Updated on 2024/10/18

写真a

 
ISHIKAWA Yoshi-Hiro
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Assistant Professor
Position
Assistant Professor
External link

Degree

  • 博士(数理) ( 1997.3   東京大学 )

Research Interests

  • 数論

  • 表現論

  • 保型形式

Research Areas

  • Natural Science / Algebra  / 保型表現

Research History

  • Okayama University   The Graduate School of Natural Science and Technology   Assistant Professor

    2007.4

      More details

  • The University of Maryland   Department of Mathematics   Visiting Scholar   日本学術振興会 海外特別研究員

    2001.8 - 2003.8

      More details

  • Okayama University   The Graduate School of Natural Science and Technology   Research Assistant

    1997.8 - 2007.3

      More details

Professional Memberships

 

Papers

  • Towards rationality of critical values of the standard L-functions for U (2, 1)

    Yoshi-Hiro Ishikawa

    1934   40 - 51   2015.2

     More details

  • Whittaker new vectors for discrete series representetions of real Lie group U (2, 1)

    Yoshi-Hiro Ishikawa

    1826   18 - 23   2013.3

     More details

  • 保型表現の分岐と導手 –JPSS 理論の紹介 – Reviewed

    石川佳弘

    京都大学 数理解析研究所講究録別冊   B19   135 - 169   2010.6

     More details

  • Kudla’s Yoga –A heigher (co-)dimensional generalization–

    351 - 368   2010

     More details

  • Rankin-Selberg method –through typical examples–

    249 - 331   2009

     More details

  • On standard L-function for generic cusp forms on U (2, 1)

    Yoshi-Hiro Ishikawa

    1468   46 - 54   2006.2

     More details

  • Tamely ramified factors of zeta integrals for the standard L-function of U (3)

    Yoshi-Hiro Ishikawa

    1398   112 - 122   2004.10

     More details

  • Generalized Whittaker functions for the cohomological representations of SU (2, 1) and SU (3, 1)

    Yoshi-Hiro Ishikawa

    1173   129 - 137   2000.10

     More details

  • The generalized Whittaker functions for the discrete series representations of SU (3, 1)

    Yoshi-Hiro Ishikawa

    1094   97 - 109   1999.4

     More details

  • The generalized Whittaker functions for SU (2, 1) and the Fourier expansion of automorphic forms Reviewed

    Yoshi-Hiro Ishikawa

    Journal of Mathematical Sciences The University of Tokyo   6   477 - 526   1999

     More details

  • The generalized Whittaker functions for SU (2, 1)

    Yoshi-Hiro Ishikawa

    1002   199 - 212   1997.6

     More details

▼display all

Books

  • 数論入門事典

    加藤, 文元, 砂田, 利一( Role: Contributor ,  35章「保型形式」)

    朝倉書店  2023.6  ( ISBN:9784254111590

     More details

    Total pages:viii, 623p   Responsible for pages:p.401-p.417   Language:Japanese

    CiNii Books

    researchmap

Presentations

  • GL(n;Q) の保型形式 after Goldfeld Invited

    石川佳弘

    集中講義 , 室蘭工業大学  2016.3.26 

     More details

    Event date: 2016.3.26 - 2016.3.27

    Language:Japanese  

    researchmap

  • On rationality of critical L-values for U(3) Invited

    Yoshi-Hiro Ishikawa

    Algebra-Number Theory Seminar, The University of Maryland  2017.3.27 

     More details

    Language:English  

    researchmap

  • On special value of the standard L-function for U(2, 1)

    Yoshi-Hiro Ishikawa

    2014.1.21 

     More details

    Language:English  

    researchmap

  • Explicit formula for Shalika function

    Yoshi-Hiro Ishikawa

    2013.11.8 

     More details

    Language:English  

    researchmap

  • On H-periods of generic cusp forms on U(3)

    Yoshi-Hiro Ishikawa

    2012.1.16 

     More details

    Language:English  

    researchmap

  • Theta correspondences for SO(N)~

    Yoshi-Hiro Ishikawa

    2010.11.7 

     More details

    Language:English  

    researchmap

  • 保型的 L- 関数の中心臨界値に関する Baruch-Mao の結果について

    石川佳弘

    第12回整数論オータムワークショップ  2009.9.10 

     More details

    Language:Japanese  

    researchmap

  • 保型表現のイプシロン因子と導手

    石川佳弘

    「数論幾何における分岐理論」  2009.1.12 

     More details

    Language:Japanese  

    researchmap

  • 保型表現の分岐と導手 –JPSS 理論の紹介 – Invited

    石川佳弘

    研究集会「代数的整数論とその周辺」  2008.12.11 

     More details

  • Rankin-Selberg method –through typical examples–

    石川佳弘

    第16回整数論サマースクール「保型 L- 関数」  2008.8.20 

     More details

    Language:Japanese  

    researchmap

  • Kudla’ Yoga: A higher (co-)dimensional generalization

    石川佳弘

    研究集会「 Heegner point と Gross-Zagier 公式」  2007.10.12 

     More details

    Language:Japanese  

    researchmap

  • On standard L-function for generic cusp forms on U(2,1)

    Yoshi-Hiro Ishikawa

    2005.1.21 

     More details

    Language:Japanese  

    researchmap

  • On standard L-function for generic cusp forms on U(2,1) Invited

    Yoshi-Hiro Ishikawa

    Workshop ”Automorphic Representations and Related Topics”, Erwin Schrödinger Institute, The University of Vienna  2004.12.9 

     More details

    Language:English  

    researchmap

  • Tamely ramified factors of zeta integrals for the standard L-function of U (3)

    Yoshi-Hiro Ishikawa

    2004.1.20 

     More details

    Language:English  

    researchmap

  • On an archimedean zeta integral for the Standard L-function of U(2,1)

    Yoshi-Hiro Ishikawa

    2003.9.11 

     More details

    Language:English  

    researchmap

  • The Archimedian component of Shintani’s zeta integral

    Yoshi-Hiro Ishikawa

    Lie Group and Representation Theory Seminar, The University of Maryland  2003.5.14 

     More details

    Language:English  

    researchmap

  • Fourier-Jacobi expansion, Shintani’s integral and the Standard L-function of U(2,1) Invited

    Yoshi-Hiro Ishikawa

    Number Theory Seminar, The University of Wisconsin  2003.4.24 

     More details

    Language:English  

    researchmap

  • Generalized Whittaker functions on SU(2,1) -archimedean theory-

    Yoshi-Hiro Ishikawa

    Lie Group and Representation Theory Seminar, The University of Maryland  2001.3.28 

     More details

    Language:English  

    researchmap

  • Unitary 群の痩せた表現の一般化 Whittaker 関数

    石川佳弘

    「ゼータ研究集会」 , 東京工業大学理学部  2000.7.29 

     More details

    Language:Japanese  

    researchmap

  • Generalized Whittaker functions for the cohomological representations of SU(2,1) and SU(3,1)

    Yoshi-Hiro Ishikawa

    2000.6.28 

     More details

    Language:English  

    researchmap

  • Generalized Whittaker functions for standard representations of SU(2,1)

    1997.1.23 

     More details

    Language:Japanese  

    researchmap

▼display all

Research Projects

  • Ramification theory of automorphic representations and arithmetic of special L-values

    Grant number:15K04784  2015.04 - 2018.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Yoshi-Hiro Ishikawa

      More details

    Grant amount:\4680000 ( Direct expense: \3600000 、 Indirect expense:\1080000 )

    Number theory investigation usually involves quite vast area of deep mathematics,like as the Fermat Last Theolem does. The Langlands Program, which led to the settlement of FLT, has been the central strategy of arithmetic since 70s. We follow the LP to study the ramification theory of the group U(3) representations in view point of L‐/ε‐factors. Our approach is resorting to integral presentations of L‐function of automorphic forms, whose ramified factors give us arithmetic info. The point is to find nice Whittaker functions appearing in the ramified factor. We can successfully detect where/which the nice ones are only in the case of Real/unramified U(3).

    researchmap

  • Ramified components of automorphic representations: local theory and its application to special L-values

    Grant number:24540021  2012.04 - 2015.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ISHIKAWA YOSHI-HIRO, TSUZUKI Masao, YASUDA Seidai, TAKANO Keiji, MIYAUCHI Michitaka

      More details

    Grant amount:\5070000 ( Direct expense: \3900000 、 Indirect expense:\1170000 )

    Number theory investigation usually involves quite vast area of deep mathematics, like as the Fermat Last Theolem does. The Langlands Program, which led to the settlement of FLT, has been the central strategy of arithmetic since 70s. We follow the LP to study the ramification theory of the group U(3) representations in view point of L-/ε-factors. Our approach is resorting to integralpresentations of L-function of automorphic forms, whose ramified factors give us arithmetic info. The point is to find nice Whittaker functions appearing in the ramified factor. We can successfully detect where/which the nice ones are in the case of Real/unramified U(3). As an application to the global problem, we got algebraicity result for all the critical values of twisted L-function of generic cuspidal representaions on U(3).

    researchmap

  • Arithmetic and Moduli Spaces around Galois-Teichmueller tower

    Grant number:21340009  2009.04 - 2014.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    NAKAMURA Hiroaki, TSUNOGAI Hiroshi, ISHIKAWA Yoshihiro, TAMAGAWA Akio, WATANABE Takao, MOCHIZUKI Shinichi, MATSUMOTO Makoto, TOKUNAGA Hiroo, FURUSHO Hidekazu, HOSHI Yuichiro, TSUNOGAI Hiroshi, ISHIKAWA Yoshihiro, TAMAGAWA Akio

      More details

    Grant amount:\16510000 ( Direct expense: \12700000 、 Indirect expense:\3810000 )

    In this project, researches on anabelian geometry have been developed with rich prospects for number theory and algebraic geometry. In particular, promoted were international interactions of arithmetic researches concerning Galois-Teichmueller tower formed by fundamental groups of algebraic curves and their moduli spaces. In October 2010, we realized the 3rd Seasonal Institute Conference of Mathematical Society of Japan in Kyoto University, and subsequently in October 2012 we published the proceedings volume "Galois-Teichmueller theory and Arithmetic Geometry". Besides, a certain monodromy invariant arising from fundamental groups of once-punctured elliptic curves was studied and research papers on it have been published.

    researchmap

  • Study onε-factor of automorphic representations and conductor of remified components

    Grant number:21540017  2009 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ISHIKAWA Yoshihiro, MORIYAMA Tomonori, YASUDA Seidai, MIYAUCHI Michitaka, TAKANO Keiji

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    Number theory investigation usually involves quite vast area of deep mathematics, like as the Fermat Last Theolem does. The Langlands Program, which led to the settlement of FLT, has been the central strategy of arithmetic since 70s. We follow the LP to study the ramification theory of the group U(3) representations in view point of L-/ε-factors. Our approach is resorting to integral presentations of L-function of automorphic forms, whose ramified factors give us arithmetic info. The point is to find nice Whittaker functions appearing in the ramified factor. We can successfully detect where/which the nice ones are in the case of Real/unramified U(3).

    researchmap

  • Arithmetic of modularity lifting and Langlands duality

    Grant number:21540013  2009 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    YASUDA Seidai, KONDO Satoshi, TAGUCHI Yuichiro, HIRANOUCHI Toshiro, ISHIKAWA Yoshihiro, SAITO Takeshi, TAMAGAWA Akio

      More details

    Grant amount:\3900000 ( Direct expense: \3000000 、 Indirect expense:\900000 )

    In a joint work with Go Yamashita, I have determined the reductions modulo p of crystalline representations in many unknown cases, by explicitly constructing Wach modules and by introducing some new methods involving hypergeometric polynomials. I and Satoshi Kondo have succeeded in describing the epsilon factor of irreducible admissible representations as explicit Hecke eigenvalues and in giving several criterion for those representations to have"mirahoric"fixed vectors. I have obtained some other findings in Serre's conjecture and p-adic representations which will be useful in my future study.

    researchmap

  • グロタンディークデッサンと悲合同的タイヒミュラー被覆の数論

    Grant number:19654005  2007 - 2009

    日本学術振興会  科学研究費助成事業 挑戦的萌芽研究  挑戦的萌芽研究

    中村 博昭, 鳥居 猛, 鈴木 武史, 吉野 雄二, 山田 裕史, 松崎 克彦, 廣川 真男, 石川 佳弘

      More details

    Grant amount:\3200000 ( Direct expense: \3200000 )

    昨年度に基礎を確立した複素および1進の反復積分の関数等式の導出法(Wojtkowiak氏との共同研究)を延長して,具体的な実例計算をさらに検証した.とりわけ古典的な高次対数関数について知られている分布関係式(distribution relation)の1進版を導出することに成功した.分布関係式は,様々な特殊値を代入することで,高次対数関数の特殊値の間に成立する様々な関係式を組織的に生み出す重要なものであり,1進の場合にも並行してガロア群上の関数族(1-コチェイン)を統御する要となることが期待されるが,前年度までに得られた関数等式との整合性についても検証を行った.8月にケンブリッジのニュートン数理科学研究所で行われた研究集会"Anabelian Geometry"において口頭発表を行った.このときの講演に参加していたH.Gangl氏,P.Deligne氏から今後の研究指針を考える上で有用になると思われるコメントを頂戴することが出来た.また分布関係式の低次項の解消問題に関連して,有理的な道に沿った解析接続の概念にっいて考察を進める必要が生じた.こうしたテーマに関連して研究分担者の鳥居氏には,有理ホモトピー論に関する情報収集を担当していただき,また研究分担者の鈴木氏には,量子代数やKZ方程式との関連で組みひも群の数理についての情報収集を担当していただいた.以上の研究成果の一部は,共同研究者のWojtkowiak氏と協力して,"On distribution formula of complex and 1-adic polylogarithms"という仮題の草稿におおよその骨子をまとめたが,まだ完成に至っていない.周辺にやり残した問題(楕円ポリログ版など)もあり,これらについて一定の目処をつけてから公表までの工程を相談する予定になっている.

    researchmap

  • Towards ramification theory of automorphic representations : Ramified representations and their L-factors

    Grant number:19540032  2007 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ISHIKAWA Yoshihiro, MORIYAMA Tomonori, YASUDA Seidai, YOSHINO Yuji, TAKANO Keiji, WAKATSUKI Satoshi

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    フェルマ予想(FLT)の様な数論の問題は, 非常に広範で深い理論を駆使して研究される。FLTの証明をも含み, 70年代より数論研究の支柱たり続けているLanglandsプログラムに沿って, 比較的小さい群U(3), GSp(4)の場合に, その分岐表現と付随するL-関数を研究した。方針は, L-関数を上の群を対称性にもつ保型形式という"関数"の積分変換で表示し, その積分の分岐因子を(一般化)ホイタッカー関数を通じて明示的に研究する。表現の分岐が激しくない簡易な場合に, L-因子を計算した。分岐が激しい場合にも, 部分群からのアプローチが有効で有ることが判った。

    researchmap

  • From modular representations of the symmetric groups to integrable systems

    Grant number:19540031  2007 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    YAMADA Hirofumi, YOSHINO Yuji, NAKAMURA Hiroaki, ISHIKWA Yoshihiro, IKEDA Takeshi

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    対称群のモジュラー表現論を非線型微分方程式系に応用することを念頭に置いて研究をおこなった. 対称函数の空間の新しい基底を導入し, シューア函数をこの混合基底で展開した時の係数が整数になることを発見した.

    researchmap

  • ユニタリ群上の保型形式の数論的研究:分岐理論と大域的応用

    Grant number:16740016  2004 - 2005

    日本学術振興会  科学研究費助成事業 若手研究(B)  若手研究(B)

    石川 佳弘

      More details

    Grant amount:\1800000 ( Direct expense: \1800000 )

    1.本研究の目的は、ユニタリ群上の保型形式のフーリエ成分の数論的性質を表現論的手法を使って調べることである。即ち、調べるべき保型形式が生成する表現のホイタッカー模型の研究である。数論研究には、精緻な局所理論の研究が不可欠であるが、これは無限素点上の局所理論と有限分岐素点上のそれに分けられる。前者即ち、実Lie群U(2,1)の一般化ホイタッカー関数の明示公式及びそのゼータ積分は、既に筆者により研究されていた。後者については、p-進群U(3)の任意のgeneric表現に対して、p-進ホイタッカー関数の明示公式を経由しないゼータ積分の研究が、昨年度の成果として報告されている。本年度の研究計画は、
    (A)明示公式のp-進アナログの構成
    (B)上記の数論・分岐理論への自然な応用
    であった。
    2.(A)については、準分裂U(3)のSteinberg表現の明示項式及びそのゼータ積分による標準L-関数の分岐局所因子は、既に得られている。
    (B)については、ゼータ積分の局所関数等式からp-進γ-因子を同定すべく、井草局所ゼータに関連付けることで、切断のintertwinerによる像の研究を行った。
    これらについて、2005年12月上智大学、2006年1月数理解析研究所、2006年2月九州大学に於いて、現行方法の問題点と残された場合への拡張について近隣分野の研究者と討議した。
    3.将来に残された課題として、"分岐の導手"の研究がある。これについては、現在depth 0表現の場合に、有限Lie群の表現に帰着して研究する計画が進められている。

    researchmap

  • New development of ring theory from the view point of representation theory and its application

    Grant number:13640024  2001 - 2002

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    YOSHINO Yuji, ISHIKAWA Yoshihiro, HIRANO Yasuyuki, YAMADA Hiro-fumi, YAMAGATA Kunio, MIYAZAKI Mitsuhiro

      More details

    Grant amount:\3400000 ( Direct expense: \3400000 )

    Toward the complete classification of Cohen-Macaulay modules over a commutative local ring, we made new progress in solving the problems on degenerations of Cohen-Macaulay modules and the problems on the family of modules of G-dimension 0.
    (1) Degeneration of Cohen-Macaulay modules :
    One can define a partial order on the set of isomorphism classes of modules by using the degeneration relation. This order is related to the Horn order that has been defined by Bongartz for modules over finite dimensional algebras. One may conjecture that the order would be generated by the degenerations of Auslander-Reiten sequences whenever the cateogry of Cohen-Macaulay modules is of fintie representation type. This conjecture claims that such an order defined geometrically could be related to the combinatorial nature of Auslander-Reiten quiver. I actually gave a complete proof of this conjecture in the case that the local ring has dimension 2. I also proved this if the local ring is an integral domain of dimension 1. These results are published in Journal of Algebra (2002).
    (2) Modules of G-dimension 0 :
    As one of the generalizations of classification theory of Cohen-Macaulay modules over a Gorenstein ring, it is important to consider the modules of G-dimension 0 over a general local ring. It had been thought that the category of G-dimension 0 could have similar properties to the category of Cohen-Macaulay modules. However, I made a lot of examples that disprove it. In particular, if the cube of maximal ideal of the local ring is zero, then I succeeded to give a necessary and sufficient condition for the ring to have a nontrivial module of G-dimension 0. Actually I gave a way of construction of such indecomposable modules with continuous parameter. Using this construction I have shown that the family of modules of G-dimension 0 may not be a contravariantly finite subcategory in the cateogory of finitely generated modules. These results were reported in the Workshop of NATO Scientific Program in Romania (2002), and to be published from Kluwer Press.

    researchmap

  • 実ランク1のユニタリ群上の調和的保型形式の数論的研究

    Grant number:13740014  2001

    日本学術振興会  科学研究費助成事業 奨励研究(A)  奨励研究(A)

    石川 佳弘

      More details

    Grant amount:\1000000 ( Direct expense: \1000000 )

    researchmap

  • Geometric Structures on Manifolds and Graphs

    Grant number:12640073  2000 - 2001

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    KATSUDA Atsushi, SIMAKAWA Kazuhisa, TAMURA Hideo, SAKAI Takashi, TAKEUCHI Hiroshi, IKEDA Akira

      More details

    Grant amount:\3500000 ( Direct expense: \3500000 )

    We have studied that asymptotic behavior of random walks on nilpotent coverings of finite graphs and the stability of the generalized Gel'fand inverse spectral problems as a continuation of previous researches.
    The first project: asymptotics of heat kernels and random walks are interested in probability theory and global analysis. Among the several researches, our concern is that on infinite graphs with the symmetry of the action by groups. This project is directed toward understandings of non-commutative version of the previous researches in the case of abelian groups, especially, researches done by using the theory of abelian groups, i.e. Fourier Analysis )e.g. results of Kotani, Shirai and Sunada). Our strategy is a combination of the representation theory of nilpotent Lie groups by an embedding of discrete nilpotent groups, semi-classical analysis, Chen's theory of the iterated integrals. We need to knowledge of several fields. In this moment, we have obtained some results in the case when the cover of the bouquet graph and need to further research for other graphs. It should be noticed that there are some works Alexopoulos, Ishiwata et al. We believe that our method has merit in the possibilities to obtain the detailed informations and apply some other problems, e.g. distribution of closed orbits in hyperbolic dynamical systems.
    The latter is the joint works with Y.V. Kurylev (Loughborgh Univ.) and M. Lassas (Helsinki Univ.) during several years. Gel'fend inverse problem is the folloings; Can one reconstruct the Riemannian metric on manifold with boundary from the information of the oundary spectral data of the Laplacian. We wrote a survey paper for the stability of this problem with adding several counter examples without assumption of bounded geometry.
    Besides the above, there are works on curvature and topology by Sakai, the scattering theory under magmetic fields by Tamura, tpology of configuration spaces by shimakawa and p-Laplacian on graphs by Takeuchi.

    researchmap

  • 保型形式のフーリエ展開の基礎付け及び,数論への応用,保型形式の空間の構造解明

    Grant number:10740013  1998 - 1999

    日本学術振興会  科学研究費助成事業 奨励研究(A)  奨励研究(A)

    石川 佳弘

      More details

    Grant amount:\2100000 ( Direct expense: \2100000 )

    1.SU(2,1)の標準表現,SU(3,1)の離散系列表現に付随する一般化ホイタッカー関数の明示公式及び一意性定理は、昨年までに筆者により得られていた。本年度の研究計画は、
    (A)この結果の標準表現以外の表現及び、SU(n,1)の場合への拡張
    (B)SU(2,1)保型形式のフーリエ展開の明示公式の数論への応用
    であった。
    2.(A)については、n=2,3の場合に、任意のコホモロジカルな表現に対し一般化ホイタッカー関数を求めた。これはテータリフトの問題と関連しており将来の研究に有用な基礎的関数を提供している。また課題(B)に於ても不可欠な役割を果たした。一般のnの場合への拡張については、離散系列表現に対して一般化ホイタッカー関数の満たす微分差分方程式系を導出した。差分条件の「端」から得られる関数と系全体の両立条件の確認及び一意性成立の十分条件の同定は今後の課題である。また、n【greater than or equal】4の場合にコホモロジ力ルな表現の一般化ホイタッカー関数の「端」での明示公式は、準備されている。残された表現:主系列表現については、その一般化ホイタッカー関数が実解析的アイゼンシュタイン級数のフーリエ展開に不可欠であるため、近い将来に研究を完成したい。
    3.(B)については、標準L-関数のγ-因子に関係するRankin-Selberg型積分の計算を行った。ここで(A)の結果が使われている。また、SU(1,1)からのテータリフトによるSU(2,1)の[大きな」離散系列表現に属する保型形式の実例構成については、J.-S.Li氏の論文を検討することにより、テータ積分核の満たすべき条件を明確にした。これを満たす積分核を構成するための試験関数を捜すには、Rallis,Schiffmann両氏の1980年のモノグラフの中で使われているハイパボロイド上での微分方程式の具体的研究が有効であることが判った。実際の計算には良い座標を見つけることが肝要であり、まだ時間が掛る。構成した保型形式に対して、フーリエ係数の数論性を研究したい。

    researchmap

▼display all

 

Class subject in charge

  • Algebra (2024academic year) 1st and 2nd semester  - 金5~6

  • Algebra a (2024academic year) 1st semester  - 金5~6

  • Algebra b (2024academic year) Second semester  - 金5~6

  • Excercises in Algebra (2024academic year) 1st and 2nd semester  - 金7~8

  • Exercise of Mathematics II (2024academic year) 3rd and 4th semester  - 火7~8

  • Exercise of Mathematics IIa (2024academic year) Third semester  - 火7~8

  • Exercise of Mathematics IIb (2024academic year) Fourth semester  - 火7~8

  • Advanced Practice in Number Theory 1 (2024academic year) Prophase  - その他

  • Advanced Practice in Number Theory 2 (2024academic year) Late  - その他

  • Advanced Practice in Number Theory 3 (2024academic year) Prophase  - その他

  • Advanced Practice in Number Theory 4 (2024academic year) Late  - その他

  • Arithmetic (2024academic year) Prophase  - 月1~2

  • Linear Algebra II (2024academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra II (2024academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra IIa (2024academic year) Third semester  - 金5~6

  • Linear Algebra IIb (2024academic year) Fourth semester  - 金5~6

  • Excercises in Algebra (2023academic year) 1st and 2nd semester  - 金7~8

  • Advanced Algebra IIa (2023academic year) Third semester  - 水3~4

  • Advanced Algebra IIb (2023academic year) Fourth semester  - 水3~4

  • Exercise of Mathematics II (2023academic year) 3rd and 4th semester  - 火7~8

  • Exercise of Mathematics IIa (2023academic year) Third semester  - 火7~8

  • Exercise of Mathematics IIb (2023academic year) Fourth semester  - 火7~8

  • Advanced Practice in Number Theory 1 (2023academic year) Prophase  - その他

  • Advanced Practice in Number Theory 2 (2023academic year) Late  - その他

  • Arithmetic (2023academic year) Prophase  - 月1~2

  • Arithmetic (2023academic year) Prophase  - 月1~2

  • Introduction to Mathematics III (2023academic year) 1st and 2nd semester  - 月7~8

  • Introduction to Mathematics IIIa (2023academic year) 1st semester  - 月7~8

  • Introduction to Mathematics IIIb (2023academic year) Second semester  - 月7~8

  • Excercises in Algebra (2022academic year) 1st and 2nd semester  - 金7~8

  • Advanced Algebra Ia (2022academic year) 1st semester  - 水3~4

  • Advanced Algebra Ib (2022academic year) Second semester  - 水3~4

  • Exercise of Mathematics II (2022academic year) 3rd and 4th semester  - 火7~8

  • Exercise of Mathematics IIa (2022academic year) Third semester  - 火7~8

  • Exercise of Mathematics IIb (2022academic year) Fourth semester  - 火7~8

  • Advanced Lecture on Mathematical Sciences C (2022academic year) Concentration  - その他

  • Arithmetic (2022academic year) Prophase  - 月1~2

  • Linear Algebra II (2022academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra II (2022academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra IIa (2022academic year) Third semester  - 金5~6

  • Linear Algebra IIb (2022academic year) Fourth semester  - 金5~6

  • Excercises in Algebra (2021academic year) 1st and 2nd semester  - 金7,金8

  • Exercise of Mathematics II (2021academic year) 3rd and 4th semester  - 火7,火8

  • Exercise of Mathematics IIa (2021academic year) Third semester  - 火7,火8

  • Exercise of Mathematics IIb (2021academic year) Fourth semester  - 火7,火8

  • Exercise of Mathematics III (2021academic year) 3rd and 4th semester  - 金7,金8

  • Exercise of Mathematics IIIa (2021academic year) Third semester  - 金7,金8

  • Exercise of Mathematics IIIb (2021academic year) Fourth semester  - 金7,金8

  • Invitation to Mathematical Sciences (2021academic year) 1st semester  - 金3~4

  • Arithmetic (2021academic year) Prophase  - 月1,月2

  • Basic Algebra A (2020academic year) 1st and 2nd semester  - 木7,木8

  • Basic Algebra Aa (2020academic year) 1st semester  - 木7,木8

  • Basic Algebra Ab (2020academic year) Second semester  - 木7,木8

  • Excercises in Algebra (2020academic year) 1st and 2nd semester  - 金7,金8

  • Exercise of Mathematics II (2020academic year) 3rd and 4th semester  - 火7,火8

  • Exercise of Mathematics IIa (2020academic year) Third semester  - 火7,火8

  • Exercise of Mathematics IIb (2020academic year) Fourth semester  - 火7,火8

  • Arithmetic (2020academic year) Prophase  - 月1,月2

  • Introduction to Mathematics IVa (2020academic year) Third semester  - 木5,木6

  • Introduction to Mathematics IVb (2020academic year) Fourth semester  - 木5,木6

▼display all

 

Social Activities

  • 集中講義 「保型表現入門」

    Role(s):Lecturer

    2009.10.26 - 2009.10.30

     More details

    Type:Other

    researchmap

  • ”Rankin-Selberg method –through typical examples–”

    Role(s):Lecturer

    2008.8.20

     More details

    Type:Lecture

    researchmap

  • 高校生向け出前授業 「三角形 , 三次曲線 から 数論へ」

    Role(s):Lecturer

    2005.11.19

     More details

    Type:Visiting lecture

    researchmap