Updated on 2025/06/12

写真a

 
ABE Takumi
 
Organization
Faculty of Medicine, Dentistry and Pharmaceutical Sciences Lecturer
Position
Lecturer
External link

Degree

  • 博士(薬学) ( 北海道大学 )

Research Interests

  • 極性転換

  • 安定等価体

  • 生理活性物質

  • 有機合成化学

  • 医薬品化学

  • 天然物化学

  • 不斉合成

  • 有機金属化学

  • 漢方

Research Areas

  • Life Science / Pharmaceutical chemistry and drug development sciences

  • Nanotechnology/Materials / Synthetic organic chemistry

  • Life Science / Environmental and natural pharmaceutical resources

  • Humanities & Social Sciences / Archaeology

  • Life Science / Bioorganic chemistry

  • Nanotechnology/Materials / Chemical biology

▼display all

Education

  • 北海道大学大学院薬学研究科   創薬科学専攻薬品製造化学分野   博士課程

    2002.4 - 2007.3

      More details

  • Health Sciences University of Hokkaido   薬学部  

    1998.4 - 2002.3

      More details

Research History

  • Okayama University   学術研究院医歯薬学域   Lecturer

    2021.4

      More details

  • Okayama University   Graduate School of Medicine , Dentistry and Pharmaceutical Sciences   Lecturer

    2020.10 - 2021.3

      More details

    Country:Japan

    researchmap

  • Health Sciences University of Hokkaido   Faculty of Pharmaceutical Sciences   Lecturer

    2019.4 - 2020.9

      More details

  • 米国Scripps研究所   博士研究員

    2009.1 - 2009.8

      More details

  • Health Sciences University of Hokkaido   Faculty of Pharmaceutical Sciences   Assistant Professor

    2007.4 - 2019.3

      More details

Professional Memberships

Committee Memberships

  • National Science Centre (Narodowe Centrum Nauki (NCN): ポーランド)   研究費審査員  

    2025.6   

      More details

    Committee type:Government

    researchmap

  • 複素環化学討論会   世話人  

    2023   

      More details

  • MDPI   Editorial Board Member of Compounds  

    2022.11   

      More details

    https://www.mdpi.com/journal/compounds/editors

    researchmap

 

Papers

▼display all

MISC

  • First total synthesis of polybromoindole alkaloid (±)-Rivularin A

    徳重慶祐, 阿部匠

    日本薬学会年会要旨集(Web)   144th   2024

  • 小胞体ストレスセンサーIRE1αを標的としたS-ニトロシル化阻害薬の開発

    黒木春那, ZHANG Kam, KUMAR Ashutosh, 阿部匠, 澤田大介, 上原孝

    日本酸化ストレス学会学術集会プログラム・抄録集   77th   2024

  • Development of Novel Antibiotics Based on the Protocol for 3-Aminoindole Synthesis

    阿部匠

    Annual Report of the Okayama Foundation for Science and Technology   ( 33 )   2024

  • IRE1α特異的酸化修飾阻害薬の開発とその抗細胞死効果

    黒木春那, ZHANG Kam, KUMAR Ashutosh, 阿部匠, 澤田大介, 上原孝

    日本薬理学雑誌   159 ( Supplement )   2024

  • Synthesis of 2-aminobenzyl derivatives and 2-aminobenzoyl derivatives by one-carbon deletion of indoline hemiaminals.

    徳重慶祐, 小堀由翔, 阿部匠

    複素環化学討論会講演要旨集   53rd (Web)   2024

  • 極性転換型インドール試薬を用いたC3-N1'ビスインドール骨格の構築

    徳重慶祐, 阿部 匠

    複素環化合物討論会講演要旨集 52th   2023.10

     More details

  • Identification and evaluation of a compound that specifically inhibits oxidative modification of IRE1α

    黒木春那, ZHANG Kam Y.J., 阿部匠, 澤田大介, 上原孝

    日本薬学会年会要旨集(Web)   143rd   2023

  • Characterization of a specific inhibitor of DNMT3B S-nitrosylation

    伊藤嘉崇, 山元黎奈, 野村亮輔, 阿部匠, 澤田大介, 上原孝

    日本薬学会年会要旨集(Web)   143rd   2023

  • Development and application of indolyl azide equivalents based on the stabilization by O-Nβ bonding

    山城寿樹, 阿部匠, 谷岡卓, 神野伸一郎, 澤田大介

    日本薬学会年会要旨集(Web)   142nd   2022

  • Synthesis of 2-arylindoles by the dehydrative skeletal rearrangement and its application

    清水香帆, 阿部匠, 谷岡卓, 神野伸一郎, 澤田大介

    日本薬学会年会要旨集(Web)   142nd   2022

  • アジドインドリンの開発とその応用

    山城寿樹, 阿部匠, 谷岡卓, 神野伸一郎, 澤田大介

    反応と合成の進歩シンポジウム講演要旨集   48th   2022

  • チオアミドを用いたペプチドN末端カルバメート保護基変換反応の開発

    茨実穂, 阿部匠, 澤田大介

    反応と合成の進歩シンポジウム講演要旨集   47th   2021

  • ベンゾチアゾール連結型大環状化合物の合成研究

    和久夢, 木全桃子, 阿部匠, 澤田大介

    反応と合成の進歩シンポジウム講演要旨集   47th   2021

  • 二重極性転換型インドール試薬の開発と芳香族求核置換反応への応用

    平尾誠弥, 阿部匠, 澤田大介

    反応と合成の進歩シンポジウム講演要旨集   47th   2021

  • Synthesis of benzothiazole-linked polycyclic compounds via intramolecular C-H bond activation - cyclization and application to macrocyclic compounds

    和久夢, 阿部匠, 澤田大介

    日本薬学会年会要旨集(Web)   141st   2021

  • Synthesis of Indolyacetamides by Alkylation・Cyclization・O-Transfer Reactions

    阿部匠, 野田健太, 澤田大介

    日本薬学会年会要旨集(Web)   141st   2021

  • 多金属ヒドリドクラスター インドールの極性転換 Bpy触媒 Z型配位子

    島 隆則, 阿部 匠, 尾西 尚弥, 姫田 雄一郎, 稲垣 冬彦

    有機合成化学協会誌   78 ( 6 )   637 - 637   2020

     More details

    Language:Japanese   Publisher:公益社団法人 有機合成化学協会  

    DOI: 10.5059/yukigoseikyokaishi.78.637

    CiNii Article

    researchmap

  • Synthesis of Isochromeno[3,4-b]indolines by Intramolecular Friedel-Crafts-Type Cyclizations

    山城寿樹, 山田康司, 吉田悠, 冨坂祐太朗, 西剛秀, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   140th   2020

  • Development of practical synthesis of spiro[indole-3,3’-pyrrolidone]

    安井基博, 石川真帆, 吉田龍仁, 武田紀彦, 平尾誠弥, 阿部匠, 上田昌史

    日本薬学会年会要旨集(CD-ROM)   140th   2020

  • フォンタネシンBの初全合成

    伊藤智貴, 阿部匠, 寺崎将, 山田康司

    日本薬学会年会要旨集(CD-ROM)   139th   2019

  • Benzyl Claisen/Cope転位を経由する4-ベンジル-2-オキシインドールの合成

    山田康司, 小坂祐太, 浅野未来, 原澤夏希, 三品茜, 永末みさと, 杉本有里, 片川和明, 末木俊輔, 穴田仁洋, 阿部匠

    反応と合成の進歩シンポジウム講演要旨集   45th   2019

  • One-pot synthesis of fused 2-pyridones from heteroarylacrylic acid via Curtius rearrangement and microwave- assisted thermal electrocyclization

    36   37 - 37   2018.12

     More details

  • 構造活性相関 分子ローター カスケード反応 有機電界効果トランジスタ(OFET)特性

    渡辺 匠, 清尾 康志, 阿部 匠, 片桐 洋史

    有機合成化学協会誌   76 ( 8 )   851 - 851   2018

     More details

    Language:Japanese   Publisher:公益社団法人 有機合成化学協会  

    DOI: 10.5059/yukigoseikyokaishi.76.851

    CiNii Article

    researchmap

  • Ullmannアリール化/2-アミド化カスケード反応の開発

    松原裕希, 高橋侑加, 山田康司, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   138th   2018

  • P2-16 Developement of Indole-2,3-epoxide Equivalent and Synthesis of Antimalarial Cryptolepine

    Yamada Koji, Abe Takumi

    Symposium on the Chemistry of Natural Products, symposium papers   60   583-588   2018

     More details

    Language:Japanese   Publisher:Symposium on the Chemistry of Natural Products Steering Committee  

    DOI: 10.24496/tennenyuki.60.0_583-588

    CiNii Article

    researchmap

  • アンモニウム塩とガンマカルボリンを用いるカスケード反応の開発

    阿部匠, 清水遥, 高田志緒里, 田中崇大, 吉川舞, 山田康司

    反応と合成の進歩シンポジウム講演要旨集   44th   2018

  • 酸化銅を用いたジベンゾジアゾシンのワンポット合成

    阿部匠, 木田恒志郎, 山田康司

    日本薬学会年会要旨集(CD-ROM)   138th   2018

  • アゼピノインドールアルカロイドの短工程合成研究

    山田康司, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   138th   2018

  • Phaitanthrin E異性体の合成

    高橋侑加, 松原裕希, 山田康司, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   138th   2018

  • オルト効果を利用したインドロ[1,2-a]キナゾリノン簡便合成法の開発

    阿部匠, 高橋侑加, 松原裕希, 山田康司

    複素環化学討論会講演要旨集   48th   2018

  • Iheyamine Aの全合成

    山田康司, 阿部匠

    反応と合成の進歩シンポジウム講演要旨集   44th   2018

  • A One-pot Synthesis of Phaltanthrin E Through Intermolecular Condensation/Intramolecular Aryl C-H Amination Cascade

    35   38 - 38   2017.12

     More details

  • Total Synthesis of Carbazole-1,4-quinone Alkaloid Koeniginequinones A and B based on a One-Pot Cyclocarbonylation Procedure from 2-Alkenyl-3-iodoindole

    35   41 - 41   2017.12

     More details

  • Concise Total Synthesis of Pyrido[4,3-b]carbazole Alkaloids Using Copper-Mediated 6冗-Electrocyclization

    35   37 - 37   2017.12

     More details

  • Concise Synthesis of Carbazole-1,4-quinons and Evaluation of Thier Antiproliferative Activity against HCT-116 and HL-60 Cells

    35   39 - 39   2017.12

     More details

  • SYNTHESIS OF (±)-CEPHALANTHRIN A USING BAEYER-VILLIGER OXIDATION (Dedicated to Professor Dr. Masakatsu Shibasaki on the occasion of his 70th birthday)

    Heterocycles : an international journal for reviews and communications in heterocyclic chemistry   95 ( 1 )   507 - 516   2017.1

     More details

    Language:English   Publisher:Japan Institute of Heterocyclic Chemistry  

    CiNii Article

    CiNii Books

    researchmap

  • アゼピノインドール骨格の簡便合成とアルカロイド合成への応用

    山田康司, 阿部匠

    複素環化学討論会講演要旨集   47th   2017

  • インドール-3-カルボン酸メチルの2-アミノ化/環化カスケード反応の開発

    阿部匠, 山田康司

    複素環化学討論会講演要旨集   47th   2017

  • P-43 Synthesis of Azepinoindole Allaloids via a C-4 Pictet-Spengler Reaction

    Yamada Koji, Abe Takumi

    Symposium on the Chemistry of Natural Products, symposium papers   59   405 - 410   2017

     More details

    Language:Japanese   Publisher:Symposium on the Chemistry of Natural Products Steering Committee  

    Clavicipitic acid (1), aurantioclavine (2), fargesine (3), cimitrypazepine (4),
    hyrtiazepine (5), hyerimomine A-C (6-8), hyrtinadines C, D (9, 10) and hyrtioleticulins C, D
    (11, 12) are a unique family of indole alkaloids characterized by a novel
    azepino[5,4,3-cd]indole ring system. In our continuing interest in the synthesis of indole
    alkaloids, we have developed a biomimetic approach by constructing the
    azepino[5,4,3-cd]indole in a one-pot manner through the base promoted C-4 Pictet-Spengler reaction of Nb-benzylserotonin (13) or 5-hydroxytryptophan methyl ester (19) with aldehydes. This strategy allowed the synthesis of common key structures of azepinoindole
    families.
    A concise synthesis of aurantioclavine (5) was accomplished in only three steps from
    Nb-benzylserotonin (13) and aldehyde 20 by using this strategy. The reaction of 13 with 20
    in the presence of Et3N in MeOH, followed by treatment with Tf2O provided azepinoindole 29 in 60% yield. Subsquentry, conversion of 29 to 2 was achived via catalytic reduction.
    Recentry, we reported the first synthesis of the azepinoindole alkaloid hyrtioreticulins
    C and D (11, 12) through a C-4 Pictet-Spengler reaction between 5-hydroxytryptophan
    methyl ester (19) and acetaldehyde (21). The C-4 Pictet-Spengler reaction using DIEA in
    MeOH was carried out under microwave irradiation, and allowed to give trans-25a and
    cis-25b in 59% and 4% yield, respectively. The methyl esters 25 were subjected to
    hydrolysis and gave hyrtioreticulins C and D (11, 12) in 70-72% yield.
    On the other hand, the reaction of 19 with indole-3-carbaldehyde 22 was successful in
    the presence of DABCO in TFE, leading to 26 in 85% yield. The removal of Ts and Bn
    group were performed by Mg/MeOH and H2/Pd-C provided 32 in 50%. Further
    transformation to 5 was failed due to instability of 32 under oxidation conditions.
    Further studies directed to the synthesis of other azepinoindole alkaloids with the use of
    base-promoted C-4 Pictet-Spengler reaction are in progress.

    DOI: 10.24496/tennenyuki.59.0_405

    CiNii Article

    researchmap

  • インドレニンの酸触媒活性化を利用したphaitanthrin Eの簡便合成

    阿部匠, 山田康司

    日本薬学会年会要旨集(CD-ROM)   137th   2017

  • インドロキノリン骨格の簡便合成

    山田康司, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   137th   2017

  • Ritter型カスケード反応を用いるキナゾリノンとジアゾシンの簡便合成

    阿部匠, 木田恒志郎, 山田康司

    反応と合成の進歩シンポジウム講演要旨集   43rd   2017

  • インドール-2,3-エポキシド等価体の合成と求核試薬との反応

    山田康司, 鈴木拓郎, 穴田仁洋, 松永茂樹, 阿部匠

    反応と合成の進歩シンポジウム講演要旨集   43rd   2017

  • Simple indole alkaloids and those with a nonrearranged monoterpenoid unit

    ( 34 )   33 - 33   2016.12

     More details

  • Concise Total Syntheses of Indolo[2,1-b]quinazoline alkaloids

    Abe Takumi, Itoh Tomoki, Taguchi Ryo, Ishikura Minoru

    Symposium on the Chemistry of Natural Products, symposium papers   58 ( 0 )   Poster11   2016

     More details

    Language:Japanese   Publisher:Symposium on the Chemistry of Natural Products Steering Committee  

    <p> Tryptanthrin (1a), a indolo[2,1-b]quinazoline alkaloid with a potent antitumor activity, was isolated from the culture of fungus Candida lipolytica. Several related alkaloids, such as candidine (2), phaitanthrins A (3), B (4), C (5), D (6), E (7), cruciferane (8), and cephalanthrin A (9) have also been found in a wide range of natural sources. Because their diverse biological activities and structural intricacy, these alkaloids have been the target numerous synthetic studies. We envisaged oxidative dimerization of indoles for the construction of these indolo[2,1-b]quinazoline. Herein, we describe the total synthesis of indolo[2,1-b]quinazoline alkaloids tryptanthrin (1a), candidine (2), phaitanthrins A (3), B (4), C (5), E (7), cruciferane (8), and cephalanthrin A (9) using oxidative dimerization of indoles or amination/condensateion cascade as the key step.</p><p> After intensive investigations, we found that urea hydrogen peroxide (UHP) prompted dimerization of indole-3-carbaldehyde (10a) to tryptanthrin (1a) in good yields, while other oxidants did not cause this dimerization at all. In addition, oxidative dimerization of skatole (11a) via C-H oxidation, afforded 1a, could proceed in the presence of CuI and PCC. </p><p> Next, the conversion of 1a to phaitanthrins A (3), B (4), C (5) cruciferane (8), and cephalanthrin A (9) could be carried out. In the course of their synthesis, the unprecedented one-pot formation of candidine (2) via trimerization of 10a in the presence of UHP and a catalytic amount of (PhSe)<sub>2</sub> was also observed. </p><p> Phaitanthrin E (7) was also synthesized by a novel methodology that features a concise approach involving the intermolecular condensation and intramolecular aryl C-H amination mediated by Cu-complexes to construct the indolo[2,1-b]quinazoline core. In the key Cu-mediated condensation/amination cascade, a combination of CuI and Et<sub>3</sub>N turned out to effect conversion of methyl indole-3-carboxylate (15) to phaitanthrin E (7) in one-pot protocol. Moreover, the acid catalyzed one-pot synthesis of phaitanthrin E (7) via intermolecular aryl C-H amination/intramoecular cyclization cascade using NCS was also developed. </p>

    DOI: 10.24496/tennenyuki.58.0_Poster11

    CiNii Article

    researchmap

  • スカトールのC-H酸化反応を経由するtryptanthrinの合成

    阿部匠, 伊藤智貴, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   136th   2016

  • (±)-セファランスリンAの簡便合成

    伊藤智貴, 阿部匠, 石倉稔

    複素環化学討論会講演要旨集   46th   2016

  • Baeyer-Villiger転位反応を用いた(±)-cephalanthrin Aの合成

    伊藤智貴, 阿部匠, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   136th   2016

  • スカトールの酸化的二量化反応によるインドロキナゾロンのワンポット合成

    阿部匠, 伊藤智貴, 仲村修平, 石倉稔

    反応と合成の進歩シンポジウム講演要旨集   41st   2015

  • 新規タンデムDakin酸化反応によるtryptanthrinの簡便合成

    阿部匠, 伊藤智貴, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   135th   2015

  • ラン科植物アルカロイドphaitanthrin Eの合成研究

    伊藤智貴, 阿部匠, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   135th   2015

  • Tryptanthrin類の簡便合成

    伊藤智貴, 阿部匠, 石倉稔

    複素環化学討論会講演要旨集   45th   2015

  • Effect of the orthoquinone moiety in 9,10-phenanthrenequinone on the ability to induce in HCT-116 and HL-60 cells.

    ( 32 )   18 - 19   2014.12

     More details

    Language:English  

    9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity.9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity.

    CiNii Article

    CiNii Books

    researchmap

  • One-pot construction of 3,3'-bisindolylmethanes through Bartoli indole synthesis.

    ( 32 )   20 - 20   2014.12

     More details

    Language:English  

    A one-pot approach to 3,3'-bisindolylmethane derivatives from nitrobenzene derivatives through the Bartoli indole synthesis was developed, in which the acid used to quench the reaction markedly affected its outcome. Quenching the reaction with concd HCl produced 3,3'-bisindolylmethane in contrast to the formation of 7-substituted indole by quenching with NH4Cl.A one-pot approach to 3,3'-bisindolylmethane derivatives from nitrobenzene derivatives through the Bartoli indole synthesis was developed, in which the acid used to quench the reaction markedly affected its outcome. Quenching the reaction with concd HCl produced 3,3'-bisindolylmethane in contrast to the formation of 7-substituted indole by quenching with NH4Cl.

    CiNii Article

    CiNii Books

    researchmap

  • Simple indole alkaloids and those with a non-rearranged monoterpenoid unit.

    ( 32 )   17 - 17   2014.12

     More details

    Language:English  

    Covering: 2010-2011. Previous review: Nat. Prod. Rep. 2010, 27, 1630-1680This review covers the literature on simple indole alkaloids and those with a non-rearranged monoterpenoid unit from the beginning of 2010 up to the end of 2011, which includes newly isolated alkaloids, structure determinations, total syntheses and biological activities.Covering: 2010-2011. Previous review: Nat. Prod. Rep. 2010, 27, 1630-1680This review covers the literature on simple indole alkaloids and those with a non-rearranged monoterpenoid unit from the beginning of 2010 up to the end of 2011, which includes newly isolated alkaloids, structure determinations, total syntheses and biological activities.

    CiNii Article

    CiNii Books

    researchmap

  • Calothrixin B誘導体によるHL-60細胞への抗腫瘍活性の発現

    波多江 典之, 西山 卓志, 町支 臣成, 日比野 俐, 阿部 匠, 岡田 知晃, 石倉 稔, 豊田 栄子

    日本薬学会年会要旨集   134年会 ( 2 )   227 - 227   2014.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

    J-GLOBAL

    researchmap

  • Total Synthesis of Antitumor Indole Alkaloids by Cu-catalyzed 6π-electrocyclization

    Abe Takumi, Ishikura Minoru

    Symposium on the Chemistry of Natural Products, symposium papers   56 ( 0 )   Poster4   2014

     More details

    Language:Japanese   Publisher:Symposium on the Chemistry of Natural Products Steering Committee  

    <p> Ellipticine (1), a pyridocarbazole alkaloid with a potent antitumor activity, was isolated from Ochrosia elliptica Labill in 1959. Due to its unique structure as well as potent antitumor activity, 1 have attracted much attention in chemical and biological communities. The structurally-related alkaloids calothrixin A (2) and B (3), a potent antitumor antibiotics, were isolated from cyanobacteria Calothrixin 1999. These alkaloids are characterized by the fused polycyclic ring systems including carbazole. Although there have been reported 6p-electrocyclization that allow concise construction of carbazole core, there was no precedent for construction of carbazoles by catalytic 6p-electrocyclization. We envisaged catalytic 6p-electrocyclization of triene containing indole for the construction of these carbazole core. Herein, we describe the total synthesis of antitumor indole alkaloids based on the Pd-catalyzed tandem cross-coupling/cyclization and Cu-catalyzed 6p-electrocyclization of trienes. </p><p> The triene 6 were readily synthesized from indolylborate 4 and enyne 5 by Pd-catalyzed tandem cross-coupling/cyclization in one-pot protocol. After intensive investigations, we found that (CuOTf)<sub>2</sub>•toluene complexes prompted cyclization of 6 to carbazole 7 in good yields, while other Lewis acids and metal complexes did not cause this cyclization at all. In addition, this Cu-promoted cyclization could proceed in the presence of catalytic amount of (CuOTf)<sub>2</sub>•toluene complexes. This is a first example for 6p-electrocyclization catalyzed by Cu-complexes. Finally, deprotection and oxidation sequeneces of 7 gave ellipticine (1), 9-methoxyellipticine (10), m-alkaloid D (12) and tetrahydroellipticine (13). In the almost same manner, we have completed total synthesis of olivacine (20), guatambuine (22) and janetine (23) as well from carbazole 7d.</p><p> Calothrixin A (2) and B (3) were also synthesized by a convergent methodology that features a concise approach involving the above-mantioned Pd-catalyzed tandem cross-coupling/cyclization, Cu-catalyzed 6p-electrocyclization to construct the carbazole core and Dakin oxidation. In the key Cu-catalyzed 6p-electrocyclization and Dakin oxidation, a combination of Cu(OAc)<sub>2</sub> and PCC turned out to effect conversion of 6b to 26 in one-pot protocol. </p>

    DOI: 10.24496/tennenyuki.56.0_Poster4

    CiNii Article

    researchmap

  • タンデムBartoli反応を利用した3,3’-ビスインドリルメタンの簡便合成

    阿部匠, 伊藤智貴, 仲村修平, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   134th   2014

  • ピリドカルバゾールアルカロイドの短工程合成

    阿部匠, 内山章, 池田敏明, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   134th   2014

  • Bartoliインドール合成の新展開:3,3’-ビスインドリルアルカン類のワンポット合成

    阿部匠, 仲村修平, 石倉稔

    複素環化学討論会講演要旨集   44th   2014

  • インドロキナゾリンの簡便合成

    阿部匠, 伊藤智貴, 石倉稔

    反応と合成の進歩シンポジウム講演要旨集   40th   2014

  • Total synthesis of calothrixins A and B by a palladium-catalyzed tandem cyclization / cross-coupling reaction of indolylborate

    ( 31 )   21 - 21   2013.12

     More details

  • Calothrixin B誘導体の合成による抗腫瘍活性の向上

    波多江典之, 阿部匠, 西山卓志, 町支臣成, 日比野俐, 岡田知晃, 石倉稔, 豊田栄子

    メディシナルケミストリーシンポジウム講演要旨集   31st   185   2013.11

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • ビスエリプチシンアルカロイドstrellidimineの合成研究

    石倉稔, 石部祥果, 上田香織, 仲村修平, 阿部匠

    日本薬学会年会要旨集(CD-ROM)   133rd   2013

  • Bartoliインドール合成を経由する3,3’-ビスインドリルメタン類のワンポット合成

    阿部匠, 仲村修平, 柳谷束, 石倉稔

    反応と合成の進歩シンポジウム講演要旨集   39th   2013

  • 2,2′-ビインドールの触媒的合成法の開発

    阿部匠, 桜田尚季, 村永諒, 柳谷束, 石倉稔

    日本薬学会年会要旨集(CD-ROM)   133rd   2013

  • ビスインドールアルカロイドyuehchukeneの短工程全合成

    石倉稔, 阿部匠

    日本薬学会年会要旨集   132nd ( 2 )   2012

  • ヘキサトリエンのワンポット構築法を利用したCalothrixin類の簡便全合成

    阿部匠, 池田敏明, 石倉稔

    複素環化学討論会講演要旨集   42nd   2012

  • インドリルボレートを用いる抗腫瘍性抗生物質カロトリキシンAとBの全合成

    池田敏明, 阿部匠, 成田忠義, 石倉稔

    日本薬学会年会要旨集   132nd ( 2 )   2012

  • 分子内C-Hアリール化反応を用いる2,2’-ビインドールの触媒的合成

    阿部匠, 桜田尚季, 村永諒, 柳谷束, 石倉稔

    反応と合成の進歩シンポジウム講演要旨集   38th   2012

  • 触媒的1,6-電子環状反応を利用したピリドカルバゾールの合成

    阿部匠, 池田敏明, 石倉稔

    日本薬学会年会要旨集   132nd ( 2 )   2012

  • Total Synthesis of Calothrixins A and B

    Abe Takumi, Ikeda Toshiaki, Ishikura Minoru

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   37 ( 0 )   18 - 18   2011

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    We have demonstrated a new approach to synthesizing calothrixins A and B through the palladium-catalyzed tandem cyclization/cross-coupling reaction of indolylborate by taking advantage of the one-pot generation of the hexatrienes as a key intermediate for constructing indolophenanthridine. In addition, the unprecedented use of CuOTf for 6&pi;-electrocyclization of hexatriene was developed. In another key transformation, indolophenanthridine quinone core of calothrixins was prepared from the indolophenanthridine aldehyde <I>via</I> one-pot Dakin oxidation sequence catalyzed by diphenyldiselenide.

    DOI: 10.14895/hannou.37.0.18.0

    CiNii Article

    researchmap

  • Calothrixins AとBの全合成

    阿部匠, 池田敏明, 石倉稔

    反応と合成の進歩シンポジウム講演要旨集   37th   2011

  • Indolylcyanocuprateを利用したRhazinilamの合成研究

    阿部匠, 池田敏明, 山田康司, 石倉稔

    日本薬学会年会要旨集   131st ( 2 )   2011

  • 簡便なアゼピノインドール環形成反応を用いたhyrtiazepineの合成研究

    山田康司, 晴山知拓, 阿部匠, 石倉稔

    日本薬学会年会要旨集   131st ( 2 )   2011

  • アゼピノインドールを経由したセロトニン関連化合物の簡便合成法の開発

    山口紗靖佳, 山田康司, 阿部匠, 石倉稔

    日本薬学会年会要旨集   131st ( 2 )   2011

  • タンデム型クロスカップリング反応を用いるCalothrixin Bの合成研究

    池田敏明, 阿部匠, 山田康司, 石倉稔

    日本薬学会年会要旨集   131st ( 2 )   2011

  • Development of Tandem Hydroarylation/Chan-Evans-Lam Coupling Reaction of Bicyclolactam Catalyzed by Combined Metal-Complex

    Abe Takumi, Takeda Hiroyuki, Yamada Koji, Ishikura Minoru

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   36 ( 0 )   8 - 8   2010

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    Aryl-substituted 2-azabicyclo[2.2.1]heptanes (aryl-ABH) have significant biological activities. To open the concise entry to aryl-ABH, we have examined metal-catalyzed cross-coupling reaction of arylboronic acids and ABH. When the reaction was carried out with arylboronic acid and ABH in the presence of rhodium/copper combined catalyst under microwave irradiation, diarylated ABH were obtained in one-pot manner. Rhodium complex promoted catalytic addition of arylboronic acids to the double bonds of ABH, and copper complex were essential for the catalytic N-arylation of the amide moiety of ABH.

    DOI: 10.14895/hannou.36.0.8.0

    CiNii Article

    J-GLOBAL

    researchmap

  • アゼピノインドールを経由したセロトニン関連化合物の簡便合成法

    山口紗靖佳, 山田康司, 阿部匠, 石倉稔

    複素環化学討論会講演要旨集   40th   2010

  • 銅触媒を用いたRitter型三成分カップリング反応によるN,N’-二置換鎖状アミジンのジアステレオ選択的合成

    阿部匠, 武田浩幸, 山田康司, 石倉稔

    日本薬学会年会要旨集   130th ( 2 )   2010

  • アゼピノインドール型アルカロイドhyrtiazepineの合成研究

    山田康司, 晴山知拓, 阿部匠, 石倉稔

    日本薬学会年会要旨集   130th ( 2 )   2010

  • アゼピノインドール類を経由したセロトニン誘導体の合成

    山口紗靖佳, 山田康司, 阿部匠, 石倉稔

    日本薬学会年会要旨集   130th ( 2 )   2010

  • Construction of Azepinoindole nucleus by Reaction of Serotonins with aldehydes in the Presence of a Base

    Haruyama Tomohiro, Yamada Koji, Abe Takumi, Ishikura Minoru

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   35 ( 0 )   55 - 55   2009

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    Pictet-Spengler reaction is one of the most versatile synthetic method in heterocyclic synthesis. Generally, tryptamine derivatives are known to react with aldehydes under acidic or neutral conditions to produce beta-calbolines. On the other hand, we have found that the reaction of Nb-benzylserotonin with aldehydes in the presence of a base proceeded the cyclization to the 4-position of the indole ring, producing azepino[5,4,3-cd]indoles. Therefore, we have investigated the applicability of other aldehydes and serotonin derivatives to the cyclization reaction to devise a novel synthetic route to azepinoindole alkaloids.

    DOI: 10.14895/hannou.35.0.55.0

    CiNii Article

    J-GLOBAL

    researchmap

  • Investigation on the chemical diversity of 2-azabicyclo[2.2.1]hept-5-en-3-one (ABH)

    山口紗靖佳, 武田浩幸, 阿部匠, 山田康司, 石倉稔

    複素環化学討論会講演要旨集   39th   2009

  • Catalytic Diamination of Alkenes with Dichloramine-T and Nitriles as Nitrogen Sources

    Takeda Hiroyuki, Abe Takumi, Yamada koji, Ishikura Minoru

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   34 ( 0 )   8 - 8   2008

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    The 1,2-differentiated diamination of unactivated alkenes was achieved using dichloramine-T (TsNCl2 and CH3CN as nitrogen sources in the presence of a catalytic amount of copper(II) complex. Various alkenes and nitriles could be applicable for the diamination, in which the cis-selectivities were observed in all cases. However, a few substrates gave poor yields mainly due to the formation of haloamine side product which would arised from ring-opening of the aziridinium intermediates by Cl- in an SN2 manner instead of CH3CN. In these cases, the enhanced formation of diamine was observed when the reaction was performed at -20 C. The methodology described herein allows rapid access to cis-vicinal diamines.

    DOI: 10.14895/hannou.34.0.8.0

    CiNii Article

    J-GLOBAL

    researchmap

  • ロジウム錯体を用いる2-アザビシクロ[2.2.1]ヘプト-5-エン-3-オンのアリール化反応の開発

    阿部匠, 高橋有美, 石倉稔

    日本薬学会年会要旨集   128th ( 2 )   2008

  • Synthesis of azepino-indole alkaloids using novel cyclization of serotonin and aldehydes

    晴山知拓, 滑川祐市, 山田康司, 阿部匠, 石倉稔

    複素環化学討論会講演要旨集   38th   2008

  • 銅錯体を用いる2-アザビシクロ[2.2.1]ヘプト-5-エン-3-オンとアリールボロン酸のクロスカップリング反応の開発

    武田浩幸, 阿部匠, 石倉稔

    日本薬学会年会要旨集   128th ( 2 )   2008

  • Development of Catalytic Arylation of Bicyclolactam ABH (2-azabicyclo[2.2.1]hept-5-en-2-one)

    Abe Takumi, Takeda Hiroyuki, Takahashi Yumi, Ishikura Minoru

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   33 ( 0 )   54 - 54   2007

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    The arylation of 2-azabicyclo[2.2.1]hept-5-en-3-ones (ABH) with arylboronic acids was achieved using a catalytic amount of a rhodium(I) complex under microwave irradiation, in which the ring-opening of ABH and the multiple alkylation did not occur. The remote substituents effects on the chemical yields and the regioselectivities (syn : anti = 56 : 44 to 85 : 15) were observed. On the other hand, the reaction under the conventional conditions was sluggish in all cases. Using copper(II) complex, addition of arylboronic acids to N-H ABH under the conventional conditions afforded N-arylated ABH in good yield. In this case, the microwave irradiation was also found to promote the arylation of ABH, improving the rates and yields of these reactions.

    DOI: 10.14895/hannou.33.0.54.0

    CiNii Article

    J-GLOBAL

    researchmap

  • Synthetic study of 2-alkoxyindoles

    山田康司, 小坂祐太, 武田浩幸, 阿部匠, 石倉稔

    複素環化学討論会講演要旨集   37th   2007

  • Enantioselective Amidation of Silyl Enol Ether Catalyzed by Chiral Dirhodium(II) Complexes

    Tanaka Masahiko, Abe Takumi, Anada Masahiro, Hashimoto Shunichi

    Proceedings of the Symposium on Progress in Organic Reactions and Syntheses   32 ( 0 )   28 - 28   2006

     More details

    Language:Japanese   Publisher:Division of Organic Chemistry, The Pharmaceutical Society of Japan  

    A recent study from our laboratory has shown that Rh2(S-TCPTTL)4, characterized by substitution of chlorine atoms for four hydrogen atoms on the phthalimido group in the parent Rh(II) complex, is well suited for enantioselective C&ndash;H amidation reation with [(4-nitrophenyl)sulfonylimino]phenyliodinane. As a logical extension of our study in this area, we addressed the enantioselective amidation of silyl enol ethers catalyzed by chiral Rh(II) carboxylates. The Rh(II)-catalyzed aziridination of acyclic silyl enol ethers with [(2-nitrophenyl)sulfonylimino]phenyliodinane followed by treatment with aq. TFA afforded optically active &alpha;-amino ketones. The fluorinated catalyst, Rh2(S-TFPTTL)4, proved to be the catalyst of choice for this process, exhibiting the highest enantioselectivity of 95% ee. The effectiveness of the present catalytic method has been demonstrated by the enantioselective synthesis of (&ndash;)-metazocine.

    DOI: 10.14895/hannou.32.0.28.0

    CiNii Article

    J-GLOBAL

    researchmap

  • キラルなRh(II)錯体を用いたα-アルキル-α-ジアゾアセタートの分子内不斉C-H挿入反応

    南和志, 小野塚智洋, 阿部匠, 穴田仁洋, 橋本俊一

    日本薬学会年会要旨集   126th ( 4 )   2006

  • 高性能スピロ型ジホスファイト配位子の開発

    阿部匠, 日下奈津子, 穴田仁洋, 橋本俊一

    日本薬学会年会要旨集   126th ( 4 )   2006

  • スピロ型ジホスファイト配位子の開発と不斉触媒反応への応用

    阿部匠, 日下奈津子, 穴田仁洋, 橋本俊一

    次世代を担う有機化学シンポジウム講演要旨集   4th   2006

  • 新規スピロ型ジホスファイト配位子-ロジウム錯体を触媒とする有機ボロン酸の不斉共役付加反応

    阿部匠, 日下奈津子, 穴田仁洋, 橋本俊一

    日本薬学会年会要旨集   125th ( 4 )   2005

  • 新規スピロ型ジホスファイト配位子を用いた触媒的不斉アリル化反応

    阿部匠, 大石寛之, 田村雅史, 穴田仁洋, 橋本俊一

    日本薬学会年会要旨集   123rd ( 2 )   2003

▼display all

Awards

  • Outstanding Reviewer Royal Society of Chemistry (英国王立化学会)

    2023.3   RSC Advances (RSC Adv.)  

    阿部匠

     More details

  • 岡山工学振興会科学技術賞

    2022.7   公益財団法人 岡山工学振興会  

     More details

  • Outstanding Reviewer Royal Society of Chemistry (英国王立化学会)

    2022.3   Organic Biomolecular Chemistry (OBC)  

    阿部匠

     More details

  • アステラス製薬研究企画賞

    2014.12   有機合成化学協会   「金属錯体のエージングを利用した新規反応の開発」

    阿部匠

     More details

  • 奨励賞

    2011.11   日本薬学会北海道支部   「多官能性合成素子の開発と天然物合成への応用」

    阿部匠

     More details

Research Projects

  • インドリンのオンデマンド切断の開発と応用

    2025.06 - 2026.03

    公益財団法人 岡山工学振興会  学術研究助成 –萌芽研究

      More details

    Authorship:Principal investigator 

    researchmap

  • ドラッグリポジショニング ビヨンド: 既存医薬関連物の作りかえ

    2025.06 - 2026.02

    岡山県産業労働部 産業振興課  令和7年度特別電源所在県科学技術振興事業に係る委託研究テーマ  ものづくり産業の高度化・新産業の創出につながる基盤技術研究

      More details

    Authorship:Principal investigator 

    researchmap

  • 触媒と電気によるトリプトファン含有ペプチドの新規修飾法の開発

    2025.04 - 2027.03

    公益財団法人 中国電力技術研究財団  試験研究(A)助成 

      More details

    Authorship:Principal investigator 

    researchmap

  • インドールの極性転換を利用した新規感染症治療薬の創出

    2023.04 - 2024.03

    公益財団法人 高橋産業経済研究財団  研究助成(継続) 

      More details

    Authorship:Principal investigator 

    researchmap

  • 酸化還元制御型第四級炭素構築法の開発

    2023.04 - 2024.03

    公益財団法人 中部電気利用基礎研究振興財団  研究助成A2 

      More details

    Authorship:Principal investigator 

    researchmap

  • アミノインドール合成法を基盤とした新規感染症治療薬の創出

    2022.06 - 2023.03

    公益財団法人 岡山工学振興会  一般研究助成  一般研究助成

      More details

    Authorship:Principal investigator 

    researchmap

  • 薬剤耐性ガン治療薬の創出を指向したα置換インドリルアセタミド誘導体の網羅的合成

    2022.04 - 2027.03

    公益財団法人 武田科学振興財団  薬学系研究助成 

      More details

    Authorship:Principal investigator 

    researchmap

  • アルコキシ基を極性転換スイッチとした分子変換手法の開発

    Grant number:22K06503  2022.04 - 2025.03

    日本学術振興会  科学研究費補助金 基盤研究(C)  基盤研究(C)

    阿部 匠

      More details

    Authorship:Principal investigator 

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    researchmap

  • インドールの極性転換を利用した新規感染症治療薬の創出

    2022.04 - 2023.03

    公益財団法人 高橋産業経済研究財団  研究助成 

      More details

    Authorship:Principal investigator 

    researchmap

  • Development of Reactivity of Aging Metal-Complexes

    Grant number:16K18849  2016.04 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)  Grant-in-Aid for Young Scientists (B)

    ABE Takumi

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    Investigation of the reactivity of aging metal complexes are important in the green chemistry due to their high cost. This works were conducted from viewpoint of both use of aging metal complexes and development of novel reactivity of the aging metal complexes. It is found that aged Lewis acid catalyst could promote dehydrate Mannnichi-type cyclization of 2-hydroxyindolines. Thus the aged Lewis acid showed higher reactivity in comparison with fresh Lewis acid. We accomplished the total synthesis of iheyamine A using this aged Lewis acid catalyst.

    researchmap

  • アレルギー皮膚疾患患者に用いることのできる優しい新規染料の合成探索

    2016.04 - 2017.03

    一般財団法人ホーユー科学財団  研究助成 

    阿部匠

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 心筋様細胞への分化促進剤の設計と合成探索

    2015.07

    一般財団法人北海道心臓協会  研究開発調査助成 

    阿部匠

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • トリエンの銅触媒カルボ6p-電子環状反応を用いる縮環型カルバゾールの合成

    2015.06 - 2016.03

    公益財団法人秋山記念生命科学振興財団  研究助成(奨励) 

    阿部匠

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • ビスインドリルメタンの新規合成

    2015.06

    公益財団法人伊藤医薬学術交流財団  海外留学研究等の交流助成 

    阿部匠

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 金属錯体のエージングを利用した新規反応の開発

    2015.04 - 2017.03

    アステラス製薬  有機合成化学協会研究企画賞 

    阿部匠

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Synthesis of bioactive indole alkaloid using functionallised synthetic synthon

    Grant number:26460012  2014.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Ishikura Minoru

      More details

    Grant amount:\5070000 ( Direct expense: \3900000 、 Indirect expense:\1170000 )

    Cross-coupling reaction of indolylborate was used for concise total syntheses of pyrido[4,3-b]carbazole alkaloids. Unprecedented use of copper(I) triflate toluene complex for electrocyclization of hexatriene intermediate successfully improved the construction of pyridocarbazoles. Evaluation of synthetic alkaloids against HCT-116 and HL-60 cell lines was carried out. Concise syntheses of indoloquinazoline alkaloids were developed. Oxidative dimerization of indole-3-carbaldehyde provided tryptanthrin in a one-pot. Further transformation of tryptanthrin through Baeyer-Villiger oxidation provided cephalanthrin A. Oxidative coupling between indole-3-carboxylate and isatoic anhydride provided phaitanthrin E.

    researchmap

  • Development of novel synthetic method and its use for synthesis of natural products

    Grant number:22590010  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ISHIKURA Minoru, YAMADA Koji, ABE Takumi

      More details

    Grant amount:\4680000 ( Direct expense: \3600000 、 Indirect expense:\1080000 )

    Cross-coupling reaction of indolylborate was used for concise total synththesis of calothrixins A and B. Unprecedented use of CuOTf for 6π-electrocyclization was also found, which was successfully applied for the improved synthesis of ellipticine. Introduction of aryl substituents to bicyclic lactam ABH was performed by metal-catalyzed coupling process.

    researchmap

  • Development of multi-functionalized synthon for the synthesis of bioactive natural products

    Grant number:18590011  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    ISHIKURA Minoru

      More details

    Grant amount:\4020000 ( Direct expense: \3600000 、 Indirect expense:\420000 )

    多機能な化学反応性を有する合成中間体を基盤とする合成法を開発することは、多様な化学構造を有する生理活性物質の合成を行ううえで有用な方法論となる。本研究では、インドリルボレートとビシクロラクタムであるABHの合成中間体としての有用性に着目し、その応用性の開発をすすめた。この結果、重要な生理活性をもつインドールアルカロイド(tubifoline, olivacine)の新規合成法を開発できた。また、中枢および末梢神経に対して強い生理作用を持つABH誘導体の直接的合成法を開発できた。

    researchmap

▼display all

Other research activities

 

Class subject in charge

  • Introduction to Communication for Pharmaceutical Sciences (2024academic year) 1st semester  - 火3~4

  • Introduction to Communication for Pharmaceutical Sciences (2024academic year) 1st semester  - 火3~4

  • Molecular Structure Analysis (2024academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2024academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2024academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2024academic year) 1st semester  - 月1~2

  • Medicinal Sciences (2024academic year) Second semester  - 金5~6

  • Medicinal Sciences (2024academic year) Third semester  - 金5~6

  • Experimental Organic Chemistry (2024academic year) 1st and 2nd semester  - その他5~9

  • Experimental Organic Chemistry (2024academic year) 1st and 2nd semester  - その他5~9

  • Basic Chemistry (2024academic year) 1st semester  - 金1~2

  • Basic Chemistry (2024academic year) 1st semester  - 金1~2

  • Organic Chemistry and Natural Products Chemistry (2024academic year) special  - その他

  • Organic Chemistry and Natural Products Chemistry (2024academic year) special  - その他

  • Organic Chemistry 1 (2024academic year) 1st semester  - 金1~2

  • Organic Chemistry 1 (2024academic year) 1st semester  - 金1~2

  • Organic Chemistry 2 (2024academic year) Second semester  - 水3~4

  • Organic Chemistry 2 (2024academic year) Second semester  - 水3~4

  • Organic Chemistry A (2024academic year) Second semester  - 水3~4

  • Organic Chemistry A (2024academic year) Second semester  - 水3~4

  • Seminar on Fine Organic Design (2024academic year) special  - その他

  • Fine Organic Design I (2024academic year) special  - その他

  • Fine Organic Design II (2024academic year) special  - その他

  • Fine Organic Synthesis (2024academic year) special  - その他

  • Advanced Lectures: Fine Organic Synthesis (2024academic year) special  - その他

  • Basic Practice in Pharmaceutical Sciences (2024academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2024academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2024academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2024academic year) 1st semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2024academic year) 1st and 2nd semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2024academic year) 1st and 2nd semester  - その他5~9

  • Heterocyclic Chemistry (2024academic year) special  - その他

  • Introduction to Communication for Pharmaceutical Sciences (2023academic year) 1st semester  - 火3~4

  • Introduction to Communication for Pharmaceutical Sciences (2023academic year) 1st semester  - 火3~4

  • Molecular Structure Analysis (2023academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2023academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2023academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2023academic year) 1st semester  - 月1~2

  • Medicinal Sciences (2023academic year) Second semester  - 金5~6

  • Medicinal Sciences (2023academic year) Third semester  - 金5~6

  • Experimental Organic Chemistry (2023academic year) 1st and 2nd semester  - その他5~9

  • Experimental Organic Chemistry (2023academic year) 1st and 2nd semester  - その他5~9

  • Basic Chemistry (2023academic year) 1st semester  - 金1~2

  • Basic Chemistry (2023academic year) 1st semester  - 金1~2

  • Organic Chemistry and Natural Products Chemistry (2023academic year) special  - その他

  • Organic Chemistry and Natural Products Chemistry (2023academic year) special  - その他

  • Organic Chemistry 1 (2023academic year) 1st semester  - 金1~2

  • Organic Chemistry 1 (2023academic year) 1st semester  - 金1~2

  • Organic Chemistry 2 (2023academic year) Second semester  - 水3~4

  • Organic Chemistry 2 (2023academic year) Second semester  - 水3~4

  • Organic Chemistry A (2023academic year) Second semester  - 水3~4

  • Organic Chemistry A (2023academic year) Second semester  - 水3~4

  • Seminar on Fine Organic Design (2023academic year) special  - その他

  • Fine Organic Design I (2023academic year) special  - その他

  • Fine Organic Design II (2023academic year) special  - その他

  • Fine Organic Synthesis (2023academic year) special  - その他

  • Advanced Lectures: Fine Organic Synthesis (2023academic year) special  - その他

  • Basic Practice in Pharmaceutical Sciences (2023academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2023academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2023academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2023academic year) 1st semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2023academic year) 1st and 2nd semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2023academic year) 1st and 2nd semester  - その他5~9

  • Heterocyclic Chemistry (2023academic year) special  - その他

  • Introduction to Communication for Pharmaceutical Sciences (2022academic year) 1st semester  - 火3~4

  • Introduction to Communication for Pharmaceutical Sciences (2022academic year) 1st semester  - 火3~4

  • Molecular Structure Analysis (2022academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2022academic year) 1st semester  - 月1~2

  • Medicinal Sciences (2022academic year) Second semester  - 金5~6

  • Medicinal Sciences (2022academic year) Third semester  - 金5~6

  • Basic Chemistry (2022academic year) 1st semester  - 金1~2

  • Basic Chemistry (2022academic year) 1st semester  - 金1~2

  • Organic Chemistry and Natural Products Chemistry (2022academic year) special  - その他

  • Organic Chemistry 1 (2022academic year) 1st semester  - 金1~2

  • Organic Chemistry 1 (2022academic year) 1st semester  - 金1~2

  • Organic Chemistry 2 (2022academic year) Second semester  - 水3~4

  • Organic Chemistry 2 (2022academic year) Second semester  - 水3~4

  • Organic Chemistry A (2022academic year) Second semester  - 水3~4

  • Organic Chemistry A (2022academic year) Second semester  - 水3~4

  • Seminar on Fine Organic Design (2022academic year) special  - その他

  • Fine Organic Design I (2022academic year) special  - その他

  • Fine Organic Design II (2022academic year) special  - その他

  • Basic Practice in Pharmaceutical Sciences (2022academic year) 1st semester  - その他5~9

  • Basic Practice in Pharmaceutical Sciences (2022academic year) 1st semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2022academic year) 1st and 2nd semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences II (2022academic year) 1st and 2nd semester  - その他5~9

  • Heterocyclic Chemistry (2022academic year) special  - その他

  • Introduction to Communication for Pharmaceutical Sciences (2021academic year) 1st semester  - 火3~4

  • Introduction to Communication for Pharmaceutical Sciences (2021academic year) 1st semester  - 火3~4

  • Molecular Structure Analysis (2021academic year) 1st semester  - 月1~2

  • Molecular Structure Analysis (2021academic year) 1st semester  - 月1~2

  • Medicinal Sciences (2021academic year) Second semester  - 金5~6

  • Medicinal Sciences (2021academic year) Third semester  - 金5~6

  • Organic Chemistry and Natural Products Chemistry (2021academic year) Late  - その他

  • Seminar on Fine Organic Design (2021academic year) special  - その他

  • Fine Organic Design I (2021academic year) special  - その他

  • Fine Organic Design II (2021academic year) special  - その他

  • Basic Practice in Pharmaceutical Sciences (2021academic year) 1-3 semesters  - その他6~9

  • Basic Practice in Pharmaceutical Sciences (2021academic year) 1-3 semesters  - その他6~9

  • Practice in Fundamental Pharmaceutical Sciences II (2021academic year) 1st and 2nd semester  - その他6~9

  • Practice in Fundamental Pharmaceutical Sciences II (2021academic year) 1st and 2nd semester  - その他6~9

  • Heterocyclic Chemistry (2021academic year) special  - その他

▼display all

 

Social Activities

  • 高校生を対象とした模擬授業(薬学)

    Role(s):Lecturer

    高知学芸高校  2024.10.25

     More details

    Type:Visiting lecture

    researchmap

  • 中学生を対象とした模擬授業(薬学)

    Role(s):Lecturer

    高知学芸高校  2024.10.25

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    高知学芸高校  2024.10.25

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    香川県高松市立高松第一高校  2024.9.11

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    山口県立防府高校  2024.7.25

     More details

    Type:Visiting lecture

    researchmap

  • 中学生を対象とした模擬授業(薬学)

    Role(s):Lecturer

    高知学芸高校  2023.10.20

     More details

    Type:Visiting lecture

    researchmap

  • 高校生を対象とした模擬授業(薬学)

    Role(s):Lecturer

    高知学芸高校  2023.10.20

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    高知学芸高校  2023.10.20

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    香川県高松市立高松第一高等学校  2023.9.20

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    山口県立防府高等学校  2023.7.24

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    香川県高松市立高松第一高等学校  2022.9.20

     More details

    Type:Visiting lecture

    researchmap

  • 進学ガイダンス

    Role(s):Lecturer

    山口県立防府高等学校  2022.7.25

     More details

    Type:Visiting lecture

    researchmap

▼display all

Media Coverage

▼display all