2024/04/18 更新

写真a

ミチバタ タクロウ
道端 拓朗
MICHIBATA Takuro
所属
環境生命自然科学学域 准教授
職名
准教授

学位

  • 博士(理学) ( 2017年9月   九州大学 )

研究キーワード

  • 衛星シミュレータ

  • 衛星リモートセンシング

  • 放射収支

  • 水循環

  • 雲微物理

  • 気候変動

  • エアロゾル

  • 大気大循環モデル

  • 降水

研究分野

  • 自然科学一般 / 大気水圏科学

経歴

  • 岡山大学   学術研究院 環境生命自然科学学域   准教授

    2023年4月 - 現在

      詳細を見る

  • 岡山大学   学術研究院 自然科学学域   准教授

    2021年4月 - 2023年3月

      詳細を見る

  • 九州大学   応用力学研究所   助教

    2018年8月 - 2021年3月

      詳細を見る

  • 東京大学   大気海洋研究所   日本学術振興会特別研究員(PD)

    2018年4月 - 2018年7月

      詳細を見る

  • 九州大学   応用力学研究所   日本学術振興会特別研究員(切替PD)

    2017年10月 - 2018年3月

      詳細を見る

  • 九州大学   総合理工学府   日本学術振興会特別研究員(DC1)

    2015年4月 - 2017年9月

      詳細を見る

▼全件表示

所属学協会

委員歴

  • COSP (CFMIP Observation Simulator Package) Project Management Committee  

    2022年9月 - 現在   

      詳細を見る

    団体区分:学協会

    researchmap

 

論文

  • Significant increase in graupel and lightning occurrence in a warmer climate simulated by prognostic graupel parameterization 査読

    Takuro Michibata

    Scientific Reports   14 ( 1 )   2024年2月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)  

    There is little consensus among global climate models (CGMs) regarding the response of lightning flash rates to past and future climate change, largely due to graupel not being included in models. Here a two-moment prognostic graupel scheme was incorporated into the MIROC6 GCM and applied in three experiments involving pre-industrial aerosol, present-day, and future warming simulations. The new microphysics scheme performed well in reproducing global distributions of graupel, convective available potential energy, and lightning flash rate against satellite retrievals and reanalysis datasets. The global mean lightning rate increased by 7.1% from the pre-industrial period to the present day, which was attributed to increased graupel occurrence. The impact of future warming on lightning activity was more evident, with the rate increasing by 18.4%K-1 through synergistic contributions of destabilization and increased graupel. In the Arctic, the lightning rate depends strongly on the seasonality of graupel, emphasizing the need to incorporate graupel into GCMs for more accurate climate prediction.

    DOI: 10.1038/s41598-024-54544-5

    Scopus

    PubMed

    researchmap

  • Droplet collection efficiencies estimated from satellite retrievals constrain effective radiative forcing of aerosol-cloud interactions 査読

    Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, Takuro Michibata

    EGUsphere [preprint]   2023年11月

  • Aerosol–Cloud Interactions in the Climate System 招待 査読

    Michibata, Takuro

    Handbook of Air Quality and Climate Change   1139 - 1180   2023年9月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:論文集(書籍)内論文   出版者・発行元:Springer Singapore  

    Michibata, T. (2023). Aerosol–Cloud Interactions in the Climate System. In: Akimoto, H., Tanimoto, H. (eds) Handbook of Air Quality and Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-15-2760-9_35

    DOI: 10.1007/978-981-15-2527-8_35-3

    DOI: 10.1007/978-981-15-2760-9_35

    researchmap

  • CERESMIP: a climate modeling protocol to investigate recent trends in the Earth's Energy Imbalance 査読

    Gavin A. Schmidt, Timothy Andrews, Susanne E. Bauer, Paul J. Durack, Norman G. Loeb, V. Ramaswamy, Nathan P. Arnold, Michael G. Bosilovich, Jason Cole, Larry W. Horowitz, Gregory C. Johnson, John M. Lyman, Brian Medeiros, Takuro Michibata, Dirk Olonscheck, David Paynter, Shiv Priyam Raghuraman, Michael Schulz, Daisuke Takasuka, Vijay Tallapragada, Patrick C. Taylor, Tilo Ziehn

    Frontiers in Climate   5   2023年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Frontiers Media SA  

    The Clouds and the Earth's Radiant Energy System (CERES) project has now produced over two decades of observed data on the Earth's Energy Imbalance (EEI) and has revealed substantive trends in both the reflected shortwave and outgoing longwave top-of-atmosphere radiation components. Available climate model simulations suggest that these trends are incompatible with purely internal variability, but that the full magnitude and breakdown of the trends are outside of the model ranges. Unfortunately, the Coupled Model Intercomparison Project (Phase 6) (CMIP6) protocol only uses observed forcings to 2014 (and Shared Socioeconomic Pathways (SSP) projections thereafter), and furthermore, many of the ‘observed' drivers have been updated substantially since the CMIP6 inputs were defined. Most notably, the sea surface temperature (SST) estimates have been revised and now show up to 50% greater trends since 1979, particularly in the southern hemisphere. Additionally, estimates of short-lived aerosol and gas-phase emissions have been substantially updated. These revisions will likely have material impacts on the model-simulated EEI. We therefore propose a new, relatively low-cost, model intercomparison, CERESMIP, that would target the CERES period (2000-present), with updated forcings to at least the end of 2021. The focus will be on atmosphere-only simulations, using updated SST, forcings and emissions from 1990 to 2021. The key metrics of interest will be the EEI and atmospheric feedbacks, and so the analysis will benefit from output from satellite cloud observation simulators. The Tier 1 request would consist only of an ensemble of AMIP-style simulations, while the Tier 2 request would encompass uncertainties in the applied forcing, atmospheric composition, single and all-but-one forcing responses. We present some preliminary results and invite participation from a wide group of models.

    DOI: 10.3389/fclim.2023.1202161

    researchmap

  • Too Frequent and Too Light Arctic Snowfall With Incorrect Precipitation Phase Partitioning in the MIROC6 GCM 査読

    Yuki Imura, Takuro Michibata

    Journal of Advances in Modeling Earth Systems   2022年11月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1029/2022MS003046

    researchmap

  • Impacts of Precipitation Modeling on Cloud Feedback in MIROC6 査読

    N. Hirota, T. Michibata, H. Shiogama, T. Ogura, K. Suzuki

    Geophysical Research Letters   49 ( 5 )   e2021GL096523   2022年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:American Geophysical Union (AGU)  

    DOI: 10.1029/2021GL096523

    researchmap

    その他リンク: https://onlinelibrary.wiley.com/doi/full-xml/10.1029/2021GL096523

  • Snow-induced buffering in aerosol–cloud interactions 査読

    Takuro Michibata, Kentaroh Suzuki, Toshihiko Takemura

    Atmospheric Chemistry and Physics   20 ( 22 )   13771 - 13780   2020年11月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Copernicus GmbH  

    Abstract. Complex aerosol–cloud–precipitation interactions lead to large differences in estimates of aerosol impacts on climate among general circulation models (GCMs) and satellite retrievals. Typically, precipitating hydrometeors are treated diagnostically in most GCMs, and their radiative effects are ignored. Here, we quantify how the treatment of precipitation influences the simulated effective radiative forcing due to aerosol–cloud interactions (ERFaci) using a state-of-the-art GCM with a two-moment prognostic precipitation scheme that incorporates the radiative effect of precipitating particles, and we investigate how microphysical process representations are related to macroscopic climate effects. Prognostic precipitation substantially weakens the magnitude of ERFaci (by approximately 54 %) compared with the traditional diagnostic scheme, and this is the result of the increased longwave (warming) and weakened shortwave (cooling) components of ERFaci. The former is attributed to additional adjustment processes induced by falling snow, and the latter stems largely from riming of snow by collection of cloud droplets. The significant reduction in ERFaci does not occur without prognostic snow, which contributes mainly by buffering the cloud response to aerosol perturbations through depleting cloud water via collection. Prognostic precipitation also alters the regional pattern of ERFaci, particularly over northern midlatitudes where snow is abundant. The treatment of precipitation is thus a highly influential controlling factor of ERFaci, contributing more than other uncertain “tunable” processes related to aerosol–cloud–precipitation interactions. This change in ERFaci caused by the treatment of precipitation is large enough to explain the existing difference in ERFaci between GCMs and observations.

    DOI: 10.5194/acp-20-13771-2020

    researchmap

  • Reconciling Compensating Errors Between Precipitation Constraints and the Energy Budget in a Climate Model 査読

    Takuro Michibata, Kentaroh Suzuki

    Geophysical Research Letters   47 ( 12 )   e2020GL088340   2020年6月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:American Geophysical Union (AGU)  

    ©2020. The Authors. Precipitation microphysics and the effective radiative forcing due to aerosol-cloud interactions (ERFaci) contribute to some of the largest uncertainties in general circulation models (GCMs) and are closely interrelated. This study shows that a sophisticated, two-moment prognostic precipitation scheme can simultaneously represent both warm rain characteristics consistent with satellite observations and a realistic ERFaci magnitude, thus reconciling compensating errors between precipitation microphysics and ERFaci that are common to many GCMs. The enhancement of accretion from prognostic precipitation and accretion-driven buffering mechanisms in scavenging processes are found to be responsible for mitigating the compensating errors. However, single-moment prognostic precipitation without the explicit prediction of raindrop size cannot capture observed warm rain characteristics. Results underscore the importance of using a two-moment representation of both clouds and precipitation to realistically simulate precipitation-driven buffering of the cloud response to aerosol perturbations.

    DOI: 10.1029/2020gl088340

    Scopus

    researchmap

    その他リンク: https://onlinelibrary.wiley.com/doi/full-xml/10.1029/2020GL088340

  • Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation 査読

    Takuro Michibata, Kentaroh Suzuki, Tomoo Ogura, Xianwen Jing

    Geoscientific Model Development   12 ( 10 )   4297 - 4307   2019年10月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Copernicus {GmbH}  

    © 2019 Geoscientific Model Development. All rights reserved. The Cloud Feedback Model Intercomparison Project Observational Simulator Package (COSP) is used to diagnose model performance and physical processes via an apple-to-apple comparison to satellite measurements. Although the COSP provides useful information about clouds and their climatic impact, outputs that have a subcolumn dimension require large amounts of data. This can cause a bottleneck when conducting sets of sensitivity experiments or multiple model intercomparisons. Here, we incorporate two diagnostics for warm rain microphysical processes into the latest version of the simulator (COSP2). The first one is the occurrence frequency of warm rain regimes (i.e., non-precipitating, drizzling, and precipitating) classified according to CloudSat radar reflectivity, putting the warm rain process diagnostics into the context of the geographical distributions of precipitation. The second diagnostic is the probability density function of radar reflectivity profiles normalized by the in-cloud optical depth, the so-called contoured frequency by optical depth diagram (CFODD), which illustrates how the warm rain processes occur in the vertical dimension using statistics constructed from CloudSat and MODIS simulators. The new diagnostics are designed to produce statistics online along with subcolumn information during the COSP execution, eliminating the need to output subcolumn variables. Users can also readily conduct regional analysis tailored to their particular research interest (e.g., land-ocean differences) using an auxiliary post-process package after the COSP calculation. The inline diagnostics are applied to the MIROC6 general circulation model (GCM) to demonstrate how known biases common among multiple GCMs relative to satellite observations are revealed. The inline multi-sensor diagnostics are intended to serve as a tool that facilitates process-oriented model evaluations in a manner that reduces the burden on modelers for their diagnostics effort.

    DOI: 10.5194/gmd-12-4297-2019

    Scopus

    researchmap

  • Strengthened Indian Summer Monsoon Precipitation Susceptibility Linked to Dust‐Induced Ice Cloud Modification 査読

    Piyushkumar N. Patel, Ritesh Gautam, Takuro Michibata, Harish Gadhavi

    Geophysical Research Letters   46 ( 14 )   8431 - 8441   2019年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:American Geophysical Union ({AGU})  

    DOI: 10.1029/2018GL081634

    researchmap

  • Prognostic precipitation in the MIROC6‐SPRINTARS GCM: Description and evaluation against satellite observations 査読

    Takuro Michibata, Kentaroh Suzuki, Miho Sekiguchi, Toshihiko Takemura

    Journal of Advances in Modeling Earth Systems   11 ( 3 )   839 - 860   2019年3月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:American Geophysical Union ({AGU})  

    DOI: 10.1029/2018MS001596

    Scopus

    researchmap

  • The key role of warm rain parameterization in determining the aerosol indirect effect in a global climate model 査読

    Xianwen Jing, Kentaroh Suzuki, Takuro Michibata

    Journal of Climate   32 ( 14 )   4409 - 4430   2019年

     詳細を見る

    担当区分:最終著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    © 2019 American Meteorological Society. Global climate models (GCMs) have been found to share the common too-frequent bias in the warm rain formation process. In this study, five different autoconversion schemes are incorporated into a single GCM, to systematically evaluate the warm rain formation processes in comparison with satellite observations and investigate their effects on the aerosol indirect effect (AIE). It is found that some schemes generate warm rain less efficiently under polluted conditions in the manner closer to satellite observations, while the others generate warm rain too frequently. Large differences in AIE are found among these schemes. It is remarkable that the schemes with more observation-like warm rain formation processes exhibit larger AIEs that far exceed the uncertainty range reported in IPCC AR5, to an extent that can cancel much of the warming trend in the past century, whereas schemes with too-frequent rain formations yield AIEs that are well bounded by the reported range. The power-law dependence of the autoconversion rate on the cloud droplet number concentration β is found to affect substantially the susceptibility of rain formation to aerosols: the more negative β is, the more difficult it is for rain to be triggered in polluted clouds, leading to larger AIE through substantial contributions from the wet scavenging feedback. The appropriate use of a droplet size threshold can mitigate the effect of a less negative β. The role of the warm rain formation process on AIE in this particular model has broad implications for others that share the too-frequent rain-formation bias.

    DOI: 10.1175/JCLI-D-18-0789.1

    Scopus

    researchmap

  • Aerosol effects on cloud water amounts were successfully simulated by a global cloud-system resolving model 査読

    Yousuke Sato, Daisuke Goto, Takuro Michibata, Kentaroh Suzuki, Toshihiko Takemura, Hirofumi Tomita, Teruyuki Nakajima

    Nature Communications   9 ( 1 )   985   2018年12月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Nature  

    © 2018 The Author(s). Aerosols affect climate by modifying cloud properties through their role as cloud condensation nuclei or ice nuclei, called aerosol-cloud interactions. In most global climate models (GCMs), the aerosol-cloud interactions are represented by empirical parameterisations, in which the mass of cloud liquid water (LWP) is assumed to increase monotonically with increasing aerosol loading. Recent satellite observations, however, have yielded contradictory results: LWP can decrease with increasing aerosol loading. This difference implies that GCMs overestimate the aerosol effect, but the reasons for the difference are not obvious. Here, we reproduce satellite-observed LWP responses using a global simulation with explicit representations of cloud microphysics, instead of the parameterisations. Our analyses reveal that the decrease in LWP originates from the response of evaporation and condensation processes to aerosol perturbations, which are not represented in GCMs. The explicit representation of cloud microphysics in global scale modelling reduces the uncertainty of climate prediction.

    DOI: 10.1038/s41467-018-03379-6

    Scopus

    PubMed

    researchmap

  • The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals 査読

    Takuro Michibata, Kentaroh Suzuki, Yousuke Sato, Toshihiko Takemura

    Atmospheric Chemistry and Physics   16 ( 23 )   15413 - 15424   2016年12月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Copernicus {GmbH}  

    DOI: 10.5194/acp-16-15413-2016

    Web of Science

    researchmap

  • Evaluation of autoconversion schemes in a single model framework with satellite observations 査読

    Takuro Michibata, Toshihiko Takemura

    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES   120 ( 18 )   9570 - 9590   2015年9月

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER GEOPHYSICAL UNION  

    We examined the performance of autoconversion (mass transfer from cloud water to rainwater by the coalescence of cloud droplets) schemes in warm rain, which are commonly used in general circulation models. To exclude biases in the different treatment of the aerosol-cloud-precipitation-radiation interaction other than that of the autoconversion process, sensitivity experiments were conducted within a single model framework using an aerosol-climate model, MIROC-SPRINTARS. The liquid water path (LWP) and cloud optical thickness have a particularly high sensitivity to the autoconversion schemes, and their sensitivity is of the same magnitude as model biases. In addition, the ratio of accretion to autoconversion (Acc/Aut ratio), a key parameter in the examination of the balance of microphysical conversion processes, also has a high sensitivity globally depending on the scheme used. Although the Acc/Aut ratio monotonically increases with increasing LWP, significantly lower ratio is observed in Kessler-type schemes. Compared to satellite observations, a poor representation of cloud macrophysical structure and optically thicker low cloud are found in simulations with any autoconversion scheme. As a result of the cloud-radiation interaction, the difference in the global mean net cloud radiative forcing (NetCRF) among the schemes reaches 10 Wm(-2). The discrepancy between the observed and simulated NetCRF is especially large with a high LWP. The potential uncertainty in the parameterization of the autoconversion process is nonnegligible, and no formulation significantly improves the bias in the cloud radiative effect yet. This means that more fundamental errors are still left in other processes of the model.

    DOI: 10.1002/2015JD023818

    Web of Science

    researchmap

  • The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific 査読

    T. Michibata, K. Kawamoto, T. Takemura

    ATMOSPHERIC CHEMISTRY AND PHYSICS   14 ( 21 )   11935 - 11948   2014年

     詳細を見る

    担当区分:筆頭著者, 責任著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:COPERNICUS GESELLSCHAFT MBH  

    This study examines the characteristics of the microphysics and macrophysics of water clouds from East Asia to the North Pacific, using data from active CloudSat radar measurements and passive MODerate-resolution Imaging Spectroradiometer (MODIS) retrievals. Our goals are to clarify differences in microphysics and macrophysics between land and oceanic clouds, seasonal differences unique to the midlatitudes, characteristics of the drizzling process, and cloud vertical structure. In pristine oceanic areas, fractional occurrences of cloud optical thickness (COT) and cloud droplet effective radius (CDR) increase systematically with an increase in drizzle intensity, but these characteristics of the COT and CDR transition are less evident in polluted land areas. In addition, regional and seasonal differences are identified in terms of drizzle intensity as a function of the liquid water path (LWP) and cloud droplet number concentration (N-c). The correlations between drizzle intensity and LWP, and between drizzle intensity and N-c, are both more robust over oceanic areas than over land areas. We also demonstrate regional and seasonal characteristics of the cloud vertical structure. Our results suggest that aerosol-cloud interaction mainly occurs around the cloud base in polluted land areas during the winter season. In addition, a difference between polluted and pristine areas in the efficiency of cloud droplet growth is confirmed. These results suggest that water clouds over the midlatitudes exhibit a different drizzle system to those over the tropics.

    DOI: 10.5194/acp-14-11935-2014

    Web of Science

    researchmap

▼全件表示

MISC

  • 数値気候モデルと衛星観測の複合利用によるエアロゾル・雲・降水相互作用に関する研究 招待 査読

    道端拓朗

    天気, 日本気象学会   68 ( 6 )   277 - 290   2021年6月

     詳細を見る

    担当区分:筆頭著者, 責任著者  

    researchmap

  • 第4回気象気候若手研究者交流会開催報告 査読

    釜江陽一, 栃本英伍, 西川はつみ, 宇野史睦, 山崎哲, 川瀬宏明, 辻野智紀, 神山翼, 大竹潤, 山下陽介, 道端拓朗, 川添祥, 神澤望, 築地原匠, 木下武也

    天気, 日本気象学会   65(9)   643 - 648   2018年9月

     詳細を見る

  • 第17回国際雲・降水会議(ICCP2016)の報告 査読

    三隅良平, 岩崎杉紀, 道端拓朗, 竹見哲也, 山下克也, 佐藤陽祐, 當房豊, 大畑祥, 橋本明弘, 折笠成宏, 田尻拓也, 村上正隆

    天気   63 ( 11 )   862 - 868   2016年11月

     詳細を見る

    記述言語:日本語   出版者・発行元:日本気象学会  

    CiNii Article

    CiNii Books

    researchmap

受賞

  • 山本賞

    2019年10月   日本気象学会  

    道端 拓朗

     詳細を見る

共同研究・競争的資金等の研究

  • 局地降水の再現性向上を目指した新しい降水モデリング手法の開発と温暖化影響の解明

    研究課題/領域番号:23K13171  2023年04月 - 2026年03月

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    道端 拓朗

      詳細を見る

    担当区分:研究代表者 

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    researchmap

  • 多圏間の相互作用を紐解く新しい地球温暖化科学の創設

    2021年04月 - 2028年03月

    科学技術振興機構(JST)  創発的研究支援事業 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者 

    researchmap

  • 【S-20】テーマ1サブテーマ(4) 短寿命気候強制因子による大気水循環変動の定量的評価

    2021年04月 - 2026年03月

    環境再生保全機構  環境研究総合推進費(戦略的研究開発) 

    鈴木健太郎

      詳細を見る

    担当区分:研究分担者 

    researchmap

  • 地球温暖化予測のための時空間シームレスな降雨・降雪スキームの開発

    2020年04月 - 2022年03月

    環境再生保全機構  環境研究総合推進費(革新型研究開発) 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者 

    researchmap

  • 階層的数値モデル群による短寿命気候強制因子の組成別・地域別定量的気候影響評価

    2019年04月 - 2024年03月

    日本学術振興会  科学研究費補助金・基盤研究(S) 

    竹村 俊彦

      詳細を見る

    担当区分:研究分担者  資金種別:競争的資金

    researchmap

  • 数値モデルに適用する雲氷・降雪粒子の新スキーム開発による気候予測の高精度化

    2019年04月 - 2023年03月

    日本学術振興会  科学研究費補助金・若手研究 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 全球エアロゾル気候モデルにおける降⽔過程の⾼度化

    2018年04月 - 2020年03月

    九州大学応用力学研究所  若手キャリアアップ支援研究 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 数値モデルと衛星観測の複合利用によるエアロゾル・雲・降水相互作用の解明

    2018年04月 - 2019年03月

    日本学術振興会  科学研究費補助金・特別研究員奨励費(PD) 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 衛星観測データのシナジー解析を活用した次世代型気候モデルの構築および改良

    2015年04月 - 2018年03月

    日本学術振興会  科学研究費補助金・特別研究員奨励費(DC1) 

    道端 拓朗

      詳細を見る

    担当区分:研究代表者  資金種別:競争的資金

    researchmap

  • 気候モデルに適用する新しい雲・降水成長スキームの開発

    研究課題/領域番号:15K12190  2015年04月 - 2017年03月

    日本学術振興会  科学研究費助成事業  挑戦的萌芽研究

    竹村 俊彦, 鈴木 健太郎, 道端 拓朗

      詳細を見る

    配分額:3900000円 ( 直接経費:3000000円 、 間接経費:900000円 )

    気候変動を再現・予測する数値シミュレーションにおいて、雲が雨へ成長する過程の表現の不確実性は高い。そこで、これまでに提案されている複数の表現方法を同一環境下でテストし、人工衛星観測データと詳細に比較しながら、その挙動を検証した。その後、多くの気候モデルでまだ導入されていない、雨滴とドリズル(雲粒と雨滴の中間のサイズを持つ水滴)の時空間分布を陽に計算する手法を新たに開発した。研究成果は、査読論文として国際学術誌に投稿し、受理・公開された。

    researchmap

▼全件表示

 

担当授業科目

  • 地球圏システム環境学 (2023年度) 前期  - その他

  • 地球惑星科学特別演習 (2023年度) 通年  - その他

  • 地球環境科学 (2023年度) 前期  - その他

  • 地球科学ゼミナール2 (2023年度) 第4学期  - 火3~4

  • 地球科学ゼミナール5 (2023年度) 第3学期  - 木1~2

  • 地球科学入門 (2023年度) 第1学期  - 火5~6

  • 基礎地球科学実習 (2023年度) 第1学期  - 火5~6

  • 大気科学実験 (2023年度) 第1学期  - 月5~8

  • 大気科学演習 (2023年度) 通年  - その他

  • 大気科学演習 (2023年度) その他  - その他

  • 大気科学演習1 (2023年度) 第3学期  - 木5~8

  • 大気科学演習2 (2023年度) 第1学期  - 月5~8

  • 大気科学11 (2023年度) 第3学期  - 月5~6

  • 大気科学12 (2023年度) 第4学期  - 月5~6

  • 大気科学5 (2023年度) 第1学期  - 火1~2

  • 大気科学6 (2023年度) 第2学期  - 火1~2

  • 大気科学C (2023年度) 1・2学期  - 火1~2

  • 大気科学F (2023年度) 3・4学期  - 月5~6

  • 教養地球科学実験 (2023年度) 夏季集中  - その他

  • 衛星リモートセンシング特論 (2023年度) 後期  - 金5~6

  • 衛星リモートセンシング特論 (2023年度) 後期  - 金5~6

  • 地球圏システム環境学 (2022年度) 前期  - その他

  • 地球科学ゼミナール2 (2022年度) 第4学期  - 火3~4

  • 地球科学ゼミナール5 (2022年度) 第3学期  - 木1~2

  • 地球科学入門 (2022年度) 第1学期  - 火5~6

  • 基礎地球科学実習 (2022年度) 第1学期  - 火5~6

  • 大気科学実験 (2022年度) 第1学期  - 月5~8

  • 大気科学演習 (2022年度) 通年  - その他

  • 大気科学演習1 (2022年度) 第3学期  - 木5~8

  • 大気科学演習2 (2022年度) 第1学期  - 月5~8

  • 大気科学11 (2022年度) 第3学期  - 月5~6

  • 大気科学12 (2022年度) 第4学期  - 月5~6

  • 大気科学5 (2022年度) 第1学期  - 火1~2

  • 大気科学6 (2022年度) 第2学期  - 火1~2

  • 衛星リモートセンシング特論 (2022年度) 後期  - 金5~6

  • 地球圏システム環境学 (2021年度) 前期  - その他

  • 地球科学ゼミナール2 (2021年度) 第4学期  - 火3,火4

  • 地球科学ゼミナール5 (2021年度) 第3学期  - 木1,木2

  • 地球科学入門 (2021年度) 第1学期  - その他

  • 基礎地球科学実習 (2021年度) 第1学期  - その他

  • 大気物質循環論 (2021年度) 1・2学期  - 火1,火2

  • 大気科学演習 (2021年度) 通年  - その他

  • 大気科学11 (2021年度) 第3学期  - 月5,月6

  • 大気科学12 (2021年度) 第4学期  - 月5,月6

  • 大気科学5 (2021年度) 第1学期  - 火1,火2

  • 大気科学6 (2021年度) 第2学期  - 火1,火2

  • 衛星リモートセンシング特論 (2021年度) 後期  - 金5,金6

▼全件表示