Updated on 2024/10/18

写真a

 
SUZUKI Takeshi
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Associate Professor
Position
Associate Professor
External link

Degree

  • Ph.D (Science) ( 1998.3   Kyoto University )

  • 修士(理学) ( 1995.3   京都大学 )

Professional Memberships

Committee Memberships

  • 日本数学会中国四国支部   代議員  

    2022.4 - 2023.3   

      More details

  • 岡山大学教育改革構想委員会   委員  

    2021.4   

  • 日本数学会   無限可積分系セッション 世話人(代表)  

    2019.4 - 2020.3   

      More details

  • 日本数学会   無限可積分系セッション 世話人  

    2018.4 - 2019.3   

      More details

    Committee type:Academic society

    researchmap

 

Papers

  • Poset Structure Concerning Cylindric Diagrams Reviewed

    Takeshi Suzuki, Kento Nakada, Yoshitaka Toyosawa

    The Electronic Journal of Combinatorics   31 ( 1 )   2024.3

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:The Electronic Journal of Combinatorics  

    Cylindric diagrams admit the structure of infinite $d$-complete posets with natural ordering. The purpose of this paper is to provide a realization of a cylindric diagram as a subset of an affine root system of type A via colored hook lengths and to present several characterizations of its poset structure. Furthermore, the set of order ideals of a cylindric diagram is described as a weak Bruhat interval of the affine Weyl group.

    DOI: 10.37236/12205

    researchmap

  • Poset structure concerning cylindric diagrams

    2258   150 - 165   2023.6

     More details

    Authorship:Corresponding author   Language:Japanese   Publishing type:Research paper (international conference proceedings)  

    researchmap

  • On hook formulas for cylindric skew diagrams Reviewed

    Takeshi Suzuki, Yoshitaka Toyosawa

    Mathematical Journal of Okayama Univeristy   64   191 - 213   2021.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    researchmap

  • On enumeration concerning standard tableaux on cylindric skew diagrams

    RIMS Kyokyuroku(Aspects of Combinatorial Representaion Theory)   2127   66 - 78   2019.9

     More details

    Authorship:Corresponding author   Language:Japanese  

    researchmap

  • Combinatorics for Graded Cartan Matrices of the Iwahori-Hecke Algebra of Type A Reviewed

    Masanori Ando, Takeshi Suzuki, Hiro-Fumi Yamada

    Annals of Combinatorics   17 ( 3 )   427 - 442   2013.9

     More details

    Authorship:Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00026-013-0197-2

    researchmap

    Other Link: http://link.springer.com/article/10.1007/s00026-013-0197-2/fulltext.html

  • グレイシャー対応と ヘッケ環の次数付きカルタン行列

    安東雅訓, 鈴木武史, 山田裕史

    数理解析研究所講究録   1738   83 - 91   2011.4

     More details

    Language:Japanese   Publisher:京都大学  

    CiNii Article

    CiNii Books

    researchmap

    Other Link: http://hdl.handle.net/2433/170859

  • Double affine Hecke algebras, conformal coinvariants and Kostka polynomials. Reviewed

    Takeshi Suzuki

    C. R. Math. Acad. Sci. Paris   343 ( 6 )   383 - 386   2006

     More details

    Authorship:Lead author   Language:English  

    researchmap

  • Rational and trigonometric degeneration of the double affine Hecke algebra of type A. Reviewed

    Takeshi Suzuki

    Int. Math. Res. Not.   37   2249 - 2262   2005

     More details

    Authorship:Lead author   Language:English  

    researchmap

  • Tableaux on periodic skew diagrams and irreducible representations of the double affine Hecke algebra of type A. Reviewed

    Suzuki, Takeshi, Vazirani, Monica

    Int. Math. Res. Not.   27   1621 - 1656   2005

     More details

    Authorship:Lead author   Language:English  

    researchmap

  • Classification of simple modules over degenerate double affine Hecke algebras of type A Reviewed

    Takeshi Suzuki

    Int. Math. Res. Not.   43   2313 - 2339   2003

     More details

    Authorship:Lead author  

    researchmap

  • Representations of degenerate affine Hecke algebra and gl_n Reviewed

    Takeshi Suzuki

    Adv. Stud. Pure Math.   28   343 - 372   2000

     More details

    Authorship:Lead author  

    researchmap

  • Knizhnik-Zamolodchikov-Bernard equations of higher genera Reviewed

    Shimizu, Yuji, Suzuki, Takeshi, Ueno, Kenji

    Integral Systems and Algebraic Geometry, Springer   384 - 411   1998

     More details

    Authorship:Corresponding author   Language:English  

    researchmap

  • Rogawski's conjecture on the Jantzen filtration for the degenerate affine Hecke algebra of type A. Reviewed

    Takeshi Suzuki

    Represent. Theory( Electronic Journal)   2   393 - 409   1998

     More details

    Language:English  

    researchmap

  • Duality between sln(C) and the degenerate affine Hecke algebra Reviewed

    Arakawa, Tomoyuki, Suzuki, Takeshi

    J. Algebra   209 ( 1 )   288 - 304   1998

     More details

    Authorship:Corresponding author   Language:English  

    researchmap

  • Degenerate double affine Hecke algebra and conformal field theory Reviewed

    Arakawa, Tomoyuki, Suzuki, Takeshi, Tsuchiya, Akihiro

    Progr. Math.   160   1 - 34   1998

     More details

    Authorship:Corresponding author   Language:English  

    researchmap

  • Degenerate double affine Hecke algebra and KZ-equation

    Arakawa, Tomoyuki, Suzuki, Takeshi, Tsuchiya, Akihiro

    RIMS Kokyuroku   997   174 - 189   1997

     More details

  • Differential equations associated to the SU(2) WZNW model on elliptic curves Reviewed

    Takeshi Suzuki

    Publ. Res. Inst. Math. Sci.   32 ( 2 )   207 - 233   1996

     More details

    Authorship:Lead author   Language:English  

    researchmap

  • A system of differential equations associated with conformal field theory on elliptic curves.

    Takeshi Suzuki

    RIMS Kokyuroku   919   120 - 140   1995

     More details

    Authorship:Lead author  

    researchmap

▼display all

Presentations

  • On hook length formula for cylindric skew Young siagrams

    Takeshi Suzuki, Yoshitaka Toyosawa

    2023.3.15 

     More details

    Event date: 2023.3.15 - 2023.3.19

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • On hooks of cylindric skew Young diagrams

    Takeshi Suzuki

    2023.3.10 

     More details

    Event date: 2023.3.10 - 2023.3.12

    researchmap

  • Poset structure concerning cylindric diagrams Invited

    2022.11.10 

     More details

    Event date: 2022.11.7 - 2022.11.10

    Language:Japanese   Presentation type:Oral presentation (general)  

    researchmap

  • 巡回的標準盤の数え上げに関する公式について Invited

    鈴木武史, 豊澤由貴

    RIMS共同研究(公開型)「組合せ論的表現論の諸相」  2018.10.10 

     More details

    Event date: 2018.10.9 - 2018.10.12

    researchmap

Research Projects

  • On representation theory from the view point of integrable systems

    Grant number:22540048  2010.04 - 2014.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    SUZUKI Takeshi

      More details

    Grant amount:\4030000 ( Direct expense: \3100000 、 Indirect expense:\930000 )

    We studied on the graded Cartan matrices for the Khovanov-Lauda-Rouquier algebras associated to the Iwahori-Hecke algebras of type A. As a result, we obtained several explixit and combinatorial descriptions for their determinants, and conjectual expressions for their elementary divisors.
    We also studied on representations for the Cherednik algebra of type GL_n. We focused on irreducible representations which are described in terms of cylindric standard tableaux. By applying cylindric combinatorics, we investigated their structure and their relation to the representatinos of the affine Lie algebra via conformal field theory.

    researchmap

  • From modular representations of the symmetric groups to nonlinear differential equations

    Grant number:21540016  2009 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    YAMADA Hirofumi, YOSHINO Yuji, NAKAMURA Hiroaki, SUZUKI Takeshi

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    The importance of the "Brauer-Schur functions", which had been introduced by myself, is now being recognized in the area of KP hierarchy, its reductions and representations of affine Lie algebras. I published a short note entitled "A note on Brauer-Schur functions", which is contained in the proceedings of the international conference on Mathematical physics held in Tianjin, China.

    researchmap

  • A comprehensive research of vertex algebras, especially the W-algebras

    Grant number:20340007  2008 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    ARAKAWA Tomoyuki, MATSUO Atsushi, SUZUKI Takeshi, YAMAUCHI Hiroshi, YAMADA Hiromichi, MIYAMOTO Masahiko, MATUZAWA Jyunichi, KONNO Hitoshi

      More details

    Grant amount:\17030000 ( Direct expense: \13100000 、 Indirect expense:\3930000 )

    On admissible representations of affine Kac-Moody algebras, we proved the he conjecture of Frenkel, Kac and Wakimoto on the existence of two-sided BGG resolutions, the conjecture of Adamovic and Milas on the corresponding vertex operators algebra, and the conjecture of Feigin and Frenkel on their singular supports. On critical level representations of affine Kac-Moody algebras, we proved the new linkage principal and established a chiral Borel-Weil-Bott theorem. On W-algebras, we prove the C_2-cofinitness of the exceptional W-algebras discovered by Kac and Wakimoto and prove the admissible representations of affine Kac-Moody algebras. We obtained various results on the W-algebras at the critical levels.

    researchmap

  • グロタンディークデッサンと悲合同的タイヒミュラー被覆の数論

    Grant number:19654005  2007 - 2009

    日本学術振興会  科学研究費助成事業  挑戦的萌芽研究

    中村 博昭, 鳥居 猛, 鈴木 武史, 吉野 雄二, 山田 裕史, 松崎 克彦, 廣川 真男, 石川 佳弘

      More details

    Grant amount:\3200000 ( Direct expense: \3200000 )

    昨年度に基礎を確立した複素および1進の反復積分の関数等式の導出法(Wojtkowiak氏との共同研究)を延長して,具体的な実例計算をさらに検証した.とりわけ古典的な高次対数関数について知られている分布関係式(distribution relation)の1進版を導出することに成功した.分布関係式は,様々な特殊値を代入することで,高次対数関数の特殊値の間に成立する様々な関係式を組織的に生み出す重要なものであり,1進の場合にも並行してガロア群上の関数族(1-コチェイン)を統御する要となることが期待されるが,前年度までに得られた関数等式との整合性についても検証を行った.8月にケンブリッジのニュートン数理科学研究所で行われた研究集会"Anabelian Geometry"において口頭発表を行った.このときの講演に参加していたH.Gangl氏,P.Deligne氏から今後の研究指針を考える上で有用になると思われるコメントを頂戴することが出来た.また分布関係式の低次項の解消問題に関連して,有理的な道に沿った解析接続の概念にっいて考察を進める必要が生じた.こうしたテーマに関連して研究分担者の鳥居氏には,有理ホモトピー論に関する情報収集を担当していただき,また研究分担者の鈴木氏には,量子代数やKZ方程式との関連で組みひも群の数理についての情報収集を担当していただいた.以上の研究成果の一部は,共同研究者のWojtkowiak氏と協力して,"On distribution formula of complex and 1-adic polylogarithms"という仮題の草稿におおよその骨子をまとめたが,まだ完成に至っていない.周辺にやり残した問題(楕円ポリログ版など)もあり,これらについて一定の目処をつけてから公表までの工程を相談する予定になっている.

    researchmap

  • Algebraic Analysis of Infinite Symmetry

    Grant number:18340007  2006 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    KASHIWARA Masaki, ARIKI Susumu, KIRILLOV Anatol, MIWA Tetsuji, NAKAJIMA Hiraku, NAITO Satoshi, KANEDA Masaharu, TANISAKI Toshiyuki, NAKASHIMA Toshiki, NAKAYASHIKI Tasushi, SUZUKI Takeshi

      More details

    Grant amount:\17260000 ( Direct expense: \14200000 、 Indirect expense:\3060000 )

    I have studied representation theory via geometric methods and categorical methods. I conjectured that the representation theory of affine Hecke algebras of type B is described by the symmetric crystals which we introduced for this purpose. I also studied deformation quantizations of the structure sheaf of symplectic manifolds, and applied this theory to the study of the representation theory of rational Cherednik algebrasvia a deformation quantization of the Hilbert scheme of surfaces. I also succeeded to express the K-theory of the flag manifolds of affine Lie algebras by the polynomial rings.

    researchmap

  • Algebras related to integrable systems

    Grant number:18740009  2006 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    SUZUKI Takeshi

      More details

    Grant amount:\3600000 ( Direct expense: \3300000 、 Indirect expense:\300000 )

    共形場理論とよばれる可解な場の理論の模型の代数的構造に注目し,そこに登場する代数系とその表現について研究を行った.結果,共形場理論の枠組みが,微分方程式系に関連して現れるCherednik代数と,系の対称性を記述するアフィンLie代数の表現の間の良い対応を与えていることがわかった.さらに,Cherednik代数の可積分な表現に関連して新たな組合せ論的対象が得られた.

    researchmap

  • Method of Algebraic Analysis in Mathematical Physics (with the emphasis on Representation Theory, Combinatorics and Complex Analysis)

    Grant number:17340038  2005 - 2008

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    MIWA Tetsuji, JIMBO Michio, OKADO Masato, NAKAYASHIKI Atsushi, TAKEYAMA Yoshihiro, IOHARA Kenji, SUZUKI Takeshi, TAKEMURA Kouichi

      More details

    Grant amount:\9240000 ( Direct expense: \8100000 、 Indirect expense:\1140000 )

    数学を形作る第一の要素は数であり、その次ぎにくるのは函数である。函数は数に数を対応させるものである。もう一段上になって、函数に函数を対応させるものを作用素という。作用素は2つのものから第3のものを、順に続けることによって作り出すことができるが、順番を変えると結果が異なる。これを作用素の非可換性という。非可換な作用素がどのような等式によって統制されるかを研究するのが代数解析である。本研究では、磁石のような物理系を数学の言葉で作用素を用いてとらえ、その非可換性を研究することによって温度変化する磁化の強さのような函数を決定し、物理系を特徴づける数にまで迫ろうというものである。

    researchmap

  • 可積分系及び関連する代数系に関する研究

    Grant number:14740013  2002 - 2004

    日本学術振興会  科学研究費助成事業  若手研究(B)

    鈴木 武史

      More details

    Grant amount:\3300000 ( Direct expense: \3300000 )

    前年度に引き続き,ダブルアフィンHecke代数及び関連する代数の表現について研究を行い,以下の結果を得た.
    [1]A型の退化ダブルアフィンHecke代数と有理Cherednik代数の関係について:
    退化ダブルアフィンHecke代数H^d,及び有理Cherednik代数H^rは,それぞれ対応するダブルアフィンHecke代数のtrigonometric degeneration及びrational degenerationと考えられているが,今回,A型の場合にはH^rはH^dの部分代数であり,しかも,圏Oと呼ばれるH^rの表現の圏から,対応するH^dの表現の圏へ,inductionにより与えられる関手H^d【cross product】_H^r(-)が完全かつfully-faithfulになることが示されたこの対応を用いて,一方の代数の表現に関する結果から他方の結果を得ることができる.特に,前年度得たcalibrated(ある可換部分代数に関して半単純)なH^dの既約表現の分類から,calibratedなH^rの既約表現の分類が得られる.これらの結果は論文
    "Rational and trigonometric degeneration of the double affine Hecke algebra of type A"
    として投稿中である.
    [2]退化ダブルアフィンHecke代数及び有理Cherednik代数の既約表現のアフィンLie代数の表現を用いた構成及び指標公式:
    前年度の研究でA型の退化ダブルアフィンHecke代数H^dのcalibratedな既約表現がアフィンLie代数gl_nの可積分表現の余不変式として表されることが示されたが,類似の構成がrational Cherednik代数H^rに対しても行えることが示された.[1]の結果を用いて,calibratedなH^rの既約表現は全てこの構成によって得られることも分かる.さらに,このクラスのH^d及びH^rの既約表現に関して,各表現のタブローによる記述を用いて,指標公式のKostka多項式による表示を得た.これにより荒川・土屋両氏との共同研究において提起された予想が解決されたことになる.以上の結果については現在論文を作成中である.

    researchmap

▼display all

 

Class subject in charge

  • Categories and Representations (2024academic year) Late  - 水7~8

  • Basic Algebra A (2024academic year) 1st and 2nd semester  - 木7~8

  • Basic Algebra Aa (2024academic year) 1st semester  - 木7~8

  • Basic Algebra Ab (2024academic year) Second semester  - 木7~8

  • Seminar in Algebra (2024academic year) Year-round  - その他

  • Advanced Algebra II (2024academic year) 3rd and 4th semester  - 水3~4

  • Advanced Algebra IIa (2024academic year) Third semester  - 水3~4

  • Advanced Algebra IIb (2024academic year) Fourth semester  - 水3~4

  • Exercise of Mathematics I (2024academic year) 1st and 2nd semester  - 火7~8

  • Exercise of Mathematics Ia (2024academic year) 1st semester  - 火7~8

  • Exercise of Mathematics Ib (2024academic year) Second semester  - 火7~8

  • Exercise of Mathematics III (2024academic year) 3rd and 4th semester  - 金7~8

  • Exercise of Mathematics IIIa (2024academic year) Third semester  - 金7~8

  • Exercise of Mathematics IIIb (2024academic year) Fourth semester  - 金7~8

  • Advanced Lecture on Mathematical Sciences C (2024academic year) Concentration  - その他

  • Rings and Categories of Modules (2024academic year) Late  - その他

  • Advanced Practice in Representation Theory 1 (2024academic year) Prophase  - その他

  • Advanced Practice in Representation Theory 2 (2024academic year) Late  - その他

  • Advanced Practice in Representation Theory 3 (2024academic year) Prophase  - その他

  • Advanced Practice in Representation Theory 4 (2024academic year) Late  - その他

  • Categories and Representations (2023academic year) Late  - 水7~8

  • Categories and Representations (2023academic year) Late  - 水7~8

  • Basic Algebra A (2023academic year) 1st and 2nd semester  - 木7~8

  • Basic Algebra Aa (2023academic year) 1st semester  - 木7~8

  • Basic Algebra Ab (2023academic year) Second semester  - 木7~8

  • Seminar in Algebra (2023academic year) Year-round  - その他

  • Seminar in Algebra (2023academic year) Year-round  - その他

  • Exercise of Mathematics I (2023academic year) 1st and 2nd semester  - 火7~8

  • Exercise of Mathematics Ia (2023academic year) 1st semester  - 火7~8

  • Exercise of Mathematics Ib (2023academic year) Second semester  - 火7~8

  • Exercise of Mathematics III (2023academic year) 3rd and 4th semester  - 金7~8

  • Exercise of Mathematics IIIa (2023academic year) Third semester  - 金7~8

  • Exercise of Mathematics IIIb (2023academic year) Fourth semester  - 金7~8

  • Glance at Mathematical Science B (2023academic year) Third semester  - 金5~6

  • Invitation to Mathematical Sciences (2023academic year) 1st semester  - 金3~4

  • 数理科学演習 (2023academic year) 後期

  • Rings and Categories of Modules (2023academic year) Late  - その他

  • Rings and Categories of Modules (2023academic year) Late  - その他

  • Advanced Practice in Representation Theory 1 (2023academic year) Prophase  - その他

  • Advanced Practice in Representation Theory 2 (2023academic year) Late  - その他

  • Categories and Representations (2022academic year) Late  - 水7~8

  • Basic Algebra A (2022academic year) 1st and 2nd semester  - 木7~8

  • Basic Algebra Aa (2022academic year) 1st semester  - 木7~8

  • Basic Algebra Ab (2022academic year) Second semester  - 木7~8

  • Basic Algebra B (2022academic year) 3rd and 4th semester  - 月3~4

  • Basic Algebra Ba (2022academic year) Third semester  - 月3~4

  • Basic Algebra Bb (2022academic year) Fourth semester  - 月3~4

  • Seminar in Algebra (2022academic year) Year-round  - その他

  • Advanced Algebra IIa (2022academic year) Third semester  - 水3~4

  • Advanced Algebra IIb (2022academic year) Fourth semester  - 水3~4

  • Exercise of Mathematics I (2022academic year) 1st and 2nd semester  - 火7~8

  • Exercise of Mathematics Ia (2022academic year) 1st semester  - 火7~8

  • Exercise of Mathematics Ib (2022academic year) Second semester  - 火7~8

  • Rings and Categories of Modules (2022academic year) Late  - その他

  • Categories and Representations (2021academic year) Late  - 水7,水8

  • Basic Algebra A (2021academic year) 1st and 2nd semester  - 木7,木8

  • Basic Algebra Aa (2021academic year) 1st semester  - 木7,木8

  • Basic Algebra Ab (2021academic year) Second semester  - 木7,木8

  • Seminar in Algebra (2021academic year) Year-round  - その他

  • Advanced Algebra II (2021academic year) 3rd and 4th semester  - 水3,水4

  • Advanced Algebra IIa (2021academic year) Third semester  - 水3,水4

  • Advanced Algebra IIb (2021academic year) Fourth semester  - 水3,水4

  • Exercise of Mathematics I (2021academic year) 1st and 2nd semester  - 火7,火8

  • Exercise of Mathematics Ia (2021academic year) 1st semester  - 火7,火8

  • Exercise of Mathematics Ib (2021academic year) Second semester  - 火7,火8

  • Advanced Lecture on Mathematical Sciences A (2021academic year) Concentration  - その他

  • Rings and Categories of Modules (2021academic year) Late  - その他

  • Linear Algebra II (2021academic year) 3rd and 4th semester  - 金5,金6

  • Linear Algebra II (2021academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra IIa (2021academic year) Third semester  - 金5,金6

  • Linear Algebra IIb (2021academic year) Fourth semester  - 金5,金6

  • Categories and Representations (2020academic year) Late  - 水7,水8

  • Seminar in Algebra (2020academic year) Year-round  - その他

  • Advanced Algebra I (2020academic year) 1st and 2nd semester  - 水3,水4

  • Advanced Algebra Ia (2020academic year) 1st semester  - 水3,水4

  • Advanced Algebra Ib (2020academic year) Second semester  - 水3,水4

  • Exercise of Mathematics I (2020academic year) 1st and 2nd semester  - 火7,火8

  • Exercise of Mathematics Ia (2020academic year) 1st semester  - 火7,火8

  • Exercise of Mathematics Ib (2020academic year) Second semester  - 火7,火8

  • Exercise of Mathematics III (2020academic year) 3rd and 4th semester  - 金7,金8

  • Exercise of Mathematics IIIa (2020academic year) Third semester  - 金7,金8

  • Exercise of Mathematics IIIb (2020academic year) Fourth semester  - 金7,金8

  • Invitation to Mathematical Sciences (2020academic year) 1st semester  - 金3,金4

  • Rings and Categories of Modules (2020academic year) Late  - その他

  • Linear Algebra II (2020academic year) 3rd and 4th semester  - 金5,金6

  • Linear Algebra IIa (2020academic year) Third semester  - 金5,金6

  • Linear Algebra IIb (2020academic year) Fourth semester  - 金5,金6

  • Linear Algebra IIa (2020academic year) Third semester  - 金5,金6

  • Linear Algebra IIb (2020academic year) Fourth semester  - 金5,金6

▼display all

 

Social Activities

  • 岡山芳泉高校・大学訪問(学科説明・模擬授業他)

    Role(s):Lecturer

    岡山大学理学部  2023.7.13

     More details

  • 教員免許更新講習

    Role(s):Lecturer

    2021.8.23

  • 岡山大学理学部高大接続部会・副部会長

    2021.4 - 2022.3

Academic Activities

  • 広島・岡山 代数学研究集会

    Role(s):Planning, management, etc.

    木村俊一,山田裕史,石川雅雄,鈴木武史  2023.3.10 - 2023.3.12

     More details

    Type:Academic society, research group, etc. 

    researchmap

  • 岡山大学数学教室談話会

    Role(s):Planning, management, etc.

    主催  2021.12.1

  • 日本数学会秋季総合分科会 無限可積分系セッション

    Role(s):Planning, management, etc.

    世話人  2019.9.17 - 2019.9.20

     More details

    Type:Academic society, research group, etc. 

    researchmap

  • 日本数学会 年会 無限可積分系セッション

    Role(s):Planning, management, etc.

    世話人  2019.3.17 - 2019.3.20

     More details

    Type:Academic society, research group, etc. 

    researchmap

  • 広島・熊本・岡山 代数学研究集会

    Role(s):Planning, management, etc.

    主催者  2019.3.13 - 2019.3.14

     More details

    Type:Academic society, research group, etc. 

    researchmap