio Ispizua, Carina Colque, Jan A Veenstra, Nara I Muraro, María Fernanda Ceriani

    Current biology : CB   2020年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    We have previously reported that pigment dispersing factor (PDF) neurons, which are essential in the control of rest-activity cycles in Drosophila, undergo circadian remodeling of their axonal projections, a phenomenon called circadian structural plasticity. Axonal arborizations display higher complexity during the day and become simpler at night, and this remodeling involves changes in the degree of connectivity. This phenomenon depends on the clock present within the ventrolateral neurons (LNvs) as well as in glia. In this work, we characterize in detail the contribution of the PDF neuropeptide to structural plasticity at different times across the day. Using diverse genetic strategies to temporally restrict its downregulation, we demonstrate that even subtle alterations to PDF cycling at the dorsal protocerebrum correlate with impaired remodeling, underscoring its relevance for the characteristic morning spread; PDF released from the small LNvs (sLNvs) and the large LNvs (lLNvs) contribute to the process. Moreover, forced depolarization recruits activity-dependent mechanisms to mediate growth only at night, overcoming the restriction imposed by the clock on membrane excitability. Interestingly, the active process of terminal remodeling requires PDF receptor (PDFR) signaling acting locally through the cyclic-nucleotide-gated channel ion channel subunit A (CNGA). Thus, clock-dependent PDF signaling shapes the connectivity of these essential clock neurons on daily basis.

    DOI: 10.1016/j.cub.2020.06.009

    PubMed

    researchmap

  • Genetic variation and phenotypic plasticity in circadian rhythms in an armed beetle, Gnatocerus cornutus (Tenebrionidae) 査読

    Kentarou Matsumura, Masato S Abe, Manmohan D Sharma, David J Hosken, Taishi Yoshii, Takahisa Miyatake

    Biological Journal of the Linnean Society   130 ( 1 )   34 - 40   2020年5月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Oxford University Press (OUP)  

    <title>Abstract</title>
    Circadian rhythms, their free-running periods and the power of the rhythms are often used as indicators of biological clocks, and there is evidence that the free-running periods of circadian rhythms are not affected by environmental factors, such as temperature. However, there are few studies of environmental effects on the power of the rhythms, and it is not clear whether temperature compensation is universal. Additionally, genetic variation and phenotypic plasticity in biological clocks are important for understanding the evolution of biological rhythms, but genetic and plastic effects are rarely investigated. Here, we used 18 isofemale lines (genotypes) of Gnatocerus cornutus to assess rhythms of locomotor activity, while also testing for temperature effects. We found that total activity and the power of the circadian rhythm were affected by interactions between sex and genotype or between sex, genotype and temperature. The males tended to be more active and showed greater increases in activity, but this effect varied across both genotypes and temperatures. The period of activity varied only by genotype and was thus independent of temperature. The complicated genotype–sex–environment interactions we recorded stress the importance of investigating circadian activity in more integrated ways.

    DOI: 10.1093/biolinnean/blaa016

    researchmap

  • A Catalog of GAL4 Drivers for Labeling and Manipulating Circadian Clock Neurons in Drosophila melanogaster. 査読 国際誌

    Manabu Sekiguchi, Kotaro Inoue, Tian Yang, Dong-Gen Luo, Taishi Yoshii

    Journal of biological rhythms   35 ( 2 )   207 - 213   2020年4月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語  

    Daily rhythms of physiology, metabolism, and behavior are orchestrated by a central circadian clock. In mice, this clock is coordinated by the suprachiasmatic nucleus, which consists of 20,000 neurons, making it challenging to characterize individual neurons. In Drosophila, the clock is controlled by only 150 clock neurons that distribute across the fly's brain. Here, we describe a comprehensive set of genetic drivers to facilitate individual characterization of Drosophila clock neurons. We screened GAL4 lines that were obtained from Drosophila stock centers and identified 63 lines that exhibit expression in subsets of central clock neurons. Furthermore, we generated split-GAL4 lines that exhibit specific expression in subsets of clock neurons such as the 2 DN2 neurons and the 6 LPN neurons. Together with existing driver lines, these newly identified ones are versatile tools that will facilitate a better understanding of the Drosophila central circadian clock.

    DOI: 10.1177/0748730419895154

    PubMed

    researchmap

  • The circadian clock improves fitness in the fruit fly, Drosophila melanogaster. 査読

    Horn M, Mitesser O, Hovestadt T, Yoshii T, Rieger D, Helfrich-Förster C

    Frontiers in Physiology   10   1374   2019年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    researchmap

  • Hub-organized parallel circuits of central circadian pacemaker neurons for visual photoentrainment in Drosophila 査読

    Li MT, Cao LH, Xiao N, Tang M, Deng B, Yang T, Yoshii T, Luo DG

    Nature Communications   9 ( 1 )   2018年12月

     詳細を見る

    出版者・発行元:Springer Nature America, Inc  

    DOI: 10.1038/s41467-018-06506-5

    researchmap

  • Neuroanatomical details of the lateral neurons of Drosophila melanogaster support their functional role in the circadian system 査読

    Frank K. Schubert, Nicolas Hagedorn, Taishi Yoshii, Charlotte Helfrich-Förster, Dirk Rieger

    Journal of Comparative Neurology   526 ( 7 )   1209 - 1231   2018年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Wiley-Liss Inc.  

    Drosophila melanogaster is a long-standing model organism in the circadian clock research. A major advantage is the relative small number of about 150 neurons, which built the circadian clock in Drosophila. In our recent work, we focused on the neuroanatomical properties of the lateral neurons of the clock network. By applying the multicolor-labeling technique Flybow we were able to identify the anatomical similarity of the previously described E2 subunit of the evening oscillator of the clock, which is built by the 5th small ventrolateral neuron (5th s-LNv) and one ITP positive dorsolateral neuron (LNd). These two clock neurons share the same spatial and functional properties. We found both neurons innervating the same brain areas with similar pre- and postsynaptic sites in the brain. Here the anatomical findings support their shared function as a main evening oscillator in the clock network like also found in previous studies. A second quite surprising finding addresses the large lateral ventral PDF-neurons (l-LNvs). We could show that the four hardly distinguishable l-LNvs consist of two subgroups with different innervation patterns. While three of the neurons reflect the well-known branching pattern reproduced by PDF immunohistochemistry, one neuron per brain hemisphere has a distinguished innervation profile and is restricted only to the proximal part of the medulla-surface. We named this neuron “extra” l-LNv (l-LNvx). We suggest the anatomical findings reflect different functional properties of the two l-LNv subgroups.

    DOI: 10.1002/cne.24406

    Scopus

    researchmap

    その他リンク: http://orcid.org/0000-0002-7057-7986

  • A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster 査読

    Christa Kistenpfennig, Mayumi Nakayama, Ruri Nihara, Kenji Tomioka, Charlotte Helfrich-Förster, Taishi Yoshii

    Journal of Biological Rhythms   33 ( 1 )   24 - 34   2018年2月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE Publications Inc.  

    In many animals, the circadian clock plays a role in adapting to the coming season by measuring day length. The mechanism for measuring day length and its neuronal circuits remains elusive, however. Under laboratory conditions, the fruit fly, Drosophila melanogaster, displays 2 activity peaks: one in the morning and one in the evening. These peaks appear to be regulated by 2 separate circadian oscillators (the morning and evening oscillators) that reside in different subsets of pacemaker clock neurons in the brain. The morning and evening activity peaks can flexibly change their phases to adapt to different photoperiods by tracking dawn and dusk, respectively. In this study, we found that cryptochrome (CRY) in the evening oscillators (the fifth small ventral lateral neuron [5th s-LNv] and the dorsal lateral neurons [LNds]) limits the ability of the evening peak to track dusk during long days. In contrast, light signaling from the external photoreceptors (compound eyes, ocelli, and Hofbauer–Buchner eyelets) increases the ability of the evening peak to track dusk. At the molecular level, CRY signaling dampens the amplitude of PAR-domain protein 1 (PDP1) oscillations in most clock neurons during long days, whereas signaling from the visual system increases these amplitudes. Thus, our results suggest that light inputs from the two major circadian photoreceptors, CRY and the visual system, have opposite effects on day length adaptation. Their tug-of-war appears to determine the precise phase adjustment of evening activity.

    DOI: 10.1177/0748730417738612

    Scopus

    researchmap

    その他リンク: http://orcid.org/0000-0002-7057-7986

  • The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster. 査読 国際誌

    Fujiwara Y, Hermann-Luibl C, Katsura M, Sekiguchi M, Ida T, Helfrich-Förster C, Yoshii T

    Frontiers in physiology   9   1276 - 1276   2018年

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.3389/fphys.2018.01276

    PubMed

    researchmap

  • Circadian light-input pathways in Drosophila 査読

    Taishi Yoshii, Christiane Hermann-Luibl, Charlotte Helfrich-Föorster

    Communicative and Integrative Biology   9 ( 1 )   2016年

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   出版者・発行元:Taylor and Francis Inc.  

    Light is the most important environmental cue to entrain the circadian clock in most animals. In the fruit fly Drosophila melanogaster, the light entrainment mechanisms of the clock have been wellstudied. The Drosophila brain contains approximately 150 neurons that rhythmically express circadian clock genes. These neurons are called “clock neurons” and control behavioral activity rhythms. Many clock neurons express the Cryptochrome (CRY) protein, which is sensitive to UV and blue light, and thus enables clock neurons deep in the brain to directly perceive light. In addition to the CRY protein, external photoreceptors in the Drosophila eyes play an important role in circadian light-input pathways. Recent studies have provided new insights into the mechanisms that integrate these light inputs into the circadian network of the brain. In this review, we will summarize the current knowledge on the light entrainment pathways in the Drosophila circadian clock.

    DOI: 10.1080/19420889.2015.1102805

    Scopus

    researchmap

    その他リンク: http://orcid.org/0000-0002-7057-7986

  • Cryptochrome-dependent and -independent circadian entrainment circuits in Drosophila. 査読 国際誌

    Taishi Yoshii, Christiane Hermann-Luibl, Christa Kistenpfennig, Benjamin Schmid, Kenji Tomioka, Charlotte Helfrich-Förster

    The Journal of neuroscience : the official journal of the Society for Neuroscience   35 ( 15 )   6131 - 41   2015年4月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Entrainment to environmental light/dark (LD) cycles is a central function of circadian clocks. In Drosophila, entrainment is achieved by Cryptochrome (CRY) and input from the visual system. During activation by brief light pulses, CRY triggers the degradation of TIMELESS and subsequent shift in circadian phase. This is less important for LD entrainment, leading to questions regarding light input circuits and mechanisms from the visual system. Recent studies show that different subsets of brain pacemaker clock neurons, the morning (M) and evening (E) oscillators, have distinct functions in light entrainment. However, the role of CRY in M and E oscillators for entrainment to LD cycles is unknown. Here, we address this question by selectively expressing CRY in different subsets of clock neurons in a cry-null (cry(0)) mutant background. We were able to rescue the light entrainment deficits of cry(0) mutants by expressing CRY in E oscillators but not in any other clock neurons. Par domain protein 1 molecular oscillations in the E, but not M, cells of cry(0) mutants still responded to the LD phase delay. This residual light response was stemming from the visual system because it disappeared when all external photoreceptors were ablated genetically. We concluded that the E oscillators are the targets of light input via CRY and the visual system and are required for normal light entrainment.

    DOI: 10.1523/JNEUROSCI.0070-15.2015

    PubMed

    researchmap

  • Green-sensitive opsin is the photoreceptor for photic entrainment of an insect circadian clock. 査読

    Komada S, Kamae Y, Koyanagi M, Tatewaki K, Hassaneen E, Saifullah A, Yoshii T, Terakita A, Tomioka K

    Zoological letters   1   11   2015年

  • Suppressive effects of dRYamides on feeding behavior of the blowfly, Phormia regina. 査読 国際誌

    Maeda T, Nakamura Y, Shiotani H, Hojo MK, Yoshii T, Ida T, Sato T, Yoshida M, Miyazato M, Kojima M, Ozaki M

    Zoological letters   1   35 - 35   2015年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1186/s40851-015-0034-z

    PubMed

    researchmap

  • The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock 査読

    Verena Dusik, Pingkalai R. Senthilan, Benjamin Mentzel, Heiko Hartlieb, Corinna Wuelbeck, Taishi Yoshii, Thomas Raabe, Charlotte Helfrich-Foerster

    PLOS GENETICS   10 ( 8 )   2014年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PUBLIC LIBRARY SCIENCE  

    All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining similar to 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase'' phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.

    DOI: 10.1371/journal.pgen.1004565

    Web of Science

    researchmap

  • The ion transport peptide is a new functional clock neuropeptide in the fruit fly Drosophila melanogaster. 査読 国際誌

    Christiane Hermann-Luibl, Taishi Yoshii, Pingkalai R Senthilan, Heinrich Dircksen, Charlotte Helfrich-Förster

    The Journal of neuroscience : the official journal of the Society for Neuroscience   34 ( 29 )   9522 - 36   2014年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The clock network of Drosophila melanogaster expresses various neuropeptides, but a function in clock-mediated behavioral control was so far only found for the neuropeptide pigment dispersing factor (PDF). Here, we propose a role in the control of behavioral rhythms for the ion transport peptide (ITP), which is expressed in the fifth small ventral lateral neuron, one dorsal lateral neuron, and in only a few nonclock cells in the brain. Immunocytochemical analyses revealed that ITP, like PDF, is most probably released in a rhythmic manner at projection terminals in the dorsal protocerebrum. This rhythm continues under constant dark conditions, indicating that ITP release is clock controlled. ITP expression is reduced in the hypomorph mutant Clk(AR), suggesting that ITP expression is regulated by CLOCK. Using a genetically encoded RNAi construct, we knocked down ITP in the two clock cells and found that these flies show reduced evening activity and increased nocturnal activity. Overexpression of ITP with two independent timeless-GAL4 lines completely disrupted behavioral rhythms, but only slightly dampened PER cycling in important pacemaker neurons, suggesting a role for ITP in clock output pathways rather than in the communication within the clock network. Simultaneous knockdown (KD) of ITP and PDF made the flies hyperactive and almost completely arrhythmic under constant conditions. Under light-dark conditions, the double-KD combined the behavioral characteristics of the single-KD flies. In addition, it reduced the flies' sleep. We conclude that ITP and PDF are the clock's main output signals that cooperate in controlling the flies' activity rhythms.

    DOI: 10.1523/JNEUROSCI.0111-14.2014

    PubMed

    researchmap

  • Moonlight Detection by Drosophila's Endogenous Clock Depends on Multiple Photopigments in the Compound Eyes 査読

    Matthias Schlichting, Rudi Grebler, Nicolai Peschel, Taishi Yoshii, Charlotte Helfrich-Foerster

    JOURNAL OF BIOLOGICAL RHYTHMS   29 ( 2 )   75 - 86   2014年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    Many organisms change their activity on moonlit nights. Even the fruit fly Drosophila melanogaster responds to moonlight with a shift of activity into the night, at least under laboratory conditions. The compound eyes have been shown to be essential for the perception of moonlight, but it is unknown which of the 5 rhodopsins in the eyes are responsible for the observed moonlight effects. Here, we show that the outer (R1-R6) and inner (R7 and R8) photoreceptor cells in a fly's ommatidium interact in a complex manner to provoke the moonlight effects on locomotor activity. The shift of the evening activity peak into the night depends on several rhodopsins in the inner and outer photoreceptor cells. The increase in relative nocturnal activity in response to moonlight is mainly mediated by the rhodopsin 6-expressing inner photoreceptor cell R8 together with the rhodopsin 1-expressing outer receptor cells (R1-R6), whereas just rhodopsin 1 of R1 to R6 seems necessary for increasing nocturnal activity in response to increasing daylight intensity.

    DOI: 10.1177/0748730413520428

    Web of Science

    researchmap

  • Sexual Interactions Influence the Molecular Oscillations in DN1 Pacemaker Neurons in Drosophila melanogaster 査読

    Shiho Hanafusa, Tomoaki Kawaguchi, Yujiro Umezaki, Kenji Tomioka, Taishi Yoshii

    PLOS ONE   8 ( 12 )   2013年12月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PUBLIC LIBRARY SCIENCE  

    Circadian rhythms can synchronize to environmental time cues, such as light, temperature, humidity, and food availability. Previous studies have suggested that these rhythms can also be entrained by social interactions. Here, we used Drosophila melanogaster as a model to study the influence of socio-sexual interactions on the circadian clock in behavior and pacemaker neurons. If two flies of opposite sex were paired and kept in a small space, the daily activity patterns of the two flies were clearly different from the sum of the activity of single male and female flies. Compared with single flies, paired flies were more active in the night and morning, were more active during females' active phase, and were less active during males' active phase. These behavioral phenotypes are related to courtship behavior, but not to the circadian clock. Nevertheless, in male-female pairs of flies with clocks at different speeds ( wild-type and per(S) flies), clock protein cycling in the DN1 pacemaker neurons in the male brain were slightly influenced by their partners. These results suggest that sexual interactions between male-female couples can serve as a weak zeitgeber for the DN1 pacemaker neurons, but the effect is not sufficient to alter rhythms of behavioral activity.

    DOI: 10.1371/journal.pone.0084495

    Web of Science

    researchmap

  • GABAB receptors play an essential role in maintaining sleep during the second half of the night in Drosophila melanogaster 査読

    Florian Gmeiner, Agata Kolodziejczyk, Taishi Yoshii, Dirk Rieger, Dick R. Nässel, Charlotte Helfrich-Förster

    Journal of Experimental Biology   216 ( 20 )   3837 - 3843   2013年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    GABAergic signalling is important for normal sleep in humans and flies. Here we advance the current understanding of GABAergic modulation of daily sleep patterns by focusing on the role of slow metabotropic GABAB receptors in the fruit fly Drosophila melanogaster. We asked whether GABAB-R2 receptors are regulatory elements in sleep regulation in addition to the already identified fast ionotropic Rdl GABAA receptors. By immunocytochemical and reporter-based techniques we show that the pigment dispersing factor (PDF)-positive ventrolateral clock neurons (LNv) express GABAB-R2 receptors. Downregulation of GABAB-R2 receptors in the large PDF neurons (l-LNv) by RNAi reduced sleep maintenance in the second half of the night, whereas sleep latency at the beginning of the night that was previously shown to depend on ionotropic Rdl GABAA receptors remained unaltered. Our results confirm the role of the l-LNv neurons as an important part of the sleep circuit in D. melanogaster and also identify the GABAB-R2 receptors as the thus far missing component in GABA-signalling that is essential for sleep maintenance. Despite the significant effects on sleep, we did not observe any changes in circadian behaviour in flies with downregulated GABAB-R2 receptors, indicating that the regulation of sleep maintenance via l-LNv neurons is independent of their function in the circadian clock circuit. © 2013. Published by The Company of Biologists Ltd.

    DOI: 10.1242/jeb.085563

    Web of Science

    Scopus

    PubMed

    researchmap

  • Chronic electromyographic analysis of circadian locomotor activity in crayfish 査読

    Yusuke Tomina, Akihiro Kibayashi, Taishi Yoshii, Masakazu Takahata

    Behavioural Brain Research   249   90 - 103   2013年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Animals generally exhibit circadian rhythms of locomotor activity. They initiate locomotor behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. The neuronal mechanisms underlying circadian locomotor activity can, therefore, be based on the rhythmic changes in either reflexive efficacy or endogenous activity. In crayfish Procambarus clarkii, it can be determined by analyzing electromyographic (EMG) patterns of walking legs whether the walking behavior is initiated reflexively or spontaneously. In this study, we examined quantitatively the leg muscle activity that underlies the locomotor behavior showing circadian rhythms in crayfish. We newly developed a chronic EMG recording system that allowed the animal to freely behave under a tethered condition for more than 10 days. In the LD condition in which the animals exhibited LD entrainment, the rhythmic burst activity of leg muscles for stepping behavior was preceded by non-rhythmic tonic activation that lasted for 1323. ±. 488. ms when the animal initiated walking. In DD and LL free-running conditions, the pre-burst activation lasted for 1779. ±. 31 and 1517. ±. 39. ms respectively. In the mechanical stimulus-evoked walking, the pre-burst activation ended within 79. ±. 6. ms. These data suggest that periodic changes in the crayfish locomotor activity under the condition of LD entrainment or free-running are based on activity changes in the spontaneous initiation mechanism of walking behavior rather than those in the sensori-motor pathway connecting mechanoreceptors with leg movements. © 2013 Elsevier B.V.

    DOI: 10.1016/j.bbr.2013.04.029

    Web of Science

    Scopus

    PubMed

    researchmap

  • Exquisite Light Sensitivity of Drosophila melanogaster Cryptochrome 査読

    Pooja Vinayak, Jamie Coupar, S. Emile Hughes, Preeya Fozdar, Jack Kilby, Emma Garren, Taishi Yoshii, Jay Hirsh

    PLOS GENETICS   9 ( 7 )   2013年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PUBLIC LIBRARY SCIENCE  

    Drosophila melanogaster shows exquisite light sensitivity for modulation of circadian functions in vivo, yet the activities of the Drosophila circadian photopigment cryptochrome (CRY) have only been observed at high light levels. We studied intensity/duration parameters for light pulse induced circadian phase shifts under dim light conditions in vivo. Flies show far greater light sensitivity than previously appreciated, and show a surprising sensitivity increase with pulse duration, implying a process of photic integration active up to at least 6 hours. The CRY target timeless (TIM) shows dim light dependent degradation in circadian pacemaker neurons that parallels phase shift amplitude, indicating that integration occurs at this step, with the strongest effect in a single identified pacemaker neuron. Our findings indicate that CRY compensates for limited light sensitivity in vivo by photon integration over extraordinarily long times, and point to select circadian pacemaker neurons as having important roles.

    DOI: 10.1371/journal.pgen.1003615

    Web of Science

    researchmap

  • Long-term effect of systemic RNA interference on circadian clock genes in hemimetabolous insects 査読

    Outa Uryu, Yuichi Kamae, Kenji Tomioka, Taishi Yoshii

    JOURNAL OF INSECT PHYSIOLOGY   59 ( 4 )   494 - 499   2013年4月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PERGAMON-ELSEVIER SCIENCE LTD  

    RNA interference (RNAi) strategy, which enables gene-specific knock-down of transcripts, has been spread across a wide area of insect studies for investigating gene function without regard to model and non-model insects. This technique is of particular benefit to promote molecular studies on non-model insects. However, the optimal conditions for RNAi are still not well understood because of its variable efficiency depending on the species, target genes, and experimental conditions. To apply RNAi technique to long-running experiments such as chronobiological studies, the effects of RNAi have to persist throughout the experiment. In this study, we attempted to determine the optimal concentration of double-stranded RNA (dsRNA) for systemic RNAi and its effective period in two different insect species, the cricket Gryllus bimaculatus and the firebrat Thermobia domestica. In both species, higher concentrations of dsRNA principally yielded a more efficient knock-down of mRNA levels of tested clock genes, although the effect depended on the gene and the species. Surprisingly, the effect of the RNAi reached its maximum effect 1-2 weeks and 1 month after the injection of dsRNA in the crickets and the firebrats, respectively, suggesting a slow but long-term effect of RNAi. Our study provides fundamental information for utilizing RNAi technique in any long-running experiment. (c) 2013 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.jinsphys.2013.02.009

    Web of Science

    researchmap

  • The circadian clock network in the brain of different Drosophila species 査読

    Christiane Hermann, Rachele Saccon, Pingkalai R. Senthilan, Lilith Domnik, Heinrich Dircksen, Taishi Yoshii, Charlotte Helfrich-Förster

    Journal of Comparative Neurology   521 ( 2 )   367 - 388   2013年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Comparative studies on cellular and molecular clock mechanisms have revealed striking similarities in the organization of the clocks among different animal groups. To gain evolutionary insight into the properties of the clock network within the Drosophila genus, we analyzed sequence identities and similarities of clock protein homologues and immunostained brains of 10 different Drosophila species using antibodies against vrille (VRI), PAR-protein domain1 (PDP1), and cryptochrome (CRY). We found that the clock network of both subgenera Sophophora and Drosophila consists of all lateral and dorsal clock neuron clusters that were previously described in Drosophila melanogaster. Immunostaining against CRY and the neuropeptide pigment-dispersing factor (PDF), however, revealed species-specific differences. All species of the Drosophila subgenus and D. pseudoobscura of the Sophophora subgenus completely lacked CRY in the large ventrolateral clock neurons (lLNvs) and showed reduced PDF immunostaining in the small ventrolateral clock neurons (sLNvs). In contrast, we found the expression of the ion transport peptide (ITP) to be consistent within the fifth sLNv and one dorsolateral clock neuron (LNd) in all investigated species, suggesting a conserved putative function of this neuropeptide in the clock. We conclude that the general anatomy of the clock network is highly conserved throughout the Drosophila genus, although there is variation in PDF and CRY expression. Our comparative study is a first step toward understanding the organization of the circadian clock in Drosophila species adapted to different habitats. © 2012 Wiley Periodicals, Inc.

    DOI: 10.1002/cne.23178

    Web of Science

    Scopus

    PubMed

    researchmap

  • Drosophila Clock Neurons under Natural Conditions 査読

    Pamela Menegazzi, Stefano Vanin, Taishi Yoshii, Dirk Rieger, Christiane Hermann, Verena Dusik, Charalambos P. Kyriacou, Charlotte Helfrich-Foerster, Rodolfo Costa

    JOURNAL OF BIOLOGICAL RHYTHMS   28 ( 1 )   3 - 14   2013年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    The circadian clock modulates the adaptive daily patterns of physiology and behavior and adjusts these rhythms to seasonal changes. Recent studies of seasonal locomotor activity patterns of wild-type and clock mutant fruit flies in quasi-natural conditions have revealed that these behavioral patterns differ considerably from those observed under standard laboratory conditions. To unravel the molecular features accompanying seasonal adaptation of the clock, we investigated Drosophila's neuronal expression of the canonical clock proteins PERIOD (PER) and TIMELESS (TIM) in nature. We find that the profile of PER dramatically changes in different seasons, whereas that of TIM remains more constant. Unexpectedly, we find that PER and TIM oscillations are decoupled in summer conditions. Moreover, irrespective of season, PER and TIM always peak earlier in the dorsal neurons than in the lateral neurons, suggesting a more rapid molecular oscillation in these cells. We successfully reproduced most of our results under simulated natural conditions in the laboratory and show that although photoperiod is the most important zeitgeber for the molecular clock, the flies' activity pattern is more strongly affected by temperature. Our results are among the first to systematically compare laboratory and natural studies of Drosophila rhythms.

    DOI: 10.1177/0748730412471303

    Web of Science

    researchmap

  • Laboratory versus Nature: The Two Sides of the Drosophila Circadian Clock 査読

    Pamela Menegazzi, Taishi Yoshii, Charlotte Helfrich-Foerster

    JOURNAL OF BIOLOGICAL RHYTHMS   27 ( 6 )   433 - 442   2012年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    The daily pattern of animal behavior is thought to be of potential enormous importance for survival. Here, we compared the daily activity pattern of Drosophila melanogaster wild-type flies and the clock-impaired mutants, per01 and ClkJrk, under pseudo-natural conditions and laboratory conditions with natural-like temperature profiles. We found that clock-impaired flies respond stronger to changes in the environment, namely temperature increases, than wild-type flies. We hypothesize that the circadian clock may suppress unproductive activity in response to temperature fluctuations but that such suppression can be overcome in extreme conditions that are likely life-threatening for the flies. Thus, possessing a clock seems to be of adaptive significance.

    DOI: 10.1177/0748730412463181

    Web of Science

    researchmap

  • Pigment-Dispersing Factor Is Involved in Age-Dependent Rhythm Changes in Drosophila melanogaster 査読

    Yujiro Umezaki, Taishi Yoshii, Tomoaki Kawaguchi, Charlotte Helfrich-Foerster, Kenji Tomioka

    JOURNAL OF BIOLOGICAL RHYTHMS   27 ( 6 )   423 - 432   2012年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    Most animals show rest/activity rhythms that are regulated by an endogenous timing mechanism, the so-called circadian system. The rhythm becomes weaker with age, but the mechanism underlying the age-associated rhythm change remains to be elucidated. Here we employed Drosophila melanogaster as a model organism to study the aging effects on the rhythm. We first investigated activity rhythms under light-dark (LD) cycles and constant darkness (DD) in young (1-day-old) and middle-aged (30-, 40-, and 50-day-old) wild-type male flies. The middle-aged flies showed a reduced activity level in comparison with young flies. Additionally, the free-running period significantly lengthened in DD, and the rhythm strength was diminished. Immunohistochemistry against pigment-dispersing factor (PDF), a principal neurotransmitter of the Drosophila clock, revealed that PDF levels declined with age. We also found an attenuation of TIMELESS (TIM) oscillation in the cerebral clock neurons in elder flies. Intriguingly, overexpression of PDF suppressed age-associated changes not only in the period and strength of free-running locomotor rhythms but also in the amplitude of TIM oscillations in many pacemaker neurons in the elder flies, suggesting that the age-dependent PDF decline is responsible for the rhythm attenuation. These results suggest that the age-associated reduction of PDF may cause attenuation of intercellular communication in the circadian neuronal network and of TIM cycling, which may result in the age-related rhythm decay.

    DOI: 10.1177/0748730412462206

    Web of Science

    researchmap

  • Peripheral circadian rhythms and their regulatory mechanism in insects and some other arthropods: a review 査読

    Kenji Tomioka, Outa Uryu, Yuichi Kamae, Yujiro Umezaki, Taishi Yoshii

    JOURNAL OF COMPARATIVE PHYSIOLOGY B-BIOCHEMICAL SYSTEMIC AND ENVIRONMENTAL PHYSIOLOGY   182 ( 6 )   729 - 740   2012年8月

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER HEIDELBERG  

    Many physiological functions of insects show a rhythmic change to adapt to daily environmental cycles. These rhythms are controlled by a multi-clock system. A principal clock located in the brain usually organizes the overall behavioral rhythms, so that it is called the "central clock". However, the rhythms observed in a variety of peripheral tissues are often driven by clocks that reside in those tissues. Such autonomous rhythms can be found in sensory organs, digestive and reproductive systems. Using Drosophila melanogaster as a model organism, researchers have revealed that the peripheral clocks are self-sustained oscillators with a molecular machinery slightly different from that of the central clock. However, individual clocks normally run in harmony with each other to keep a coordinated temporal structure within an animal. How can this be achieved? What is the molecular mechanism underlying the oscillation? Also how are the peripheral clocks entrained by light-dark cycles? There are still many questions remaining in this research field. In the last several years, molecular techniques have become available in non-model insects so that the molecular oscillatory mechanisms are comparatively investigated among different insects, which give us more hints to understand the essential regulatory mechanism of the multi-oscillatory system across insects and other arthropods. Here we review current knowledge on arthropod's peripheral clocks and discuss their physiological roles and molecular mechanisms.

    DOI: 10.1007/s00360-012-0651-1

    Web of Science

    researchmap

  • Neuropeptide F immunoreactive clock neurons modify evening locomotor activity and free-running period in Drosophila melanogaster 査読

    Christiane Hermann, Taishi Yoshii, Verena Dusik, Charlotte Helfrich-Foerster

    JOURNAL OF COMPARATIVE NEUROLOGY   520 ( 5 )   970 - 987   2012年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-BLACKWELL  

    Different subsets of Drosophila melanogaster's clock neurons are characterized by their specific functions in daily locomotor rhythms and the differences in their neurotransmitter composition. We investigated the function of the neuropeptide F (NPF) immunoreactive clock neurons in the rhythmic locomotor behavior of adult flies. We newly identified the fifth s-LNv and a subset of the l-LNvs as NPF-positive in addition to the three LNds that have been described previously. We then selectively ablated different subsets of NPF-expressing neurons using npfGal4-targeted expression of the cell death gene head involution defective (hid) in combination with cryGal80 and pdfGal80. By analyzing daily locomotor rhythms in these flies, we show that the NPF-positive clock neuronsespecially the fifth s-LNv and the LNdsare involved in both the control of the free-running period in constant darkness (DD) and the phasing and amplitude of the evening activity in light-dark (LD) cycles. Furthermore, we show that the simultaneous ablation of NPF and pigment dispersing factor (PDF)-immunoreactive neurons has additive effects in LD, resulting in an evening peak phase that is even more advanced in comparison to PDF-ablated flies. We also found that this more advanced evening peak is additionally reduced in amplitude. To putatively assign the observed phenotypes to the action of NPF, we knocked it down in conjunction with PDF using RNA-interference (RNAi) and further suggest a possible role for NPF in the control of the flies' evening activity. J. Comp. Neurol. 520:970987, 2012. (C) 2011 Wiley Periodicals, Inc.

    DOI: 10.1002/cne.22742

    Web of Science

    researchmap

  • Phase-Shifting the Fruit Fly Clock without Cryptochrome 査読

    Christa Kistenpfennig, Jay Hirsh, Taishi Yoshii, Charlotte Helfrich-Foerster

    JOURNAL OF BIOLOGICAL RHYTHMS   27 ( 2 )   117 - 125   2012年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    The blue light photopigment cryptochrome (CRY) is thought to be the main circadian photoreceptor of Drosophila melanogaster. Nevertheless, entrainment to light-dark cycles is possible without functional CRY. Here, we monitored phase response curves of cry(01) mutants and control flies to 1-hour 1000-lux light pulses. We found that cry(01) mutants phase-shift their activity rhythm in the subjective early morning and late evening, although with reduced magnitude. This phase-shifting capability is sufficient for the slowed entrainment of the mutants, indicating that the eyes contribute to the clock's light sensitivity around dawn and dusk. With longer light pulses (3 hours and 6 hours), wild-type flies show greatly enhanced magnitude of phase shift, but CRY-less flies seem impaired in the ability to integrate duration of the light pulse in a wild-type manner: Only 6-hour light pulses at circadian time 21 significantly increased the magnitude of phase advances in cry(01) mutants. At circadian time 15, the mutants exhibited phase advances instead of the expected delays. These complex results are discussed.

    DOI: 10.1177/0748730411434390

    Web of Science

    researchmap

  • Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability 査読

    Jacqueline Vieira, Alex R. Jones, Antoine Danon, Michiyo Sakuma, Nathalie Hoang, David Robles, Shirley Tait, Derren J. Heyes, Marie Picot, Taishi Yoshii, Charlotte Helfrich-Foerster, Guillaume Soubigou, Jean-Yves Coppee, Andre Klarsfeld, Francois Rouyer, Nigel S. Scrutton, Margaret Ahmad

    PLOS ONE   7 ( 3 )   2012年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PUBLIC LIBRARY SCIENCE  

    Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.

    DOI: 10.1371/journal.pone.0031867

    Web of Science

    researchmap

  • Two clocks in the brain: An update of the morning and evening oscillator model in Drosophila 査読

    Taishi Yoshii, Dirk Rieger, Charlotte Helfrich-Foerster

    NEUROBIOLOGY OF CIRCADIAN TIMING   199   59 - 82   2012年

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:論文集(書籍)内論文   出版者・発行元:ELSEVIER SCIENCE BV  

    Circadian clocks play an essential role in adapting the activity rhythms of animals to the day-night cycles on earth throughout the four seasons. In many animals, including the fruit fly Drosophila melanogaster, two separate but mutually coupled clocks in the brain - morning (M) and evening (E) oscillators-control the activity in the morning and evening. M and E oscillators are thought to track dawn and dusk, respectively. This alters the phase-angle between the two oscillators under different day lengths, optimally adapting the animal's activity pattern to colder short and warmer long days. Using excellent genetic tools, Drosophila researchers have addressed the neural basis of the two oscillators and could partially track these to distinct clock cells in the brain. Nevertheless, not all data are consistent with each other and many questions remained open. So far, most studies about M and E oscillators focused on the influence of light (photoperiod). Here, we will review the effects of light and temperature on the two oscillators, will update the present knowledge, discuss the limitations of the model, and raise questions that have to be addressed in the future.

    DOI: 10.1016/B978-0-444-59427-3.00027-7

    Web of Science

    researchmap

  • The Dual-Oscillator System of Drosophila melanogaster Under Natural-Like Temperature Cycles 査読

    Wolfgang Bywalez, Pamela Menegazzi, Dirk Rieger, Benjamin Schmid, Charlotte Helfrich-Foerster, Taishi Yoshii

    CHRONOBIOLOGY INTERNATIONAL   29 ( 4 )   395 - 407   2012年

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:INFORMA HEALTHCARE  

    Dual-oscillator systems that control morning and evening activities can be found in a wide range of animals. The two coupled oscillators track dawn and dusk and flexibly adapt their phase relationship to seasonal changes. This is also true for the fruit fly Drosophila melanogaster that serves as model organism to understand the molecular and anatomical bases of the dual-oscillator system. In the present study, the authors investigated which temperature parameters are crucial for timing morning and evening activity peaks by applying natural-like temperature cycles with different daylengths. The authors found that the morning peak synchronizes to the temperature increase in the morning and the evening peak to the temperature decrease in the afternoon. The two peaks did not occur at fixed absolute temperatures, but responded flexibly to daylength and overall temperature level. Especially, the phase of the evening peak clearly depended on the absolute temperature level: it was delayed at high temperatures, whereas the phase of the M peak was less influenced. This suggests that the two oscillators have different temperature sensitivities. The bimodal activity rhythm was absent in the circadian clock mutants Clk(Jrk) and cyc(01) and reduced in per(01) and tim(01) mutants. Whereas the activity of Clk(Jrk) mutants just followed the temperature cycles, that of per(01) and tim(01) mutants did not, suggesting that these mutants are not completely clockless. This study revealed new characteristics of the dual-oscillator system in Drosophila that were not detected under different photoperiods. (Author correspondence: yoshii@cc.okayama-u.ac.jp)

    DOI: 10.3109/07420528.2012.668505

    Web of Science

    researchmap

  • A New ImageJ Plug-in "ActogramJ" for Chronobiological Analyses 査読

    Benjamin Schmid, Charlotte Helfrich-Foerster, Taishi Yoshii

    JOURNAL OF BIOLOGICAL RHYTHMS   26 ( 5 )   464 - 467   2011年10月

     詳細を見る

    担当区分:最終著者, 責任著者   記述言語:英語   出版者・発行元:SAGE PUBLICATIONS INC  

    While the rapid development of personal computers and high-throughput recording systems for circadian rhythms allow chronobiologists to produce huge amounts of data, the software to analyze them often lags behind. Here, we announce newly developed chronobiology software that is easy to use, compatible with many different systems, and freely available. Our system can perform the most frequently used analyses: actogram drawing, periodogram analysis, and waveform analysis. The software is distributed as a pure Java plug-in for ImageJ and so works on the 3 main operating systems: Linux, Macintosh, and Windows. We believe that this free software raises the speed of data analyses and makes studying chronobiology accessible to newcomers.

    DOI: 10.1177/0748730411414264

    Web of Science

    researchmap

  • Cryptochrome-Positive and -Negative Clock Neurons in Drosophila Entrain Differentially to Light and Temperature 査読

    Taishi Yoshii, Christiane Hermann, Charlotte Helfrich-Forster

    JOURNAL OF BIOLOGICAL RHYTHMS   25 ( 6 )   387 - 398   2010年12月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    The blue-light photoreceptive protein Cryptochrome (CRY) plays an important role in the light synchronization of the Drosophila circadian clock Previously, we found that among the approximately 150 clock neurons, many but not all neurons express CRY We speculated that the CRY-positive pacemaker neurons may be especially important for light entrainment, whereas the CRY-negative neurons may be important for other environmental cues, for example, temperature To investigate this hypothesis, we tested the entrainability of the clock neurons to out-of-phase light and temperature cycles When light-dark or light-dim light cycles were shifted by 12 h with respect to temperature cycles, behavioral rhythms of wild-type flies were re-entrained by the light cycles In this condition, we found that TIMELESS (TIM) level was strongly influenced by the temperature cycles in many CRY-negative clock neurons, suggesting that the CRY-negative neurons have higher sensitivity to temperature Under the same conditions, cry-null mutants entrained to the temperature cycles or very slowly re-entrained to light-dark cycles Our results suggest that there are 2 types of clock neurons having differential sensitivities to light and temperature, and CRY is a key component for the preferential entrainment to light

    DOI: 10.1177/0748730410381962

    Web of Science

    researchmap

  • Cryptochrome - a photoreceptor with the properties of a magnetoreceptor? 査読

    Ritz T, Yoshii T, Helfrich-Förster C, Ahmad M

    Communicative & Integrative Biology   2010年

     詳細を見る

    記述言語:英語  

    DOI: 10.4161/cib.3.1.10300

    researchmap

  • Synergic Entrainment of Drosophila&apos;s Circadian Clock by Light and Temperature 査読

    Taishi Yoshii, Stefano Vanin, Rodolfo Costa, Charlotte Helfrich-Foerster

    JOURNAL OF BIOLOGICAL RHYTHMS   24 ( 6 )   452 - 464   2009年12月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    Daily light and temperature cycles are considered the most important zeitgebers for circadian clocks in many organisms. The influence of each single zeitgeber on the clock has been well studied, but little is known about any synergistic effects of both zeitgebers on the clock. In nature, light and temperature show characteristic daily oscillations with the temperature rising during the light phase and reaching its maximum in the late afternoon. Here, we studied behavioral and molecular rhythms in Drosophila melanogaster under simulated natural low light-dark (LD) and temperature (T) cycles that typically occur during the September equinox. Wild-type flies were either subjected to simulated LD or T cycles alone or to a combination of both. Behavioral rhythms and molecular rhythms in the different clock neurons were assessed under the 3 different conditions. Although behavioral rhythms entrained to all conditions, the rhythms were most robust under the combination of LD and T cycles. The clock neurons responded differently to LD and T cycles. Some were not entrained by T cycles alone; others were only slightly entrained by LD cycles alone. The amplitude of the molecular cycling was not different between LD alone and T cycles alone; but LD alone could set the pacemaker neurons to similar phases, whereas T cycles alone could not. The combination of the 2 zeitgebers entrained all. clock neurons not only with similar phase but also enhanced the amplitude of Timeless cycling in the majority of cells. Our results show that the 2 zeitgebers synergistically entrain behavioral and molecular rhythms of Drosophila melanogaster.

    DOI: 10.1177/0748730409348551

    Web of Science

    researchmap

  • Peptidergic Clock Neurons in Drosophila: Ion Transport Peptide and Short Neuropeptide F in Subsets of Dorsal and Ventral Lateral Neurons 査読

    Helena A. D. Johard, Taishi Yoishii, Heinrich Dircksen, Paola Cusumano, Francois Rouyer, Charlotte Helfrich-Foerster, Dick R. Nassel

    JOURNAL OF COMPARATIVE NEUROLOGY   516 ( 1 )   59 - 73   2009年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-LISS  

    About 150 clock neurons are clustered in different groups in the brain of Drosophila. Among these clock neurons, some pigment-dispersing factor (PDF)-positive and PDF-negative lateral neurons (LNs) are principal oscillators responsible for bouts of activity in the morning and evening, respectively. The full complement of neurotransmitters in these morning and evening oscillators is not known. By using a screen for candidate neuromediators in clock neurons, we discovered ion transport peptide (ITP) and short neuropeptide F (sNPF) as novel neuropeptides in subpopulations of dorsal (LN(d)s) and ventral (s-LN(v)s) LNs. Among the six LN(d)s, ITP was found in one that coexpresses long neuropeptide F (NPF) and cryptochrome. We detected sNPF in two LN(d)s that also express cryptochrome; these cells are distinct from three LN(d)s expressing NPF. Thus, we have identified neuropeptides in five of the six LN(d)s. The three LN(d)s expressing cryptochrome, with either ITP or sNPF, are the only ones with additional projections to the accessory medulla. Among the five s-LN(v)s in the adult brain, ITP was detected in the fifth neuron that is devoid of PDF and sNPF in the four neurons that also express PDF. By using a choline acetyltransferase (Cha) GaI4, we detected Cha expression in the two sNPF producing LN(d)s and in the fifth s-LN(v). In the larval brain, two of the four PDF-producing s-LN(v)s coexpress sNPF. Our findings emphasize that the LN(d)s are heterogeneous both anatomically and with respect to content of neuropeptides, cryptochrome, and other markers and suggest diverse functions of these neurons. J. Comp. Neurol. 516:59-73, 2009. (C) 2009 Wiley-Liss, Inc.

    DOI: 10.1002/cne.22099

    Web of Science

    researchmap

  • Cryptochrome Mediates Light-Dependent Magnetosensitivity of Drosophila's Circadian Clock 査読

    Taishi Yoshii, Margaret Ahmad, Charlotte Helfrich-Foerster

    PLOS BIOLOGY   7 ( 4 )   813 - 819   2009年4月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PUBLIC LIBRARY SCIENCE  

    Since 1960, magnetic fields have been discussed as Zeitgebers for circadian clocks, but the mechanism by which clocks perceive and process magnetic information has remained unknown. Recently, the radical-pair model involving light-activated photoreceptors as magnetic field sensors has gained considerable support, and the blue-light photoreceptor cryptochrome (CRY) has been proposed as a suitable molecule to mediate such magnetosensitivity. Since CRY is expressed in the circadian clock neurons and acts as a critical photoreceptor of Drosophila&apos;s clock, we aimed to test the role of CRY in magnetosensitivity of the circadian clock. In response to light, CRY causes slowing of the clock, ultimately leading to arrhythmic behavior. We expected that in the presence of applied magnetic fields, the impact of CRY on clock rhythmicity should be altered. Furthermore, according to the radical-pair hypothesis this response should be dependent on wavelength and on the field strength applied. We tested the effect of applied static magnetic fields on the circadian clock and found that flies exposed to these fields indeed showed enhanced slowing of clock rhythms. This effect was maximal at 300 mu T, and reduced at both higher and lower field strengths. Clock response to magnetic fields was present in blue light, but absent under red-light illumination, which does not activate CRY. Furthermore, cry(b) and cry(OUT) mutants did not show any response, and flies overexpressing CRY in the clock neurons exhibited an enhanced response to the field. We conclude that Drosophila&apos;s circadian clock is sensitive to magnetic fields and that this sensitivity depends on light activation of CRY and on the applied field strength, consistent with the radical pair mechanism. CRY is widespread throughout biological systems and has been suggested as receptor for magnetic compass orientation in migratory birds. The present data establish the circadian clock of Drosophila as a model system for CRY-dependent magnetic sensitivity. Furthermore, given that CRY occurs in multiple tissues of Drosophila, including those potentially implicated in fly orientation, future studies may yield insights that could be applicable to the magnetic compass of migratory birds and even to potential magnetic field effects in humans.

    DOI: 10.1371/journal.pbio.1000086

    Web of Science

    researchmap

  • The Neuropeptide Pigment-Dispersing Factor Adjusts Period and Phase of Drosophila's Clock 査読

    Taishi Yoshii, Corinna Wuelbeck, Hana Sehadova, Shobi Veleri, Dominik Bichler, Ralf Stanewsky, Charlotte Helfrich-Foerster

    JOURNAL OF NEUROSCIENCE   29 ( 8 )   2597 - 2610   2009年2月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SOC NEUROSCIENCE  

    The neuropeptide pigment-dispersing factor (PDF) is a key transmitter in the circadian clock of Drosophila melanogaster. PDF is necessary for robust activity rhythms and is thought to couple the circadian oscillations of the clock neurons. However, little is known about the action of PDF on individual clock neurons. Here, we combined the period-luciferase reporter system with immunolabeling of clock proteins in wild-type and Pdf(01) mutants to dissect the effects of PDF on specific subgroups of clock neurons. Additionally, PDF levels were elevated to higher than normal levels using specific neural mutants, and a correlation analysis of locomotor activity and clock protein staining served to determine the periods of specific clock cells. We found that PDF has multiple effects on the clock neurons: In some groups of clock neurons, PDF was required for maintaining the oscillations of individual cells, and in others, PDF was required for synchronous cycling of the individual members. Other clock neurons cycled with high amplitude in absence of PDF, but PDF affected their intrinsic clock speed. Sometimes PDF shortened and sometimes PDF lengthened period. Our observations indicate that PDF is crucial for adjusting cycling amplitude, period, and phase of the different players in the circadian clock. Under natural conditions PDF may be required for adapting Drosophila&apos;s clock to varying photoperiods. Indeed, we show here that Pdf(01) mutants are not able to adapt their activity to long photoperiods in a wild-type manner.

    DOI: 10.1523/JNEUROSCI.5439-08.2009

    Web of Science

    researchmap

  • Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons 査読

    Taishi Yoshii, Takeshi Todo, Corinna Wuelbeck, Ralf Stanewsky, Charlotte Helfrich-Foerster

    JOURNAL OF COMPARATIVE NEUROLOGY   508 ( 6 )   952 - 966   2008年6月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:WILEY-LISS  

    Cryptochrome (CRY) is intimately associated with the circadian clock of many organisms. In the fruit fly Drosophila melanogaster, CRY seems to be involved in photoreception as well as in the core clockwork. In spite of the critical role of CRY for the clock of Drosophila, it was not quite clear whether CRY is expressed in every clock cell. With the help of a new antibody and a mutant that lacks CRY, we show here that CRY is expressed in specific subsets of Drosophila's pacemaker neurons and in the photoreceptor cells of the compound eyes. In the pacemaker neurons, CRY levels and kinetics under light-dark cycles are quite different from each other. High-amplitude oscillations are observed in only three groups of clock neurons, suggesting that these three groups are strongly receptive to light. The different CRY kinetics may account for phase differences in oscillations of the clock proteins observed in these three groups in earlier studies. The molecular clock of the neurons that contain lower CRY levels or are completely CRY negative can still be synchronized by light, probably via intercellular communication with the CRY-positive neurons as well as via external photoreceptors.

    DOI: 10.1002/cne.21702

    Web of Science

    researchmap

  • Induction of Drosophila behavioral and molecular circadian rhythms by temperature steps in constant light 査読

    Taishi Yoshii, Kana Fujii, Kenji Tomioka

    JOURNAL OF BIOLOGICAL RHYTHMS   22 ( 2 )   103 - 114   2007年4月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SAGE PUBLICATIONS INC  

    In constant light, where Drosophila rhythms are normally disrupted, temperature cycles induce circadian rhythms at both the molecular and behavioral level. The authors investigated the process by which the thermoperiod induces the rhythms using temperature steps. A 10 degrees C temperature step-up induced a single locomotor activity peak ca 9 h after the temperature transition, whereas a 10 degrees C step-down induced a strong activity peak ca 24 h after the transition, and the peak recurred for several cycles, suggesting that the underlying clock is reset. Arrhythmic per(01), tim(01), dClk(lrk), and cyc(01) mutant flies failed to show the rhythm after the step-down, suggesting that per, tim, dClk, and cyc are necessary for the step-down-induced rhythm. After the step-up, per" flies exhibited an activity peak similar to that of wild-type flies, suggesting that the peak can be induced by the step-up in absence of PER. mRNA levels of-per, tim, dClk, vri, and Pdp1 epsilon were changed in response to the temperature steps, but the changes differed depending on the direction of temperature steps, suggesting that steps-up and steps-down have different roles in the initiation of the oscillation. Probably, alternating 12-h temperature steps-up and steps-down will induce opposite changes in mRNA levels of clock genes, eventually producing stable molecular oscillations. Although TIM shows responses to temperature consistent with the changes of its mRNA, this is not the case for PER, consistent with post-transcriptional regulation. Changes of the mRNA levels were significantly altered but still observed in per(01) flies but not observed in dClk(jrk) flies, except for per mRNA. This suggests that dCLK is involved in the temperature-induced changes in the levels of most clock gene mRNA but that per is regulated via a different mechanism.

    DOI: 10.1177/0748730406298176

    Web of Science

    researchmap

  • The lateral and dorsal neurons of Drosophila melanogaster: New insights about their morphology and function 査読

    C. Helfrich-Foerster, T. Yoshii, C. Wuelbeck, E. Grieshaber, D. Rieger, W. Bachleitner, P. Cusumano, F. Rouyer

    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY   72   517 - 525   2007年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT  

    This chapter summarizes our present knowledge about the master clock of the fruit fly at the neuronal level. The clock is organized in distinct groups of interconnected pacemaker neurons with different functions. All of these neurons appear to communicate with one another in order to produce the species-specific activity rhythm, which is organized in morning (M) and evening (E) activity bouts. These two activity components are differentially influenced by distinct groups of pacemaker neurons reminiscent of the Pittendrigh-Daan dual oscillator model. In the original work (Grima et al. 2004; Stoleru et al. 2004), the ventrolateral (LNv) and dorsolateral (LNd) Plus some dorsal groups (DN) of clock neurons have been defined as M and E cells, respectively. We further specify that the clock neurons belong to the M and E oscillators and define a more complex picture of the Drosophila brain clock.

    DOI: 10.1101/sqb.2007.72.063

    Web of Science

    researchmap

  • Entrainment of Drosophila circadian rhythms by temperature cycles 査読

    Kenji Tomioka, Taishi Yoshii

    Sleep and Biological Rhythms   4 ( 3 )   240 - 247   2006年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The fruit fly, Drosophila melanogaster, has been a good organism for elucidating the molecular and cellular bases of circadian behavioral rhythms. The fly shows a bimodal locomotor rhythm with a period slightly different from 24-h. The rhythm synchronizes with the environmental cycle using light as a powerful zeitgeber. It is now believed that this rhythm is generated by two interlocked transcriptional feedback loops consisting of so-called clock genes. Light resets the clock loop through degradation of a clock protein, TIMELESS. Temperature is another powerful zeitgeber that can entrain the rhythm but the cellular and molecular basis for temperature entrainment is still under investigation. This review will try to give an overview of temperature entrainment, considering multiple clocks with different responsiveness to light and temperature. © 2006 The Authors
    Journal compilation © 2006 Japanese Society of Sleep Research.

    DOI: 10.1111/j.1479-8425.2006.00227.x

    Scopus

    researchmap

  • Temperature cycles drive Drosophila circadian oscillation in constant light that otherwise induces behavioural arrhythmicity 査読

    T Yoshii, Y Heshiki, T Ibuki-Ishibashi, A Matsumoto, T Tanimura, K Tomioka

    EUROPEAN JOURNAL OF NEUROSCIENCE   22 ( 5 )   1176 - 1184   2005年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:BLACKWELL PUBLISHING  

    The fruit fly, Drosophila melanogaster, shows a clear circadian locomotor rhythm in light cycles and constant darkness. Although the rhythm disappears in constant light, we found that temperature cycles drive the circadian rhythm both in locomotor activity and molecular abundance of PERIOD (PER) and TIMELESS (TIM). The thermoperiodically induced locomotor rhythm entailed an anticipatory activity at the late thermophase, which required several transient cycles to establish a steady-state entrainment, suggesting that the rhythm is endogenous and driven by a circadian clock. Western blot analysis revealed that PER and TIM increased during the cryophase, peaking at the middle to late cryophase. PER was also cyclically expressed under the temperature cycle in the known per-expressing neurons, i.e. so-called lateral (LNs) and dorsal neurons (DNs), and two pairs of cells (LPNs) that were located in the lateral posterior protocerebrum. It is thus suggested that the temperature cycle induces the cycling of PER and TIM either by blocking somewhere in the photic entrainment pathway during the cryophase or temporally activating their translation to sufficient protein levels to drive a circadian oscillation. In flies lacking pigment-dispersing factor (PDF) or PDF-expressing cells, the anticipatory activity was relatively dispersed. disco(2) mutant flies lacking the lateral neurons still showed an anticipatory activity, but with dispersed activity. These behavioural results suggest that not only LNs but also DNs and LPNs can, at least, partially participate in regulating the thermoperiodically induced rhythm.

    DOI: 10.1111/j.1460-9568.2005.04295.x

    Web of Science

    researchmap

  • Drosophila cry(b) mutation reveals two circadian clocks that drive locomotor rhythm and have different responsiveness to light 査読

    T Yoshii, Y Funada, T Ibuki-Ishibashi, A Matsumoto, T Tanimura, K Tomioka

    JOURNAL OF INSECT PHYSIOLOGY   50 ( 6 )   479 - 488   2004年6月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:PERGAMON-ELSEVIER SCIENCE LTD  

    Cryptochrome (CRY) is a blue-light-absorbing protein involved in the photic entrainment of the circadian clock in Drosophila melanogaster. We have investigated the locomotor activity rhythms of flies carrying cry(h) mutant and revealed that they have two separate circadian oscillators with different responsiveness to light. When kept in constant light conditions, wild-type flies became arrhythmic, while cry(b) mutant flies exhibited free-running rhythms with two rhythmic components, one with a shorter and the other with a longer free-running period. The rhythm dissociation was dependent on the light intensities: the higher the light intensities, the greater the proportion of animals exhibiting the two oscillations. External photoreceptors including the compound eyes and the ocelli are the likely photoreceptors for the rhythm dissociation, since rhythm dissociation was prevented in so(1);ery(h) and norpA(P41); cry(h) double mutant flies. Immunohistochemical analysis demonstrated that the PERIOD expression rhythms in ventrally located lateral neurons (LNvs) occurred synchronously with the shorter period component, while those in the dorsally located per-expressing neurons showed PER expression most likely related to the longer period component, in addition to that synchronized to the LNvs. These results suggest that the Drosophila locomotor rhythms are driven by two separate per-dependent clocks, responding differentially to constant light. (C) 2004 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.jinsphys.2004.02.011

    Web of Science

    researchmap

  • A temperature-dependent timing mechanism is involved in the circadian system that drives locomotor rhythms in the fruit fly Drosophila melanogaster 査読

    T Yoshii, M Sakamoto, K Tomioka

    ZOOLOGICAL SCIENCE   19 ( 8 )   841 - 850   2002年8月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    The circadian clock of Drosophila melanogasteris thought to include rhythmic expression of period gene. Recent studies suggested, however, that a per-less oscillation is also involved in the regulation of circadian locomotor rhythms. In the present study, we examined the existence and the property of the possible per-less oscillation using arrhythmic clock mutant flies carrying per(01), tim(01), dClk(Jrk) or cyc(01), which lack rhythmic per expression. When temperature cycles consisting of 25 C and 30 C with various periods (T=8similar to32 hr) were given, wild-type (Canton-S) flies showed locomotor rhythms entrained to temperature cycles over a wide range of period (T=8similar to32 hr) in constant light (LL) while only to T=24 hr in constant darkness (DD). The mutant flies showed rhythms synchronizing with the given cycle both under LL and DD. In per(01) and tim(01) flies, the phase of a major peak slightly changed dependent on Ts in DD, while it did not in dClk(Jrk) and cyc(01) flies. When they were transferred from a constant temperature to a temperature cycle under DD, several cycles were necessary to establish a clear temperature entrainment in per(01) and tim(01) flies. These results suggest that per(01) and tim(01) flies have a temperature-entrainable weak oscillatory mechanism and that the per-less oscillatory mechanism may require dClk and cyc. In addition, per(01) and tim(01) flies changed from thermoactive in DD to cryoactive in LL, while dClk(Jrk) and cyc(01) flies did not. It is thus suggested that dClk and cyc are also involved in determining the light-associated temperature preference in per(01) and tim(01) flies.

    DOI: 10.2108/zsj.19.841

    Web of Science

    researchmap

▼全件表示

書籍等出版物

  • Insect Chronobiology

    Yoshii T, Fukuda A( 担当: 分担執筆 ,  範囲: Neurocircuitry of Circadian Clocks)

    Springer  2023年  ( ISBN:9789819907250

     詳細を見る

  • Insect Chronobiology

    Tomioka K, Yoshii T( 担当: 分担執筆 ,  範囲: Neural and Molecular Mechanisms of Entrainment)

    Springer  2023年  ( ISBN:9789819907250

     詳細を見る

  • 概日リズムを生み出すショウジョウバエの神経基盤

    関口学, 吉井大志( 担当: 共著)

    アグリバイオ・北隆館  2021年5月 

     詳細を見る

    記述言語:日本語 著書種別:学術書

  • ショウジョウバエ概日時計の神経ネットワーク

    関口学, 吉井大志( 担当: 共著)

    細胞・ニューサイエンス社  2020年9月 

     詳細を見る

  • ショウジョウバエの概日リズムは生存に重要か?

    吉井大志( 担当: 単著)

    昆虫と自然・ニューサイエンス社  2020年9月 

     詳細を見る

  • キイロショウジョウバエの概日温度適応

    梅崎勇次郎, 吉井大志( 担当: 共著)

    比較生理生化学  2017年 

     詳細を見る

  • The Cricket as a Model Organism: Development, Regeneration and Behavior

    Tomioka K, Uryu O, Kamae Y, Moriyama Y, ASM Saifullah, Yoshii T( 担当: 分担執筆 ,  範囲: Chapter 6. Molecular approach to the circadian clock mechanism in the cricket.)

    Springer  2017年 

     詳細を見る

  • ショウジョウバエ中枢概日時計の神経機構

    吉井大志, 富岡憲治( 担当: 共著)

    生体の科学  2016年 

     詳細を見る

  • 環境Eco選書 昆虫の時計―分子から野外まで―

    吉井大志( 担当: 分担執筆 ,  範囲: 天体航法)

    北隆館  2014年 

     詳細を見る

  • 昆虫と自然

    吉井大志( 担当: 分担執筆 ,  範囲: オオカバマダラの“渡り”―太陽コンパスナビゲーションと体内時計―)

    ニューサイエンス社  2013年 

     詳細を見る

  • キイロショウジョウバエ概日時計の温度サイクル同調機構

    吉井大志, 富岡憲治( 担当: 共著)

    時間生物学  2007年 

     詳細を見る

  • Circadian Clock as Multi-Oscillator System

    Tomioka K, Yoshii T, ASM. Saifullah( 担当: 分担執筆 ,  範囲: Multioscillator systems controlling the circadian locomotor rhythm in insects.)

    2003年 

     詳細を見る

▼全件表示

MISC

  • Comparative analysis of PDF- and CRY-positive neurons in different Drosophila species

    Rachele Saccon, Christiane Hermann, Taishi Yoshii, Charlotte Helfrich-Foerster

    JOURNAL OF NEUROGENETICS   24   51 - 52   2010年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:INFORMA HEALTHCARE  

    Web of Science

    researchmap

  • The neuropeptides PDF, NPF and ITP operate synergistically in the endogenous clock of Drosophila melanogaster

    Christiane Hermann, Heinrich Dircksen, Charlotte Helfrich-Foerster, Taishi Yoshii

    JOURNAL OF NEUROGENETICS   24   27 - 27   2010年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:INFORMA HEALTHCARE  

    Web of Science

    researchmap

  • Differential neuronal expression of three Drosophila ion transport peptide splice forms indicate multiple functions of peptidergic neurons

    Heinrich Dircksen, Aditya Mandali, Taishi Yoshii, Johannes Strauss, Charlotte Helfrich-Foerster, Dick R. Naessel

    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY   153A ( 2 )   S79 - S79   2009年6月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ELSEVIER SCIENCE INC  

    DOI: 10.1016/j.cbpa.2009.04.053

    Web of Science

    researchmap

  • Preferential temperature synchronization of the CRY-negative pacemaker neurons in the Drosophila circadian clock

    Taishi Yoshii, Charlotte Helfrich-Foerster

    JOURNAL OF NEUROGENETICS   23   S82 - S82   2009年

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:TAYLOR & FRANCIS LTD  

    Web of Science

    researchmap

  • Cryptochrome mediates wavelength-dependent magnetosensitivity in Drosophila melanogaster

    Taishi Yoshii, Margaret Ahmad, Charlotte Helfrich-Foerster

    JOURNAL OF NEUROGENETICS   23   S64 - S64   2009年

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:TAYLOR & FRANCIS LTD  

    Web of Science

    researchmap

  • G205 ニカメイガのイネとマコモ系統間における交尾行動と概日リズムの比較

    幡司 梢, 宮竹 貴久, 吉本 明充, 保積 直史, 泉洋 平, 積木 久明, 吉井 大志, 富岡 憲治

    日本応用動物昆虫学会大会講演要旨   ( 51 )   112 - 112   2007年3月

     詳細を見る

    記述言語:日本語   出版者・発行元:日本応用動物昆虫学会  

    CiNii Article

    CiNii Books

    researchmap

  • Analysis of temperature-dependent circadian oscillatory mechanisms by temperature steps in Drosophila melanogaster

    Taishi Yoshii, Kenji Tomioka

    ZOOLOGICAL SCIENCE   23 ( 12 )   1193 - 1193   2006年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • Temperature steps induce anticipatory locomotor activity of the circadian clock under constant light in Drosophila melanogaster

    Taishi Yoshii, Kenji Tomioka

    JOURNAL OF NEUROGENETICS   20 ( 3-4 )   263 - 264   2006年7月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:TAYLOR & FRANCIS LTD  

    Web of Science

    researchmap

  • Regulation of circadian locomotor rhythms by light and temperature in the fruit fly Drosophila melanogaster

    Kenji Tomioka, Yoko Miyasako, Taishi Yoshii

    ZOOLOGICAL SCIENCE   22 ( 12 )   1423 - 1423   2005年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • Search for clock neurons that entrain to light or temperature cycles in Drosophila melanogaster

    Yoko Miyasako, Taishi Yoshii, Kenji Tomioka

    ZOOLOGICAL SCIENCE   22 ( 12 )   1491 - 1491   2005年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • Daily cycling of mRNA of pigment dispersing factor gene in the optic lobe of the cricket, Gryllus bimaculatus.

    Abdelsalam Salaheldin, Taishi Yoshii, Kenji Tomioka

    ZOOLOGICAL SCIENCE   22 ( 12 )   1490 - 1490   2005年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • cDNA cloning of clock genes in two species of crickets Gryllus bimaculatus and Modicogryllus siamensis

    Tomoaki Sakamoto, Abdelsalam Salaheldin, Taishi Yoshii, Akira Matsumoto, Kenji Tomioka

    ZOOLOGICAL SCIENCE   22 ( 12 )   1490 - 1490   2005年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • Circadian oscillations triggered by temperature steps under constant light in Drosophila melanogaster

    Taishi Yoshii, Kana Fujii, Kenji Tomioka

    ZOOLOGICAL SCIENCE   21 ( 12 )   1324 - 1324   2004年12月

     詳細を見る

    記述言語:英語   掲載種別:研究発表ペーパー・要旨(国際会議)   出版者・発行元:ZOOLOGICAL SOC JAPAN  

    Web of Science

    researchmap

  • Possible involvement of temperature-entrainable timing system in arrhythmic mutant flies in Drosophila melanogaster.

    Yoshii T, Tomioka K

    Journal of Photoscience   2002年

     詳細を見る

▼全件表示

講演・口頭発表等

  • Trissin/TrissinR signaling pathway mediates activity promoting signal in Drosophila melanogaster

    2022年9月12日 

     詳細を見る

    開催年月日: 2022年9月12日 - 2022年9月14日

    記述言語:英語   会議種別:ポスター発表  

    開催地:Nagoya, Japan   国名:日本国  

  • ショウジョウバエ時計細胞シグナル伝達経路Trissin/TrissinRの解析

    関口学,吉井大志

    第93回日本動物学会  2022年9月8日  日本動物学会

     詳細を見る

    開催年月日: 2022年9月8日 - 2022年9月10日

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:東京都新宿区西早稲田 早稲田大学早稲田キャンパス   国名:日本国  

  • Split-GAL4システムによるキイロショウジョウバエ時計細胞群の機能解析

    横佐古達哉,関口学,吉井大志

    第93回日本動物学会  2022年9月8日  日本動物学会

     詳細を見る

    開催年月日: 2022年9月8日 - 2022年9月10日

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:東京都新宿区西早稲田 早稲田大学早稲田キャンパス   国名:日本国  

  • キイロショウジョウバエにおけるPDF時計細胞群の歩行活動リズムへの影響

    齋藤愛加,横佐古達哉,吉井大志

    第93回日本動物学会  2022年9月8日  日本動物学会

     詳細を見る

    開催年月日: 2022年9月8日 - 2022年9月10日

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:東京都新宿区西早稲田 早稲田大学早稲田キャンパス   国名:日本国  

  • Roles of morning DN1ps and evening cells in bimodal activity rhythms in Drosophila melanogaster 国際会議

    M. Sekiguchi, T. Yoshii

    Sapporo Symposium on Biological Rhythm  2022年8月14日  Sapporo Symposium on Biological Rhythm

     詳細を見る

    開催年月日: 2022年8月12日 - 2022年8月14日

    記述言語:英語   会議種別:ポスター発表  

    開催地:Sapporo, Japan   国名:日本国  

  • Regulation of morning activity through the neuropeptide CNMamide expressed in a subset of clock neurons in the Drosophila melanogaster 国際会議

    A. Fukuda, T. Yoshii

    Sapporo Symposium on Biological Rhythm  2022年8月14日  Sapporo Symposium on Biological Rhythm

     詳細を見る

    開催年月日: 2022年8月12日 - 2022年8月14日

    記述言語:英語   会議種別:ポスター発表  

    開催地:Sapporo, Japan   国名:日本国  

  • キイロショウジョウバエ概日時計ネットワーク内における時計細胞の役割

    関口学,吉井大志

    第28回日本時間生物学会学術大会  2021年11月20日 

     詳細を見る

    記述言語:日本語  

  • キイロショウジョウバエ概日時計におけるPDF/CCHa1神経ペプチドの相互作用

    桒野理子,桂万喜,吉井大志

    第92回日本動物学会  2021年9月2日 

     詳細を見る

    記述言語:日本語  

  • キイロショウジョウバエ概日時計ネットワークの解析

    関口学,井上浩太郎,吉井大志

    第92回日本動物学会  2021年9月2日 

     詳細を見る

    記述言語:日本語  

  • キイロショウジョウバエにおけるPDF時計細胞の夕方活動への影響

    齋藤愛加,中西日向子,吉井大志

    第92回日本動物学会  2021年9月2日 

     詳細を見る

    記述言語:日本語  

  • キイロショウジョウバエの概日リズムと高温ストレス耐性

    片岡知樹,吉井大志

    第92回日本動物学会  2021年9月2日 

     詳細を見る

    記述言語:日本語  

  • The BRWD3 gene is required for normal circadian activity rhythms in Drosophila melanogaster

    2019年12月1日 

     詳細を見る

    記述言語:英語   会議種別:ポスター発表  

  • ショウジョウバエ時計細胞たちのコミュニケーション

    吉井 大志

    第26回日本時間生物学会学術大会  2019年10月12日 

     詳細を見る

    記述言語:日本語  

    researchmap

  • ショウジョウバエ概日時計を構成する脳内神経ネットワーク

    吉井 大志

    第90回日本動物学会  2019年9月12日 

     詳細を見る

    記述言語:日本語  

    researchmap

  • ショウジョウバエ概日時計における時計細胞間カップリング

    吉井 大志

    第95回日本生理学会大会  2018年3月 

     詳細を見る

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • キイロショウジョウバエ概日時計の温度同調性

    吉井 大志

    第24回日本時間生物学会学術大会  2017年10月 

     詳細を見る

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • Light and temperature entrainment of circadian clock in fruit flies

    Taishi Yoshii

    The 22nd International Congress of Zoology  2016年9月 

     詳細を見る

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • CRY expression in a subset of Drosophila clock neurons

    Taishi Yoshii

    SRBR 2014  2014年6月 

     詳細を見る

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • The neuronal network of the circadian clock and its synchronization to environmental cycles in Drosophila melanogaster

    Taishi Yoshii

    第83回日本動物学会  2012年9月 

     詳細を見る

    記述言語:英語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • Let’s draw actogram with ImageJ! 招待

    Taishi Yoshii

    Assembling a Multi-cellular Circadian Pacemaker  2010年8月 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

▼全件表示

受賞

  • 第19回日本時間生物学会学術大会 優秀ポスター賞

    2012年   日本時間生物学会  

     詳細を見る

  • 日本動物学会藤井賞

    2003年   日本動物学会  

     詳細を見る

  • 日本動物学会論文賞

    2003年   日本動物学会  

     詳細を見る

共同研究・競争的資金等の研究

  • 脳を持たないヒドラで探る眠りの起源と変遷

    研究課題/領域番号:21H02527  2021年04月 - 2025年03月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    伊藤 太一, 楠見 淳子, 吉井 大志, 寺本 孝行

      詳細を見る

    配分額:17680000円 ( 直接経費:13600000円 、 間接経費:4080000円 )

    researchmap

  • 概日時計細胞間の接続様式とその役割

    研究課題/領域番号:19H03265  2019年04月 - 2023年03月

    日本学術振興会  科学研究費助成事業 基盤研究(B)  基盤研究(B)

    吉井 大志

      詳細を見る

    配分額:17550000円 ( 直接経費:13500000円 、 間接経費:4050000円 )

    researchmap

  • 昆虫概日時計の複眼依存性光同調の分子機構

    研究課題/領域番号:18H02480  2018年04月 - 2021年03月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    富岡 憲治, 吉井 大志, 守山 禎之

      詳細を見る

    配分額:17550000円 ( 直接経費:13500000円 、 間接経費:4050000円 )

    概日時計は日周期に同調することで様々な生理機能にピーク時刻を設定する。本研究では、複眼依存性光同調の分子機構の解明を進め、複眼からの光情報は視葉でc-fosBを誘導し、その下流でBrwd3, Fbxl3, 4, 5, 7, 13, 16が誘導されることが明らかになった。これらのRNAiにより行動リズムの光同調は前進、後退ともに顕著に抑制されることが分かった。CRY2タンパク質は暗期に増加するが、暗期前半、後半ともに光照射で減少した。この光依存性の減少は、Brwd3, Fbxlによる光依存的なユビキチン化により誘導されることが示唆された。類似の機構が無翅昆虫シミでも関与することが示唆された。

    researchmap

  • 時計細胞間コミュニケーションの役割

    研究課題/領域番号:15H05600  2015年04月 - 2019年03月

    日本学術振興会  科学研究費助成事業 若手研究(A)  若手研究(A)

    吉井 大志

      詳細を見る

    配分額:23400000円 ( 直接経費:18000000円 、 間接経費:5400000円 )

    多くの動物で、活動や睡眠・覚醒などの概日行動リズムを制御する中枢機構は、脳に存在することが知られている。しかし、概日時計の研究が最も進んでいる動物キイロショウジョウバエにおいても、脳内時計細胞の神経ネットワークの全容は明らかになっていない。本研究では、環境の変化によって概日時計を構成する神経細胞群の役割を明らかにすることができ、さらに新規の概日時計出力因子CCHamide1神経ペプチドを同定することができた。また、時計細胞群の神経突起の同定とその機能的な接続においても成果を挙げることができた。

    researchmap

  • 昆虫概日時計の出力系に関わる候補因子の機能解析

    研究課題/領域番号:25840121  2013年04月 - 2015年03月

    日本学術振興会  科学研究費助成事業 若手研究(B)  若手研究(B)

    吉井 大志

      詳細を見る

    配分額:4420000円 ( 直接経費:3400000円 、 間接経費:1020000円 )

    モデル生物キイロショウジョウバエでは、概日時計の分子メカニズムが良く研究されているが、神経機構の研究ではまだ分からないことが多い。すでに脳内の150個の神経細胞が概日リズムをうみだす“時計細胞”であることが同定されているが、それらの細胞がどのようにして時間情報を出力していくかは不明である。本研究では、神経ペプチドであるITP(ion transport peptide)とCCHa1が概日時計の出力因子であることを新たに同定した。

    researchmap

  • 概日リズムを指標とした脳神経回路の老化評価システムの構築

    研究課題/領域番号:23657056  2011年 - 2013年

    日本学術振興会  科学研究費助成事業 挑戦的萌芽研究  挑戦的萌芽研究

    富岡 憲治, 吉井 大志

      詳細を見る

    配分額:3770000円 ( 直接経費:2900000円 、 間接経費:870000円 )

    本研究は、ショウジョウバエ概日時計の加齢変化を指標として、脳機能の加齢変化をニューロン・分子レベルで解析する方法を確立することを目的とした。野生型および老化関連遺伝子変異体等を使った解析により、神経ペプチドPDFを発現する脳内時計ニューロンの出力部位でのPDF量の加齢による減少が、分子振動および行動リズムの加齢現象と密接に関係することを明らかにし、行動の加齢の解析により脳内ニューロンおよびネットワークの加齢変化を評価できる可能性を示した。

    researchmap

  • キイロショウジョウバエの光同調に関する脳時計神経ネットワークの解明

    研究課題/領域番号:23870021  2011年 - 2012年

    日本学術振興会  科学研究費助成事業 研究活動スタート支援  研究活動スタート支援

    吉井 大志, 富岡 憲治

      詳細を見る

    配分額:3250000円 ( 直接経費:2500000円 、 間接経費:750000円 )

    キイロショウジョウバエの概日時計機構は複数の光入力系を持ち、その中でもCRYタンパク質を介する光入力は最も重要な光同調経路である。本研究ではハエが時差ボケから回復するまでの日数を解析し、CRYタンパク質がどの神経細胞で働いているのかを調べた。我々は脳内の時計細胞の一群である背側に位置するLN細胞でCRYが発現することで、時差ボケの回復が早まることを見出した。このことより、ショウジョウバエには時差ボケから早く回復するための神経機構があることが明らかになった。

    researchmap

  • キイロショウジョウバエにおけるper非依存性振動機構に関する研究

    研究課題/領域番号:03J08718  2003年 - 2005年

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    吉井 大志

      詳細を見る

    配分額:2700000円 ( 直接経費:2700000円 )

    平成17年度はper非依存性振動機構を解明するために、以下の3点について解析を行った。
    1.前年度の研究結果より、per非依存性振動機構に時計遺伝子dClk、cycが関与することが明らかにされている。本年度の研究では時計遺伝子perとtimが欠損した突然変異系統per^<01>;tim^<01>を用いて、dClk、cyc、vriの周期的発現について恒暗・温度サイクル下で解析を行った。その結果dClkは高温期の前半にピークを示す周期的な発現パターンを示した。一方、cycは低温期にやや発現量が多くなることが分かったが、dClkほど明らかな変動を示さなかった。このことより、per非依存性振動の背後にはdClkの周期的な発現が関与することが示唆された。またdClkの転写抑制に関与するvriは低温期に増加し、dClkとは逆位相で周期的に変動することが明らかとなった。
    2.per^<01>;tim^<01>は温度サイクル下で光依存的に歩行活動の位相が逆転する。その活動相の逆転の背後にはdClkやvriの発現パターンの逆転が考えられる。そこでper^<01>;tim^<01>に恒暗もしくは恒明下で温度サイクルを与え、それらの遺伝子発現について解析した。その結果、dClkとvriの周期的発現は、恒明と恒暗では同じ変動パターンを示した。よって、光依存的に起こる活動相の逆転には時計自身の振動の逆転ではなく、より下流の機構が関与することが示唆された。
    3.光依存的な活動相の逆転に関わる光受容体の同定のために、cry^b、glass^<60j>、so^1とper^<01>との二重突然変異系統を作成して、恒明と恒暗の温度サイクル下で歩行活動を計測した。それぞれの二重突然変異系統ともにper^<01>に比べると不明瞭ではあるが、活動相の逆転が観察された。よってCRYや単眼、複眼といった光受容器が欠損しても光に応答して活動相の逆転が起こることが示唆された。

    researchmap

▼全件表示

 

担当授業科目

  • 動物行動学 (2023年度) 1・2学期  - 月1~2

  • 動物行動学I (2023年度) 第1学期  - 月1~2

  • 動物行動学II (2023年度) 第2学期  - 月1~2

  • 地球環境生命科学とSDGs (2023年度) 前期  - 木1~2

  • 地球環境生命科学概論 (2023年度) 前期  - 金1~2

  • 基礎生物学1b (2023年度) 第2学期  - 火1~2

  • 昆虫時計学演習 (2023年度) その他  - その他

  • 時間生態学 (2023年度) 後期  - その他

  • 特別研究 (2023年度) その他  - その他

  • 環境および時間生物学演習 (2023年度) その他  - その他

  • 環境および時間生物学特別演習 (2023年度) その他  - その他

  • 環境および時間生物学特別演習 (2023年度) 通年  - その他

  • 生物学ゼミナールA (2023年度) 特別  - その他

  • 生物学ゼミナールB (2023年度) 特別  - その他

  • 生物学入門II (2023年度) 第2学期  - 水3~4

  • 生物学実験C (2023年度) 1・2学期

  • 生物学実験D (2023年度) 特別  - その他

  • 生物科学ゼミナール (2023年度) 通年  - その他

  • 生物科学演習 (2023年度) 後期  - その他

  • 生物科学演習 (2023年度) 通年  - その他

  • 生物科学演習 (2023年度) その他  - その他

  • 生物科学特別研究 (2023年度) 通年  - その他

  • 生物英語演習 (2023年度) 3・4学期  - 金5~6

  • 神経遺伝学 (2023年度) 後期  - 月3~4

  • 神経遺伝学 (2023年度) 後期  - 月3~4

  • 自然科学特論 (2023年度) 第2学期  - 水7~8

  • 自然系博物館実習 (2023年度) 特別  - その他

  • 課題研究 (2023年度) 特別  - その他

  • (L22)Neurogenetics (2023年度) 特別  - その他

  • 動物行動学 (2022年度) 1・2学期  - 月1~2

  • 動物行動学I (2022年度) 第1学期  - 月1~2

  • 動物行動学II (2022年度) 第2学期  - 月1~2

  • 基礎生物学1b (2022年度) 第2学期  - 火1~2

  • 基礎生物学1b (2022年度) 第2学期  - 火1~2

  • 時間生態学 (2022年度) 後期  - その他

  • 環境および時間生物学演習 (2022年度) 通年  - その他

  • 生物英語演習 (2022年度) 3・4学期  - 金5~6

  • 神経遺伝学 (2022年度) 後期  - 月3~4

  • 自然系博物館実習 (2022年度) 特別  - その他

  • 動物行動学 (2021年度) 1・2学期  - 月1,月2

  • 動物行動学I (2021年度) 第1学期  - 月1,月2

  • 動物行動学II (2021年度) 第2学期  - 月1,月2

  • 基礎生物学1b (2021年度) 第2学期  - 火1,火2

  • 基礎生物学1b (2021年度) 第2学期  - 火1~2

  • 基礎生物学I (2021年度) 1・2学期  - 火1,火2

  • 教養生物学実験(分子生物) (2021年度) 第4学期  - 木5〜8

  • 時間生態学 (2021年度) 後期  - その他

  • 環境および時間生物学演習 (2021年度) 通年  - その他

  • 生物学ゼミナール (2021年度) 特別

  • 生物学ゼミナール A (2021年度) 特別

  • 生物学ゼミナール B (2021年度) 特別

  • 生物学実験B (2021年度) 3・4学期

  • 生物学実験C (2021年度) 1・2学期

  • 生物学実験D (2021年度) 3・4学期

  • 生物科学演習 (2021年度) 通年  - その他

  • 生物科学特別研究 (2021年度) 通年

  • 生物英語演習 (2021年度) 3・4学期  - 金5,金6

  • 生物英語演習 (2021年度) 3・4学期  - 金5,金6

  • 神経遺伝学 (2021年度) 後期  - 月3,月4

  • 自然科学特論 (2021年度) 第2学期  - 水7~8

  • 自然系博物館実習 (2021年度) 特別  - その他

  • 課題研究 (2021年度) 特別

  • 動物行動学 (2020年度) 1・2学期  - 月1,月2

  • 動物行動学I (2020年度) 第1学期  - 月1,月2

  • 動物行動学II (2020年度) 第2学期  - 月1,月2

  • 基礎生物学1b (2020年度) 第2学期  - 火1,火2

  • 基礎生物学I (2020年度) 1・2学期  - 火1,火2

  • 時間生態学 (2020年度) 後期  - その他

  • 環境および時間生物学演習 (2020年度) 通年  - その他

  • 生物英語演習 (2020年度) 3・4学期  - 金5,金6

  • 生物英語演習 (2020年度) 3・4学期  - 金5,金6

  • 生物英語演習II (2020年度) 第3学期  - 金5,金6

  • 神経遺伝学 (2020年度) 後期  - 水1,水2

  • 自然系博物館実習 (2020年度) 特別  - その他

▼全件表示

 

社会貢献活動

  • NHK番組出演

    役割:コメンテーター, 取材協力

    2022年6月

  • NHK番組出演

    役割:コメンテーター, 取材協力

    2021年11月

  • 教員免許更新講習

    役割:講師

    2021年8月

  • NHK番組出演

    役割:パネリスト

    2021年7月