Updated on 2024/12/02

写真a

 
IKEDA Atsushi
 
Organization
Okayama University Hospital Lecturer
Position
Lecturer
External link

Degree

  • 博士(歯学) ( 2013.3   岡山大学 医歯薬学総合研究科 )

 

Papers

  • プロトンポンプ阻害剤服用時に歯周病原細菌がマウス腸内細菌叢へ及ぼす影響

    釜田 英幸, 平井 公人, 池田 淳史, 伊東 有希, 大久保 圭祐, 中村 心, 大森 一弘, 高柴 正悟

    日本歯周病学会会誌   66 ( 秋季特別 )   159 - 159   2024.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • プロトンポンプ阻害剤服用時に歯周病原細菌が腸内細菌叢へ及ぼす影響

    釜田 英幸, 平井 公人, 池田 淳史, 伊東 有希, 大久保 圭祐, 大森 一弘, 高柴 正悟

    日本未病学会学術総会抄録集   30回   62 - 62   2023.12

     More details

    Language:Japanese   Publisher:(一社)日本未病学会  

    researchmap

  • Novel Iron Chelators, Super-Polyphenols, Show Antimicrobial Effects against Cariogenic Streptococcus mutans Reviewed

    Yuki Shinoda-Ito, Kazuhiro Omori, Takashi Ito, Masaaki Nakayama, Atsushi Ikeda, Masahiro Ito, Toshiaki Ohara, Shogo Takashiba

    Antibiotics   12 ( 11 )   1562 - 1562   2023.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    Dental caries are an oral infectious disease that can affect human health both orally and systemically. It remains an urgent issue to establish a novel antibacterial method to prevent oral infection for a healthy life expectancy. The aim of this study was to evaluate the inhibitory effects of novel iron chelators, super-polyphenols (SPs), on the cariogenic bacterium Streptococcus mutans, in vitro. SPs were developed to reduce the side effects of iron chelation therapy and were either water-soluble or insoluble depending on their isoforms. We found that SP6 and SP10 inhibited bacterial growth equivalent to povidone-iodine, and viability tests indicated that their effects were bacteriostatic. These results suggest that SP6 and SP10 have the potential to control oral bacterial infections such as Streptococcus mutans.

    DOI: 10.3390/antibiotics12111562

    researchmap

  • 先天性ネフローゼ症候群患者の薬物性歯肉増殖症への対応 11年症例

    梶谷 明子, 三浦 留美, 池田 淳史, 大森 一弘, 高柴 正悟

    日本歯周病学会会誌   65 ( 秋季特別 )   187 - 187   2023.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • 歯周炎症が血糖値の日内変動に及ぼす影響 マウス歯周炎モデルにおける持続自己血糖測定器を用いた解析

    久保田 萌可, 大森 一弘, 永田 千晶, 木山 史子, 坂井田 京佑, 平井 公人, 伊東 有希, 大久保 圭祐, 池田 淳史, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   159回   146 - 146   2023.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

  • プロトンポンプ阻害剤服用時に歯周病原細菌が腸内細菌叢へ及ぼす影響

    釜田 英幸, 平井 公人, 池田 淳史, 伊東 有希, 井手口 英隆, 大森 一弘, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   158回   34 - 34   2023.5

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

  • Extracellular Release of Citrullinated Vimentin Directly Acts on Osteoclasts to Promote Bone Resorption in a Mouse Model of Periodontitis Reviewed

    Satoru Shindo, Roodelyne Pierrelus, Atsushi Ikeda, Shin Nakamura, Alireza Heidari, Maria Rita Pastore, Elizabeth Leon, Sunniva Ruiz, Harsh Chheda, Rhea Khatiwala, Tomoki Kumagai, George Tolson, Islam Elderbashy, Kazuhisa Ouhara, Xiaozhe Han, Maria Hernandez, Saynur Vardar-Sengul, Hideki Shiba, Toshihisa Kawai

    Cells   12 ( 8 )   1109 - 1109   2023.4

     More details

    Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    Elevated osteoclast (OC)-mediated bone resorption, a common pathological feature between periodontitis and rheumatoid arthritis (RA), implicates a possible mutually shared pathogenesis. The autoantibody to citrullinated vimentin (CV), a representative biomarker of RA, is reported to promote osteoclastogenesis (OC-genesis). However, its effect on OC-genesis in the context of periodontitis remains to be elucidated. In an in vitro experiment, the addition of exogenous CV upregulated the development of Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear OCs from mouse bone marrow cells and increased the formation of resorption pits. However, Cl-amidine, an irreversible pan-peptidyl arginine deiminase (PAD) inhibitor, suppressed the production and secretion of CV from RANKL-stimulated OC precursors, suggesting that the citrullination of vimentin occurs in OC precursors. On the other hand, the anti-vimentin neutralizing antibody suppressed in vitro Receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced OC-genesis. The CV-induced upregulation of OC-genesis was abrogated by the Protein kinase C (PKC)-δ inhibitor Rottlerin, accompanied by the downmodulation of OC-genesis-related genes, including Osteoclast stimulatory transmembrane protein (OC-STAMP), TRAP and Matrix Metallopeptidase 9 (MMP9) as well as extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP)-kinase phosphorylation. Elevated levels of soluble CV and vimentin-bearing mononuclear cells were found in the bone resorption lesions of periodontitis induced in mice in the absence of an anti-CV antibody. Finally, local injection of anti-vimentin neutralizing antibody suppressed the periodontal bone loss induced in mice. Collectively, these results indicated that the extracellular release of CV promoted OC-genesis and bone resorption in periodontitis.

    DOI: 10.3390/cells12081109

    researchmap

  • 歯周炎組織においてADAM17が破骨細胞分化に与える影響

    本行 令奈, 池田 淳史, 井手口 英隆, 大森 一弘, 山本 直史, 高柴 正悟

    日本歯周病学会会誌   65 ( 春季特別 )   127 - 127   2023.4

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • ADAM10: Possible functions in enamel development Reviewed

    Shifa Shahid, Atsushi Ikeda, Michelle C. Layana, John D. Bartlett

    Frontiers in Physiology   13   2022.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Frontiers Media SA  

    ADAM10 is A Disintegrin And Metalloproteinase (ADAM) family member that is membrane bound with its catalytic domain present on the cell surface. It is a sheddase that cleaves anchored cell surface proteins to shed them from the cell surface. ADAM10 can cleave at least a hundred different proteins and is expressed in most tissues of the body. ADAM10 is best characterized for its role in Notch signaling. Interestingly, ADAM10 is transported to specific sites on the cell surface by six different tetraspanins. Although the mechanism is not clear, tetraspanins can regulate ADAM10 substrate specificity, which likely contributes to the diversity of ADAM10 substrates. In developing mouse teeth, ADAM10 is expressed in the stem cell niche and subsequently in pre-ameloblasts and then secretory stage ameloblasts. However, once ameloblasts begin transitioning into the maturation stage, ADAM10 expression abruptly ceases. This is exactly when ameloblasts stop their movement that extends enamel crystallites and when the enamel layer reaches its full thickness. ADAM10 may play an important role in enamel development. ADAM10 can cleave cadherins and other cell-cell junctions at specific sites where the tetraspanins have transported it and this may promote cell movement. ADAM10 can also cleave the transmembrane proteins COL17A1 and RELT. When either COL17A1 or RELT are mutated, malformed enamel may occur in humans and mice. So, ADAM10 may also regulate these proteins that are necessary for proper enamel development. This mini review will highlight ADAM10 function, how that function is regulated by tetraspanins, and how ADAM10 may promote enamel formation.

    DOI: 10.3389/fphys.2022.1032383

    researchmap

  • 歯周組織の感染・炎症が惹起する子宮組織の肥厚と妊娠への影響

    永田 千晶, 大森 一弘, 井手口 英隆, 佐光 秀文, 坂井田 京佑, 久保田 萌可, 大原 利章, 萬代 大樹, 平井 公人, 池田 淳史, 山本 直史, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   157回   48 - 48   2022.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

  • Locally Secreted Semaphorin 4D Is Engaged in Both Pathogenic Bone Resorption and Retarded Bone Regeneration in a Ligature-Induced Mouse Model of Periodontitis Reviewed

    Takenobu Ishii, Montserrat Ruiz-Torruella, Kenta Yamamoto, Tsuguno Yamaguchi, Alireza Heidari, Roodelyne Pierrelus, Elizabeth Leon, Satoru Shindo, Mohamad Rawas-Qalaji, Maria Rita Pastore, Atsushi Ikeda, Shin Nakamura, Hani Mawardi, Umadevi Kandalam, Patrick Hardigan, Lukasz Witek, Paulo G. Coelho, Toshihisa Kawai

    International Journal of Molecular Sciences   23 ( 10 )   5630 - 5630   2022.5

     More details

    Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation of osteoclast-mediated periodontal bone-resorption suggest the need for further investigation of this multifaceted molecule. In short, the pathophysiological role of Sema4D in periodontitis requires further study. Accordingly, attachment of the ligature to the maxillary molar of mice for 7 days induced alveolar bone-resorption accompanied by locally elevated, soluble Sema4D (sSema4D), TNF-α and RANKL. Removal of the ligature induced spontaneous bone regeneration during the following 14 days, which was significantly promoted by anti-Sema4D-mAb administration. Anti-Sema4D-mAb was also suppressed in vitro osteoclastogenesis and pit formation by RANKL-stimulated BMMCs. While anti-Sema4D-mAb downmodulated the bone-resorption induced in mouse periodontitis, it neither affected local production of TNF-α and RANKL nor systemic skeletal bone remodeling. RANKL-induced osteoclastogenesis and resorptive activity were also suppressed by blocking of CD72, but not Plexin B2, suggesting that sSema4D released by osteoclasts promotes osteoclastogenesis via ligation to CD72 receptor. Overall, our data indicated that ssSema4D released by osteoclasts may play a dual function by decreasing bone formation, while upregulating bone-resorption.

    DOI: 10.3390/ijms23105630

    researchmap

  • Dual-Function Semaphorin 4D Released by Platelets: Suppression of Osteoblastogenesis and Promotion of Osteoclastogenesis Reviewed

    Satoru Shindo, Irma Josefina Savitri, Takenobu Ishii, Atsushi Ikeda, Roodelyne Pierrelus, Alireza Heidari, Keisuke Okubo, Shin Nakamura, Umadevi Kandalam, Mohamad Rawas-Qalaji, Elizabeth Leon, Maria Rita Pastore, Patrick Hardigan, Toshihisa Kawai

    International Journal of Molecular Sciences   23 ( 6 )   2938 - 2938   2022.3

     More details

    Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    Effects of the antiosteoblastogenesis factor Semaphorin 4D (Sema4D), expressed by thrombin-activated platelets (TPs), on osteoblastogenesis, as well as osteoclastogenesis, were investigated in vitro. Intact platelets released both Sema4D and IGF-1. However, in response to stimulation with thrombin, platelets upregulated the release of Sema4D, but not IGF-1. Anti-Sema4D-neutralizing monoclonal antibody (mAb) upregulated TP-mediated osteoblastogenesis in MC3T3-E1 osteoblast precursors. MC3T3-E1 cells exposed to TPs induced phosphorylation of Akt and ERK further upregulated by the addition of anti-sema4D-mAb, suggesting the suppressive effects of TP-expressing Sema4D on osteoblastogenesis. On the other hand, TPs promoted RANKL-mediated osteoclastogenesis in the primary culture of bone-marrow-derived mononuclear cells (BMMCs). Among the known three receptors of Sema4D, including Plexin B1, Plexin B2 and CD72, little Plexin B2 was detected, and no Plexin B1 was detected, but a high level of CD72 mRNA was detected in RANKL-stimulated BMMCs by qPCR. Both anti-Sema4D-mAb and anti-CD72-mAb suppressed RANKL-induced osteoclast formation and bone resorptive activity, suggesting that Sema4D released by TPs promotes osteoclastogenesis via ligation to a CD72 receptor. This study demonstrated that Sema4D released by TPs suppresses osteogenic activity and promotes osteoclastogenesis, suggesting the novel property of platelets in bone-remodeling processes.

    DOI: 10.3390/ijms23062938

    researchmap

  • MMP20-generated amelogenin cleavage products prevent formation of fan-shaped enamel malformations Reviewed

    John D. Bartlett, Charles E. Smith, Yuanyuan Hu, Atsushi Ikeda, Mike Strauss, Tian Liang, Ya-Hsiang Hsu, Amanda H. Trout, David W. McComb, Rebecca C. Freeman, James P. Simmer, Jan C.-C. Hu

    Scientific Reports   11 ( 1 )   2021.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    <title>Abstract</title>Dental enamel forms extracellularly as thin ribbons of amorphous calcium phosphate (ACP) that initiate on dentin mineral in close proximity to the ameloblast distal membrane. Secreted proteins are critical for this process. <italic>Enam</italic>−/− and <italic>Ambn</italic>−/− mice fail to form enamel. We characterize enamel ribbon formation in wild-type (WT), <italic>Amelx</italic>−/− and <italic>Mmp20</italic>−/− mouse mandibular incisors using focused ion beam scanning electron microscopy (FIB-SEM) in inverted backscatter mode. In <italic>Amelx</italic>−/− mice, initial enamel mineral ribbons extending from dentin are similar in form to those of WT mice. As early enamel development progresses, the <italic>Amelx</italic>−/− mineral ribbons develop multiple branches, resembling the staves of a Japanese fan. These striking fan-shaped structures cease growing after attaining ~ 20 µm of enamel thickness (WT is ~ 120 µm). The initial enamel mineral ribbons in <italic>Mmp20</italic>−/− mice, like those of the <italic>Amelx</italic>−/− and WT, extend from the dentin surface to the ameloblast membrane, but appear to be fewer in number and coated on their sides with organic material. Remarkably, <italic>Mmp20</italic>−/− mineral ribbons also form fan-like structures that extend to ~ 20 µm from the dentin surface. However, these fans are subsequently capped with a hard, disorganized outer mineral layer. Amelogenin cleavage products are the only matrix components absent in both <italic>Amelx</italic>−/− and <italic>Mmp20</italic>−/− mice. We conclude that MMP20 and amelogenin are not critical for enamel mineral ribbon initiation, orientation, or initial shape. The pathological fan-like plates in these mice may form from the lack of amelogenin cleavage products, which appear necessary to form ordered hydroxyapatite.

    DOI: 10.1038/s41598-021-90005-z

    researchmap

    Other Link: http://www.nature.com/articles/s41598-021-90005-z

  • Follistatin expressed in mechanically-damaged salivary glands of male mice induces proliferation of CD49f+ cells Reviewed International journal

    A. Ikeda, T. Yamamoto, J. Mineshiba, S. Takashiba

    Scientific Reports   10 ( 1 )   19959 - 19959   2020.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    <title>Abstract</title>Salivary glands (SGs) are very important for maintaining the physiological functions of the mouth. When SGs regenerate and repair from various damages, including mechanical, radiological, and immune diseases, acinar and granular duct cells originate from intercalated duct cells. However, the recovery is often insufficient because of SGs' limited self-repair function. Furthermore, the precise repair mechanism has been unclear. Here, we focused on CD49f, one of the putative stem cell markers, and characterized CD49f positive cells (CD49f+ cells) isolated from male murine SGs. CD49f+ cells possess self-renewal ability and express epithelial and pluripotent markers. Compared to CD49f negative cells, freshly isolated CD49f+ cells highly expressed inhibin beta A and beta B, which are components of activin that has anti-proliferative effects. Notably, an inhibitor of activin, follistatin was expressed in mechanically-damaged SGs, meanwhile no follistatin was expressed in normal SGs in vivo. Moreover, sub-cultured CD49f+ cells highly expressed both <italic>Follistatin</italic> and a series of proliferative genes, expressions of which were decreased by <italic>Follistatin</italic> siRNA. These findings indicated that the molecular interaction between activin and follistatin may induce CD49f+ cells proliferation in the regeneration and repair of mouse SGs.

    DOI: 10.1038/s41598-020-77004-2

    PubMed

    researchmap

    Other Link: http://www.nature.com/articles/s41598-020-77004-2

  • ADAM10 is Expressed by Ameloblasts, Cleaves the RELT TNF Receptor Extracellular Domain and Facilitates Enamel Development Reviewed

    Atsushi Ikeda, Shifa Shahid, Benjamin R. Blumberg, Maiko Suzuki, John D. Bartlett

    Scientific Reports   9 ( 1 )   2019.12

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    <title>Abstract</title>
    MMP20 cleaves cadherins and may facilitate cell movement, however MMP20 is not known to cleave tight junction or desmosome proteins. Ameloblasts had not previously been screened for membrane anchored proteases that could contribute to cell movement. Here we performed a PCR screen for proteolyticlly active <underline>A D</underline>isintegrin <underline>A</underline>nd <underline>M</underline>etalloproteinase (ADAM) family members. These proteinases are termed sheddases because they have a transmembrane domain and their catalytic domain on the cell surface can function to release anchored proteins. Significantly, ADAMs can be targeted to specific substrates on the cell membrane through their interaction with tetraspanins. Six ADAMs (ADAM8, 9, 10, 15, 17, 19) were expressed in mouse enamel organs. We show that <italic>Adam10</italic> expression begins in the apical loop, continues through the secretory stage and abruptly ends at the transition stage when ameloblast migration ceases. ADAM10 cleaves cadherins and tight junction plus desmosome proteins and is well characterized for its role in cell movement. ADAM10 facilitated LS8 cell migration/invasion through a Matrigel coated membrane and we demonstrate that ADAM10, but not ADAM17 cleaves the RELT extracellular domain. This striking result is significant because <italic>RELT</italic> mutations cause amelogenesis imperfecta (AI) and this directly links ADAM10 to an important role in enamel development.

    DOI: 10.1038/s41598-019-50277-y

    researchmap

    Other Link: http://www.nature.com/articles/s41598-019-50277-y

  • MDM2-Mediated p21 Proteasomal Degradation Promotes Fluoride Toxicity in Ameloblasts Reviewed

    Huidan Deng, Atsushi Ikeda, Hengmin Cui, John D. Bartlett, Maiko Suzuki

    Cells   8 ( 5 )   436 - 436   2019.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MDPI AG  

    Fluoride overexposure is an environmental health hazard and can cause enamel and skeletal fluorosis. Previously we demonstrated that fluoride increased acetylated-p53 and its downstream target p21 in ameloblast-derived LS8 cells. However, p21 function in fluoride toxicity is not well characterized. This study seeks to gain a better understanding of how p53 down-stream mediators, p21 and MDM2, respond to fluoride toxicity. LS8 cells were treated with NaF with/without MG-132 (proteasome inhibitor) or Nutlin-3a (MDM2 antagonist). NaF treatment for 2–6 h increased phospho-p21, which can inhibit apoptosis. However, phospho-p21 and p21 were decreased by NaF at 24 h, even though p21 mRNA was significantly increased at this time point. MG-132 reversed the fluoride-mediated p21 decrease, indicating that fluoride facilitates p21 proteasomal degradation. MG-132 suppressed fluoride-induced caspase-3 cleavage, suggesting that the proteasome plays a pro-apoptotic role in fluoride toxicity. NaF increased phospho-MDM2 in vitro and in mouse ameloblasts in vivo. Nutlin-3a suppressed NaF-mediated MDM2-p21 binding to reverse p21 degradation which increased phospho-p21. This suppressed apoptosis after 24 h NaF treatment. These results suggest that MDM2-mediated p21 proteasomal degradation with subsequent phospho-p21 attenuation contributes to fluoride-induced apoptosis. Inhibition of MDM2-mediated p21 degradation may be a potential therapeutic target to mitigate fluoride toxicity.

    DOI: 10.3390/cells8050436

    researchmap

  • Mutations in RELT cause autosomal recessive amelogenesis imperfecta Reviewed

    Jung‐Wook Kim, Hong Zhang, Figen Seymen, Mine Koruyucu, Yuanyuan Hu, Jenny Kang, Youn J. Kim, Atsushi Ikeda, Yelda Kasimoglu, Merve Bayram, Chuhua Zhang, Kazuhiko Kawasaki, John D. Bartlett, Thomas L. Saunders, James P. Simmer, Jan C‐C. Hu

    Clinical Genetics   95 ( 3 )   375 - 383   2019.3

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    DOI: 10.1111/cge.13487

    researchmap

    Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1111/cge.13487

  • MMP20 Overexpression Disrupts Molar Ameloblast Polarity and Migration Reviewed

    M. Shin, M.B. Chavez, A. Ikeda, B.L. Foster, J.D. Bartlett

    Journal of Dental Research   97 ( 7 )   820 - 827   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SAGE Publications  

    Ameloblasts responsible for enamel formation express matrix metalloproteinase 20 (MMP20), an enzyme that cleaves enamel matrix proteins, including amelogenin (AMELX) and ameloblastin (AMBN). Previously, we showed that continuously erupting incisors from transgenic mice overexpressing active MMP20 had a massive cell infiltrate present within their enamel space, leading to enamel mineralization defects. However, effects of MMP20 overexpression on mouse molars were not analyzed, although these teeth more accurately represent human odontogenesis. Therefore, MMP20-overexpressing mice ( Mmp20+/+Tg+) were assessed by multiscale analyses, combining several approaches from high-resolution micro–computed tomography to enamel organ immunoblots. During the secretory stage at postnatal day 6 (P6), Mmp20+/+Tg+ mice had a discontinuous ameloblast layer and, unlike incisors, molar P12 maturation stage ameloblasts abnormally migrated away from the enamel layer into the stratum intermedium/stellate reticulum. TOPflash assays performed in vitro demonstrated that MMP20 expression promoted β-catenin nuclear localization and that MMP20 expression promoted invasion through Matrigel-coated filters. However, for both assays, significant differences were eliminated in the presence of the β-catenin inhibitor ICG-001. This suggests that MMP20 activity promotes cell migration via the Wnt pathway. In vivo, the unique molar migration of amelogenin-expressing ameloblasts was associated with abnormal deposition of ectopic calcified nodules surrounding the adherent enamel layer. Enamel content was assessed just prior to eruption at P15. Compared to wild-type, Mmp20+/+Tg+ molars exhibited significant reductions in enamel thickness (70%), volume (60%), and mineral density (40%), and MMP20 overexpression resulted in premature cleavage of AMBN, which likely contributed to the severe defects in enamel mineralization. In addition, Mmp20+/+Tg+ mouse molar enamel organs had increased levels of inactive p-cofilin, a protein that regulates cell polarity. These data demonstrate that increased MMP20 activity in molars causes premature degradation of ameloblastin and inactivation of cofilin, which may contribute to pathological Wnt-mediated cell migration away from the enamel layer.

    DOI: 10.1177/0022034518758657

    researchmap

    Other Link: http://journals.sagepub.com/doi/full-xml/10.1177/0022034518758657

  • OC‐STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up‐regulation of permissive fusogen CD9 Reviewed International journal

    Takenobu Ishii, Montserrat Ruiz‐Torruella, Atsushi Ikeda, Satoru Shindo, Alexandru Movila, Hani Mawardi, Abdullah Albassam, Rayyan A. Kayal, Ayman A. Al‐Dharrab, Kenji Egashira, Wichaya Wisitrasameewong, Kenta Yamamoto, Abdulghani I. Mira, Kenji Sueishi, Xiaozhe Han, Martin A. Taubman, Takeshi Miyamoto, Toshihisa Kawai

    The FASEB Journal   32 ( 7 )   4016 - 4030   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Cell fusion-mediated formation of multinuclear osteoclasts (OCs) plays a key role in bone resorption. It is reported that 2 unique OC-specific fusogens [ i.e., OC-stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP)], and permissive fusogen CD9, are involved in OC fusion. In contrast to DC-STAMP-knockout (KO) mice, which show the osteopetrotic phenotype, OC-STAMP-KO mice show no difference in systemic bone mineral density. Nonetheless, according to the ligature-induced periodontitis model, significantly lower level of bone resorption was found in OC-STAMP-KO mice compared to WT mice. Anti-OC-STAMP-neutralizing mAb down-modulated in vitro: 1) the emergence of large multinuclear tartrate-resistant acid phosphatase-positive cells, 2) pit formation, and 3) mRNA and protein expression of CD9, but not DC-STAMP, in receptor activator of NF-κB ligand (RANKL)-stimulated OC precursor cells (OCps). While anti-DC-STAMP-mAb also down-regulated RANKL-induced osteoclastogenesis in vitro, it had no effect on CD9 expression. In our mouse model, systemic administration of anti-OC-STAMP-mAb suppressed the expression of CD9 mRNA, but not DC-STAMP mRNA, in periodontal tissue, along with diminished alveolar bone loss and reduced emergence of CD9+ OCps and tartrate-resistant acid phosphatase-positive multinuclear OCs. The present study demonstrated that OC-STAMP partners CD9 to promote periodontal bone destruction by up-regulation of fusion during osteoclastogenesis, suggesting that anti-OC-STAMP-mAb may lead to the development of a novel therapeutic regimen for periodontitis.-Ishii, T., Ruiz-Torruella, M., Ikeda, A., Shindo, S., Movila, A., Mawardi, H., Albassam, A., Kayal, R. A., Al-Dharrab, A. A., Egashira, K., Wisitrasameewong, W., Yamamoto, K., Mira, A. I., Sueishi, K., Han, X., Taubman, M. A., Miyamoto, T., Kawai, T. OC-STAMP promotes osteoclast fusion for pathogenic bone resorption in periodontitis via up-regulation of permissive fusogen CD9.

    DOI: 10.1096/fj.201701424r

    PubMed

    researchmap

    Other Link: https://onlinelibrary.wiley.com/doi/full-xml/10.1096/fj.201701424R

  • Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation Reviewed

    Maiko Suzuki, Atsushi Ikeda, John D. Bartlett

    Archives of Toxicology   92 ( 3 )   1283 - 1293   2018.3

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s00204-017-2135-2

    researchmap

    Other Link: http://link.springer.com/content/pdf/10.1007/s00204-017-2135-2.pdf

  • TRAP-positive osteoclast precursors mediate ROS/NO-dependent bactericidal activity via TLR4 Reviewed

    Kazuaki Nishimura, Satoru Shindo, Alexandru Movila, Rayyan Kayal, Albassam Abdullah, Irma Josefina Savitri, Atsushi Ikeda, Tsuguno Yamaguchi, Mohammed Howait, Ayman Al-dharrab, Abdulghani Mira, Xiaozhe Han, Toshihisa Kawai

    Free Radical Biology and Medicine   97   330 - 341   2016.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.freeradbiomed.2016.06.021

    researchmap

▼display all

MISC

  • 犬の歯周病に起因する炎症が全身の鉄代謝に及ぼす影響の検討

    田村和也, 田村和也, 田村和也, 大森一弘, 池田淳史, 大原利章, 高柴正悟

    日本鉄バイオサイエンス学会学術集会プログラム・抄録集   47th   2023

  • 新規除鉄剤スーパーポリフェノール(SP)を応用した新規口腔感染制御システムの構築

    伊東有希, 大森一弘, 伊東孝, 中山真彰, 池田淳史, 大原利章, 高柴正悟

    日本鉄バイオサイエンス学会学術集会プログラム・抄録集   47th   2023

  • 不妊治療中患者における歯周病原細菌の感染度調査 血清IgG抗体価検査を応用したパイロット研究

    永田 千晶, 大森 一弘, 佐光 秀文, 坂井田 京佑, 井手口 英隆, 池田 淳史, 徳善 真砂子, 平井 公人, 畑中 加珠, 山本 直史, 滝川 雅之, 三宅 貴仁, 高柴 正悟

    日本未病学会学術総会抄録集   28回   106 - 106   2021.11

     More details

    Language:Japanese   Publisher:(一社)日本未病学会  

    researchmap

  • 不妊治療中患者における歯周病原細菌の感染度調査 血清IgG抗体価検査を応用したパイロット研究

    永田 千晶, 大森 一弘, 佐光 秀文, 坂井田 京佑, 井手口 英隆, 池田 淳史, 徳善 真砂子, 平井 公人, 畑中 加珠, 山本 直史, 滝川 雅之, 三宅 貴仁, 高柴 正悟

    日本未病学会学術総会抄録集   28回   106 - 106   2021.11

     More details

    Language:Japanese   Publisher:(一社)日本未病学会  

    researchmap

  • RNAシャペロンであるHfqはAggregatibacter actinomycetemcomitansの病原因子を制御する

    尾内 千晃, 平井 公人, 池田 淳史, 伊東 昌洋, 山本 直史, 高柴 正悟

    日本歯周病学会会誌   63 ( 秋季特別 )   119 - 119   2021.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • Notchシグナル伝達経路を介した破骨細胞分化のメカニズム

    本行 令奈, 池田 淳史, 山本 直史, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   155回   35 - 35   2021.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

  • 真菌由来代謝産物(+)-terrein誘導体がIL-6誘導性VEGFおよびCSF-1の産生に及ぼす影響の検討

    山本 総司, 大森 一弘, 後藤 絢香, 池田 淳史, 小林 寛也, 中川 沙紀, 山本 大介, 山本 直史, 高柴 正悟

    日本歯周病学会会誌   57 ( 春季特別 )   122 - 122   2015.4

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • 真菌由来代謝産物(+)-terreinはinterleukin-6誘導性colony stimulating factor-1の遺伝子発現を抑制する

    山本 総司, 大森 一弘, 後藤 絢香, 池田 淳史, 松永 一幸, 山本 大介, 山本 直史, 前田 博史, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   141回   227 - 227   2014.10

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

  • ヒト抗菌ペプチド遺伝子のマウス顎下唾液腺への導入

    峯柴 史, 後藤 絢香, 池田 淳史, 前田 博史, 高柴 正悟

    日本歯周病学会会誌   56 ( 秋季特別 )   112 - 112   2014.9

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • 主導管結紮解除後のマウス顎下腺におけるCD49F、INHIBIN βBとFOLLISTATINの発現局在

    池田 淳史, 峯柴 淳二, 前田 博史, 高柴 正悟

    日本歯周病学会会誌   56 ( 春季特別 )   102 - 102   2014.4

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • マウスのCD49f陽性顎下腺細胞が発現する成長因子の探究

    池田 淳史, 峯柴 淳二, 前田 博史, 高柴 正悟

    日本歯周病学会会誌   55 ( 春季特別 )   98 - 98   2013.4

     More details

    Language:Japanese   Publisher:(NPO)日本歯周病学会  

    researchmap

  • マウス顎下腺上皮細胞の細胞外液性因子がiPS細胞に与える影響

    池田 淳史, 峯柴 淳二, 山口 知子, 峯柴 史, 前田 博史, 高柴 正悟

    特定非営利活動法人日本歯科保存学会学術大会プログラムおよび講演抄録集   136回   67 - 67   2012.5

     More details

    Language:Japanese   Publisher:(NPO)日本歯科保存学会  

    researchmap

▼display all

Research Projects

  • 制御性T細胞の変化が関わるシェーグレン症候群特異的な新規非翻訳RNAの探索と解析

    Grant number:22K09925  2022.04 - 2025.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    池田 淳史, 高柴 正悟, 伊藤 達男

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    researchmap

  • 骨代謝におけるAdam10の機序の解明とそれを応用した新規骨関連事象抑制薬の開発

    Grant number:20K18508  2020.04 - 2023.03

    日本学術振興会  科学研究費助成事業  若手研究

    池田 淳史

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    日本国民の約80%が罹患している歯周病は、歯周病源細菌の感染に伴い、病的に誘導された破骨細胞によって生じる。そのため、破骨細胞分化の詳細なメカニズ ムを解明することは、歯周病の発生や予防に大いに役立つと考え、
    1. 申請者がアメリカで研究していたタンパク質であるADAM10が、破骨細胞にどのように関わっているかを明らかにし、歯周病の発症メカニズムだけでなく、骨のリモデリングにおけるメカニズムの一端をも解明すること
    2. そこから得られた知見を元に、現在歯科領域で問題となっているMRONJを引き起こすBP製剤の代替薬を開発すること
    の二点を目的に研究を行っている。
    今回着目しているADAM10はNotchシグナル経路に大きく関与していることがわかっており、まずはin vitroの実験系において、生理的条件下で破骨細胞を分化さ せた時のNotchシグナル経路に必要なタンパク質の変化をRNAレベル、及びタンパク質レベルで解析した。その結果、破骨細胞分化のごく早い時期において、 Notchシグナル経路のうちのNotch2とJagged1の発現が上昇していることが判明した。このことから、ADAM10が破骨細胞分化において何らかの役割を果たしている可能性が示唆された。
    その結果をもとに、ADAM10阻害剤を用いて、破骨細胞分化が抑制されるか確認したが、残念ながら、抑制されなかった。Notchシグナル経路に大きく関わるもう一つのADAMプロテアーゼにADAM17がある。その阻害剤を用いると破骨細胞分化が抑制された。さらにJagged1の中和抗体でも同様の結果が得られた。コンディショナルノックアウトマウスの作製は費用の面から難しいので、今後は歯周組織に炎症を惹起させた歯槽骨吸収モデルマウスを使用し、そこにADAM17の阻害剤やJagged1の中和抗体を導入することで、骨吸収が抑制されるか検討する。

    researchmap

  • 唾液腺再生に関わる因子を発見し,それを応用した成体唾液腺の修復・再生

    Grant number:15K20481  2015.04 - 2018.03

    日本学術振興会  科学研究費助成事業  若手研究(B)

    池田 淳史

      More details

    Grant amount:\3900000 ( Direct expense: \3000000 、 Indirect expense:\900000 )

    researchmap

  • 唾液腺再生に関わる因子の探求

    Grant number:26861675  2014.04 - 2017.03

    日本学術振興会  科学研究費助成事業  若手研究(B)

    池田 淳史

      More details

    Grant amount:\3770000 ( Direct expense: \2900000 、 Indirect expense:\870000 )

    researchmap

 

Class subject in charge

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2024academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2024academic year) special  - その他

  • Phantom Practice for Endodontic and Periodontal Treatment (2024academic year) 1st semester  - 木5,木6,木7

  • Practicals: Periodontal Science (2024academic year) special  - その他

  • Research Projects: Periodontal Science (2024academic year) special  - その他

  • Research Projects and Practice: Periodontal Science I (2024academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2024academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2024academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2024academic year) special  - その他

  • Periodontology and Periodontics (2024academic year) Fourth semester  - 火2,火3

  • Clinical training:Speciality Training of Periodontics for Periodontal Disease and Medicine (2024academic year) special  - その他

  • Lecture and Research Projects:Speciality Training of Periodontics for Periodontal Disease and Medicine (2024academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Pathophysiology of Oral Infection and Inflammation) (2024academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Speciality Training of Periodontics for Periodontal Disease) (2024academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Speciality Training of Endodontics for Pulpal and Endodotinc Lesion) (2024academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Pathophysiology of Oral Infection and Inflammation) (2024academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Speciality Training of Periodontics for Periodontal Disease) (2024academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Speciality Training of Endodontics for Pulpal and Endodotinc Lesion) (2024academic year) special  - その他

  • Clinical training:Speciality Training of Endodontics for Pulpal and Endodotinc Lesion (2024academic year) special  - その他

  • Lecture and Research Projects:Speciality Training of Endodontics for Pulpal and Endodotinc Lesion (2024academic year) special  - その他

  • Endodontology and Endodontics (2024academic year) Fourth semester  - 木4

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2023academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2023academic year) special  - その他

  • Phantom Practice for Endodontic and Periodontal Treatment (2023academic year) 1st semester  - 木5,木6,木7

  • Practicals: Periodontal Science (2023academic year) special  - その他

  • Research Projects: Periodontal Science (2023academic year) special  - その他

  • Research Projects and Practice: Periodontal Science I (2023academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2023academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2023academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2023academic year) special  - その他

  • Periodontology and Periodontics (2023academic year) Fourth semester  - 火2,火3

  • Clinical training:Speciality Training of Periodontics for Periodontal Disease and Medicine (2023academic year) special  - その他

  • Lecture and Research Projects:Speciality Training of Periodontics for Periodontal Disease and Medicine (2023academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Pathophysiology of Oral Infection and Inflammation) (2023academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Speciality Training of Periodontics for Periodontal Disease) (2023academic year) special  - その他

  • Practica A for Clinical Specialties in Dentistry(Speciality Training of Endodontics for Pulpal and Endodotinc Lesion) (2023academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Pathophysiology of Oral Infection and Inflammation) (2023academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Speciality Training of Periodontics for Periodontal Disease) (2023academic year) special  - その他

  • Practica B for Clinical Specialties in Dentistry(Speciality Training of Endodontics for Pulpal and Endodotinc Lesion) (2023academic year) special  - その他

  • Clinical training:Speciality Training of Endodontics for Pulpal and Endodotinc Lesion (2023academic year) special  - その他

  • Lecture and Research Projects:Speciality Training of Endodontics for Pulpal and Endodotinc Lesion (2023academic year) special  - その他

  • Endodontology and Endodontics (2023academic year) Fourth semester  - 木4

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2022academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2022academic year) special  - その他

  • Phantom Practice for Endodontic and Periodontal Treatment (2022academic year) 1st semester  - 木5,木6,木7

  • Research Projects and Practice: Periodontal Science I (2022academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2022academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2022academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2022academic year) special  - その他

  • Periodontology and Periodontics (2022academic year) Fourth semester  - 火2,火3

  • Clinical training:Specialty Training for Advanced Periodontics (2022academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Advanced Periodontics (2022academic year) special  - その他

  • Clinical training:Specialty Training for Advanced Endodontics (2022academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Endodontics (2022academic year) special  - その他

  • Endodontology and Endodontics (2022academic year) Fourth semester  - 木4

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2021academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2021academic year) special  - その他

  • Research Projects and Practice: Periodontal Science I (2021academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2021academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2021academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2021academic year) special  - その他

  • Clinical training:Specialty Training for Advanced Periodontics (2021academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Advanced Periodontics (2021academic year) special  - その他

  • Clinical training:Specialty Training for Advanced Endodontics (2021academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Endodontics (2021academic year) special  - その他

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2020academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2020academic year) special  - その他

  • Research Projects and Practice: Periodontal Science I (2020academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2020academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2020academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2020academic year) special  - その他

  • Periodontology and Periodontics (2020academic year) Fourth semester  - 火2,火3

  • Clinical training:Specialty Training for Advanced Periodontics (2020academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Advanced Periodontics (2020academic year) special  - その他

  • Clinical training:Specialty Training for Advanced Endodontics (2020academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Endodontics (2020academic year) special  - その他

  • Endodontology and Endodontics (2020academic year) Fourth semester  - 木4

  • Clinical training:Pathophysiology of Oral Infection and Inflammation (2019academic year) special  - その他

  • Lecture and Research Projects:Pathophysiology of Oral Infection and Inflammation (2019academic year) special  - その他

  • Research Projects and Practice: Periodontal Science I (2019academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science I (2019academic year) special  - その他

  • Research Projects and Practice: Periodontal Science II (2019academic year) special  - その他

  • Lecture and Research Projects: Periodontal Science II (2019academic year) special  - その他

  • Periodontology and Periodontics (2019academic year) Fourth semester  - 火2,火3

  • Clinical training:Specialty Training for Advanced Periodontics (2019academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Advanced Periodontics (2019academic year) special  - その他

  • Clinical training:Specialty Training for Advanced Endodontics (2019academic year) special  - その他

  • Lecture and Research Projects:Specialty Training for Endodontics (2019academic year) special  - その他

▼display all