Updated on 2024/11/02

写真a

 
WENG YAO
 
Organization
Faculty of Medicine, Dentistry and Pharmaceutical Sciences Assistant Professor
Position
Assistant Professor
Contact information
メールアドレス
External link

Degree

  • Doctor of Philosophy in Dental Science ( 2022.3   Okayama University )

 

Papers

  • O‐<scp>GlcNAcylation</scp> regulates osteoblast differentiation through the morphological changes in mitochondria, cytoskeleton, and endoplasmic reticulum

    Yao Weng, Ziyi Wang, Heriati Sitosari, Mitsuaki Ono, Hirohiko Okamura, Toshitaka Oohashi

    BioFactors   2024.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    To explore the potential mechanisms which O‐linked‐N‐acetylglucosaminylation (O‐GlcNAcylation) regulates osteogenesis, a publicly RNA‐seq dataset was re‐analyzed with literature‐mining and showed the primary targets of O‐GlcNAcylation in osteoblasts are mitochondria/cytoskeleton. Although the O‐GlcNAcylation‐regulated mitochondria/cytoskeleton has been extensively studied, its specific role during osteogenesis remains unclear. To address this, we knocked out Ogt (Ogt‐KO) in MC3T3‐E1 osteoblastic cells. Then, significantly reduced osteoblast differentiation, motility, proliferation, mitochondria–endoplasmic reticulum (Mito–ER) coupling, volume of ER, nuclear tubulins, and oxygen metabolism were observed in Ogt‐KO cells. Through artificial intelligence (AI)‐predicted cellular structures, the time‐lapse live cells imaging with reactive‐oxygen‐species/hypoxia staining showed that lower cell proliferation and altered oxygen metabolism in the Ogt‐KO cells were correlated with the Mito–ER coupling. Bioinformatics analysis, combined with correlated mRNA and protein expression, suggested that Ezh2 and its downstream targets (Opa1, Gsk3a, Wnt3a, Hif1a, and Hspa9) may be involved in O‐GlcNAcylation‐regulated Mito–ER coupling, ultimately impacting osteoblast differentiation. In conclusion, our findings indicate that O‐GlcNAcylation‐regulated osteoblast differentiation is linked to morphological changes in mitochondria, cytoskeleton, and ER, with Ezh2 potentially playing a crucial role.

    DOI: 10.1002/biof.2131

    researchmap

  • Neuropilin 1 (NRP1) Positively Regulates Adipogenic Differentiation in C3H10T1/2 Cells

    Yaqiong Yu, Yoko Uchida-Fukuhara, Yao Weng, Yuhan He, Mika IKEGAME, Ziyi Wang, Kaya Yoshida, Hirohiko Okamura, Lihong Qiu

    International Journal of Molecular Sciences   2023.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    <jats:p>Neuropilin 1 (NRP1), a non-tyrosine kinase receptor for several ligands, is highly expressed in many kinds of mesenchymal stem cells (MSCs), but its function is poorly understood. In this study, we explored the roles of full-length NRP1 and glycosaminoglycan (GAG)-modifiable NRP1 in adipogenesis in C3H10T1/2 cells. The expression of full-length NRP1 and GAG-modifiable NRP1 increased during adipogenic differentiation in C3H10T1/2 cells. NRP1 knockdown repressed adipogenesis while decreasing the levels of Akt and ERK1/2 phosphorylation. Moreover, the scaffold protein JIP4 was involved in adipogenesis in C3H10T1/2 cells by interacting with NRP1. Furthermore, overexpression of non-GAG-modifiable NRP1 mutant (S612A) greatly promoted adipogenic differentiation, accompanied by upregulation of the phosphorylated Akt and ERK1/2. Taken together, these results indicate that NRP1 is a key regulator that promotes adipogenesis in C3H10T1/2 cells by interacting with JIP4 and activating the Akt and ERK1/2 pathway. Non-GAG-modifiable NRP1 mutant (S612A) accelerates the process of adipogenic differentiation, suggesting that GAG glycosylation is a negative post-translational modification of NRP1 in adipogenic differentiation.</jats:p>

    DOI: 10.3390/ijms24087394

    researchmap

  • Inhibition of protein phosphatase 2A by okadaic acid induces translocation of nucleocytoplasmic O-GlcNAc transferase

    Heriati Sitosari, Ikkei Morimoto, Yao Weng, Yilin Zheng, Yoko Fukuhara, Mika Ikegame, Hirohiko Okamura

    Biochemical and Biophysical Research Communications   2023.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbrc.2023.01.033

    researchmap

  • Vestigial-Like 3 Plays an Important Role in Osteoblast Differentiation by Regulating the Expression of Osteogenic Transcription Factors and BMP Signaling

    Haoze Yuan, Mika IKEGAME, Yoko Fukuhara, Fumiko Takemoto, Yaqiong Yu, Jumpei Teramachi, Yao Weng, Jiajie Guo, Daisuke Yamada, Takeshi Takarada, Ying Li, Hirohiko Okamura, Bin Zhang

    Calcified Tissue International   2022.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s00223-022-00997-7

    researchmap

  • Outer membrane vesicles of Porphyromonas gingivalis: Novel communication tool and strategy

    Hirohiko Okamura, Katsuhiko Hirota, Kaya Yoshida, Yao Weng, Yuhan He, noriko shiotsu, Mika Ikegame, Yoko Uchida-Fukuhara, Airi Tanai, Jiajie Guo

    Japanese Dental Science Review   2021.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jdsr.2021.07.003

    researchmap

  • Extracellular vesicles of P. gingivalis-infected macrophages induce lung injury

    Kayo Yoshida, Kaya Yoshida, Natsumi Fujiwara, Mariko Seyama, Kisho Ono, Hotaka Kawai, Jiajie Guo, Ziyi Wang, Yao Weng, Yaqiong Yu, Yoko Uchida-Fukuhara, Mika Ikegame, Akira Sasaki, Hitoshi Nagatsuka, Hiroshi Kamioka, Hirohiko Okamura, Kazumi Ozaki

    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease   2021.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbadis.2021.166236

    researchmap

  • O‐GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics‐oriented study

    Yao Weng, Ziyi Wang, Yoko Fukuhara, Airi Tanai, Mika Ikegame, Daisuke Yamada, Takeshi Takarada, Takashi Izawa, Satoru Hayano, Kaya Yoshida, Hiroshi Kamioka, Hirohiko Okamura

    BioFactors   2021.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    DOI: 10.1002/biof.1774

    researchmap

  • Loading history changes the morphology and compressive force-induced expression of receptor activator of nuclear factor kappa B ligand/osteoprotegerin in MLO-Y4 osteocytes Reviewed

    Ziyi Wang, Yao Weng, Yoshihito Ishihara, Naoya Odagaki, Ei Ei Hsu Hlaing, Takashi Izawa, Hirohiko Okamura, Hiroshi Kamioka

    PeerJ   8   e10244 - e10244   2020.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PeerJ  

    <sec>
    <title>Background</title>
    In this study, we investigated the effect of the mechanical loading history on the expression of receptor activator of nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in MLO-Y4 osteocyte-like cells.


    </sec>
    <sec>
    <title>Methods</title>
    Three hours after MLO-Y4 osteocytes were seeded, a continuous compressive force (CCF) of 31 dynes/cm2 with or without additional CCF (32 dynes/cm2) was loaded onto the osteocytes. After 36 h, the additional CCF (loading history) was removed for a recovery period of 10 h. The expression of RANKL, OPG, RANKL/OPG ratio, cell numbers, viability and morphology were time-dependently examined at 0, 3, 6 and 10 h. Then, the same additional CCF was applied again for 1 h to all osteocytes with or without the gap junction inhibitor to examine the expression of RANKL, OPG, the RANKL/OPG ratio and other genes that essential to characterize the phenotype of MLO-Y4 cells. Fluorescence recovery after photobleaching technique was also applied to test the differences of gap-junctional intercellular communications (GJIC) among MLO-Y4 cells.


    </sec>
    <sec>
    <title>Results</title>
    The expression of RANKL and OPG by MLO-Y4 osteocytes without a loading history was dramatically decreased and increased, respectively, in response to the 1-h loading of additional weight. However, the expression of RANKL, OPG and the RANKL/OPG ratio were maintained at the same level as in the control group in the MLO-Y4 osteocytes with a loading history but without gap junction inhibitor treatment. Treatment of loading history significantly changed the capacity of GJIC and protein expression of connexin 43 (Cx43) but not the mRNA expression of Cx43. No significant difference was observed in the cell number or viability between the MLO-Y4 osteocyte-like cells with and without a loading history or among different time checkpoints during the recovery period. The cell morphology showed significant changes and was correlated with the expression of OPG, Gja1 and Dmp1 during the recovery period.


    </sec>
    <sec>
    <title>Conclusion</title>
    Our findings indicated that the compressive force-induced changes in the RANKL/OPG expression could be habituated within at least 11 h by 36-h CCF exposure. GJIC and cell morphology may play roles in response to loading history in MLO-Y4 osteocyte-like cells.


    </sec>

    DOI: 10.7717/peerj.10244

    researchmap

    Other Link: https://peerj.com/articles/10244.xml

  • N-(3-oxododecanoyl)-homoserine lactone regulates osteoblast apoptosis and differentiation by mediating intracellular calcium

    Jiajie Guo, Ziyi Wang, Yao Weng, Haoze Yuan, Kaya Yoshida, Mika Ikegame, Kenta Uchibe, Hiroshi Kamioka, Kazuhiko Ochiai, Hirohiko Okamura, Lihong Qiu

    Cellular Signalling   2020.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.cellsig.2020.109740

    researchmap

  • Outer membrane vesicles derived from Porphyromonas gingivalis induced cell death with disruption of tight junctions in human lung epithelial cells

    Yuhan He, Noriko Shiotsu, Yoko Uchida-Fukuhara, Jiajie Guo, Yao Weng, Mika Ikegame, Ziyi Wang, Kisho Ono, Hiroshi Kamioka, Yasuhiro Torii, Akira Sasaki, Kaya Yoshida, Hirohiko Okamura

    Archives of Oral Biology   2020.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.archoralbio.2020.104841

    researchmap

  • Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver

    Mariko Seyama, Kaya Yoshida, Kayo Yoshida, Natsumi Fujiwara, Kisho Ono, Takanori Eguchi, Hotaka Kawai, Jiajie Guo, Yao Weng, Yuan Haoze, Kenta Uchibe, Mika Ikegame, Akira Sasaki, Hitoshi Nagatsuka, Kuniaki Okamoto, Hirohiko Okamura, Kazumi Ozaki

    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease   2020.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bbadis.2020.165731

    researchmap

  • Inhibitory effect of retinoic acid receptor agonists on in vitro chondrogenic differentiation

    Yusuke Sumitani, Kenta Uchibe, Kaya Yoshida, Yao Weng, Jiajie Guo, Haoze Yuan, Mika Ikegame, Hiroshi Kamioka, Hirohiko Okamura

    Anatomical Science International   2020.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1007/s12565-019-00512-3

    researchmap

▼display all