Updated on 2025/09/01

写真a

 
MORIYA Hisao
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Professor
Position
Professor
External link

Degree

  • 博士(理学)

Research Interests

  • ゲノム

  • 遺伝子量不均衡

  • 蛋白質

  • 酵母

  • フィードバック

  • 過剰発現

  • 量的均衡遺伝子

  • 量感受性遺伝子

  • 遺伝子ネットワーク

  • 遺伝子

  • 仮説枚挙

  • 学習と知識獲得

  • タンパク質ネットワーク

Research Areas

  • Life Science / System genome science

Education

  • Kobe University   大学院自然科学研究科  

    1995.4 - 1998.3

      More details

  • Kobe University   大学院理学研究科  

    1993.4 - 1995.3

      More details

  • Kobe University   理学部   生物学科

    1989.4 - 1993.3

      More details

Research History

  • Okayama University   Faculty of Environmental, Life, Natural Science and Technology   Professor

    2023.4

      More details

    Country:Japan

    researchmap

  • Okayama University   Research Core for Interdisciplinary Sciences   Associate Professor

    2013.4 - 2023.3

      More details

  • Okayama University   Research Core for Interdisciplinary Sciences   Designated Associate Professor

    2011.4 - 2013.3

      More details

  • Okayama University   Research Core for Interdisciplinary Sciences   Designated Assistant Professor

    2009.2 - 2011.3

      More details

  • Japan Science and Technology Agency   Presto Researcher

    2006.10 - 2009.1

      More details

  • Japan Science and Technology Agency   ERATO-SORST北野共生システムプロジェクト   Researcher

    2004.4 - 2006.10

      More details

  • Washington University   School of Medicine   Research Associate

    2001.4 - 2004.3

      More details

  • 三菱化学生命科学研究所   特別研究員

    1998.4 - 2001.3

      More details

▼display all

Professional Memberships

Committee Memberships

  • 科学技術振興機構 創発的支援事業   創発アドバイザー  

    2023   

      More details

  • 日本学術振興会 科学研究費助成事業   審査委員  

    2021 - 2022   

      More details

  • 日本学術振興会 科学研究費助成事業   審査委員  

    2017 - 2019   

      More details

  • 日本学術振興会 科学研究費助成事業   第1段審査(書面審査)委員  

    2014 - 2015   

      More details

  • 酵母遺伝学フォーラム   運営委員(広報担当)  

       

      More details

    Committee type:Academic society

    researchmap

 

Papers

  • Radular teeth matrix protein 1 directs iron oxide deposition in chiton teeth Reviewed

    Michiko Nemoto, Akira Satoh, David Kisailus, Koki Okada, Haruka Akamine, Yuki Odagaki, Yuka Narahara, Kenji Okoshi, Kiori Obuse, Hisao Moriya

    Science   2025.8

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1126/science.adu0043

    researchmap

  • Improving the Z3EV promoter system to create the strongest yeast promoter Reviewed

    Rina Higuchi, Yuri Fujita, Shotaro Namba, Hisao Moriya

    FEMS Yeast Research   24   2024.10

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    Abstract

    Promoters for artificial control of gene expression are central tools in genetic engineering. In the budding yeast Saccharomyces cerevisiae, a variety of constitutive and controllable promoters with different strengths have been constructed using endogenous gene promoters, synthetic transcription factors and their binding sequences, and artificial sequences. However, there have been no attempts to construct the highest strength promoter in yeast cells. In this study, by incrementally increasing the binding sequences of the synthetic transcription factor Z3EV, we were able to construct a promoter (P36) with ~1.4 times the strength of the TDH3 promoter. This is stronger than any previously reported promoter. Although the P36 promoter exhibits some leakage in the absence of induction, the expression induction by estradiol is maintained. When combined with a multicopy plasmid, it can express up to ~50% of total protein as a heterologous protein. This promoter system can be used to gain knowledge about the cell physiology resulting from the ultimate overexpression of excess proteins and is expected to be a useful tool for heterologous protein expression in yeast.

    DOI: 10.1093/femsyr/foae032

    researchmap

    Other Link: https://academic.oup.com/femsyr/article-pdf/doi/10.1093/femsyr/foae032/60242680/foae032.pdf

  • Impact of Maximal Overexpression of a Non-toxic Protein on Yeast Cell Physiology Reviewed

    Yuri Fujita, Shotaro Namba, Hisao Moriya

    eLife   2024.7

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

    <jats:p>While it is recognized that excess expression of non-essential proteins burdens cell growth, the physiological state of cells under such stress is largely unknown. This is because it is challenging to distinguish between adverse effects arising from the properties of the expressed excess protein (cytotoxicity) and those caused solely by protein overexpression. In this study, we attempted to identify the model protein with the lowest cytotoxicity in yeast cells by introducing a new neutrality index. We found that a non-fluorescent fluorescent protein (mox-YG) and an inactive glycolytic enzyme (Gpm1-CCmut) showed the lowest cytotoxicity. These proteins can be expressed at levels exceeding 40% of total protein while maintaining yeast growth. The transcriptome of cells expressing mox-YG to the limit indicated that the cells were in a nitrogen source requirement state. Proteome analysis revealed increased mitochondrial function and decreased ribosome abundance, like the inactivated state of the TORC1 pathway. The decrease in ribosome abundance was presumably due to defective nucleolus formation, partially rescued by a mutation in the nuclear exosome. These findings suggest that massive overexpression of excess protein, termed protein burden, causes nitrogen source starvation, a metabolic shift toward more energy-efficient respiration, and a ribosomal biosynthesis defect due to an imbalance between ribosomal protein and rRNA synthesis in the nucleolus.</jats:p>

    DOI: 10.7554/elife.99572.1

    researchmap

  • Toxicity of the model protein 3×GFP arises from degradation overload, not from aggregate formation. Reviewed International journal

    Shotaro Namba, Hisao Moriya

    Journal of cell science   2024.5

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    While protein aggregation can cause cytotoxicity, it also forms to mitigate cytotoxicity from misfolded proteins, though the nature of these contrasting aggregates remains unclear. We previously found that overproduction (op) of a three green fluorescent protein linked protein (3×GFP) induces giant aggregates, and is detrimental to growth. Here, we investigated the mechanism of growth inhibition by 3×GFP-op using non-aggregative 3×MOX-op as a control. The 3×GFP aggregates were induced by misfolding, and 3×GFP-op had higher cytotoxicity than 3×MOX-op because it perturbs the ubiquitin-proteasome system. Static aggregates formed by 3×GFP-op dynamically trapped Hsp70, causing the heat shock response. Systematic analysis of mutants deficient in the protein quality control suggested that 3×GFP-op did not cause critical Hsp70 depletion and aggregation functioned in the direction of mitigating toxicity. Artificial trapping of essential cell cycle regulators into 3×GFP aggregates caused abnormalities in the cell cycle. In conclusion, the formation of the giant 3×GFP aggregates itself is not cytotoxic, as it does not entrap and deplete essential proteins. Rather, it is productive, inducing the heat shock response while preventing an overload to the degradation system.

    DOI: 10.1242/jcs.261977

    PubMed

    researchmap

  • Demonstration of iodide-dependent UVA-triggered growth inhibition in Saccharomyces cerevisiae cells and identification of its suppressive molecules Reviewed

    Ryota Ono, Nozomu Saeki, Keiichi Kojima, Hisao Moriya, Yuki Sudo

    Biochemical and Biophysical Research Communications   677   1 - 5   2023.10

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.bbrc.2023.07.048

    researchmap

  • Overexpression profiling reveals cellular requirements in the context of genetic backgrounds and environments Reviewed

    Nozomu Saeki, Chie Yamamoto, Yuichi Eguchi, Takayuki Sekito, Shuji Shigenobu, Mami Yoshimura, Yoko Yashiroda, Charles Boone, Hisao Moriya

    PLOS Genetics   19 ( 4 )   e1010732 - e1010732   2023.4

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Public Library of Science (PLoS)  

    Overexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative). Our results show that adaptive overexpression compensates for deficiencies and increases fitness under stress, like calcium under salt stress. We also investigated the impact of different genetic backgrounds on GOFAs, which varied among three S. cerevisiae strains reflecting differing calcium and potassium requirements for salt stress tolerance. Our study of a knockout collection also suggested that calcium prevents mitochondrial outbursts under salt stress. Mitochondria-enhancing GOFAs were only adaptive when adequate calcium was available and non-adaptive when calcium was deficient, supporting this idea. Our findings indicate that adaptive overexpression meets the cell’s needs for maximizing the organism’s adaptive capacity in the given environment and genetic context.

    DOI: 10.1371/journal.pgen.1010732

    researchmap

  • Massive expression of cysteine-containing proteins causes abnormal elongation of yeast cells by perturbing the proteasome Reviewed

    Shotaro Namba, Hisaaki Kato, Shuji Shigenobu, Takashi Makino, Hisao Moriya

    G3 Genes|Genomes|Genetics   2022.4

     More details

    Authorship:Last author, Corresponding author   Publishing type:Research paper (scientific journal)   Publisher:Oxford University Press (OUP)  

    Abstract

    The enhanced green fluorescent protein (EGFP) is considered to be a harmless protein because the critical expression level that causes growth defects is higher than that of other proteins. Here, we found that overexpression of EGFP, but not a glycolytic protein Gpm1, triggered the cell elongation phenotype in the budding yeast Saccharomyces cerevisiae. By the morphological analysis of the cell overexpressing fluorescent protein and glycolytic enzyme variants, we revealed that cysteine content was associated with the cell elongation phenotype. The abnormal cell morphology triggered by overexpression of EGFP was also observed in the fission yeast Schizosaccharomyces pombe. Overexpression of cysteine-containing protein was toxic, especially at high-temperature, while the toxicity could be modulated by additional protein characteristics. Investigation of protein aggregate formation, morphological abnormalities in mutants, and transcriptomic changes that occur upon overexpression of EGFP variants suggested that perturbation of the proteasome by the exposed cysteine of the overexpressed protein causes cell elongation. Overexpression of proteins with relatively low folding properties, such as EGFP, was also found to promote the formation of SHOTA (Seventy kDa Heat shock protein-containing, Overexpression-Triggered Aggregates), an intracellular aggregate that incorporates Hsp70/Ssa1, which induces a heat shock response, while it was unrelated to cell elongation. Evolutionary analysis of duplicated genes showed that cysteine toxicity may be an evolutionary bias to exclude cysteine from highly expressed proteins. The overexpression of cysteine-less moxGFP, the least toxic protein revealed in this study, would be a good model system to understand the physiological state of protein burden triggered by ultimate overexpression of harmless proteins.

    DOI: 10.1093/g3journal/jkac106

    researchmap

  • Identification of uncharacterized proteins potentially localized to mitochondria (UPMs) in S. cerevisiae using a fluorescent protein unstable in the cytoplasm International journal

    Satoshi Horiuchi, Shotaro Namba, Nozomu Saeki, Ayano Satoh, Hisao Moriya

    Yeast   39 ( 5 )   303 - 311   2021.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Eukaryotic cells are composed of organelles, and each organelle contains proteins that play a role in its function. Therefore, the localization of a protein, especially to organelles, is a clue to infer the function of that protein. In this study, we attempted to identify novel mitochondrially localized proteins in the budding yeast Saccharomyces cerevisiae using a fluorescent protein (GFPdeg) that is rapidly degraded in the cytoplasm. Of the budding yeast proteins predicted to localize to mitochondria by the prediction tool Deeploc-1.0, those with known mitochondrial localization or functional relevance were eliminated, and 95 proteins of unknown function were selected as candidates for analysis. By forced expression of GFPdeg fusion proteins with these proteins and observation of their localization, we identified 35 uncharacterized proteins potentially localized to mitochondria (UPMs) including 8 previously identified proteins that localize to mitochondria. Most of these had no N-terminal mitochondrial localization signal and were evolutionarily young "emerging genes" that exist only in S. cerevisiae. Some of these genes were found to be upregulated during the postdiauxic shift phase when mitochondria are being developed, suggesting that they are actually involved in some mitochondrial function.

    DOI: 10.1002/yea.3685

    PubMed

    researchmap

  • Genetic profiling of protein burden and nuclear export overload Reviewed International journal

    Reiko Kintaka, Koji Makanae, Shotaro Namba, Hisaaki Kato, Keiji Kito, Shinsuke Ohnuki, Yoshikazu Ohya, Brenda J Andrews, Charles Boone, Hisao Moriya

    eLife   9   2020.11

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:eLife Sciences Publications, Ltd  

    Overproduction (op) of proteins triggers cellular defects. One of the consequences of overproduction is the protein burden/cost, which is produced by an overloading of the protein synthesis process. However, the physiology of cells under a protein burden is not well characterized. We performed genetic profiling of protein burden by systematic analysis of genetic interactions between GFP-op, surveying both deletion and temperature-sensitive mutants in budding yeast. We also performed genetic profiling in cells with overproduction of triple-GFP (tGFP), and the nuclear export signal-containing tGFP (NES-tGFP). The mutants specifically interacted with GFP-op were suggestive of unexpected connections between actin-related processes like polarization and the protein burden, which was supported by morphological analysis. The tGFP-op interactions suggested that this protein probe overloads the proteasome, whereas those that interacted with NES-tGFP involved genes encoding components of the nuclear export process, providing a resource for further analysis of the protein burden and nuclear export overload.

    DOI: 10.7554/elife.54080

    PubMed

    researchmap

    Other Link: https://cdn.elifesciences.org/articles/54080/elife-54080-v1.xml

  • Exploring the Complexity of Protein-Level Dosage Compensation that Fine-Tunes Stoichiometry of Multiprotein Complexes. Reviewed

    Koji Ishikawa, Ishihara A, Moriya H

    PLoS genetics   16 ( 10 )   e1009091 - e1009091   2020.10

     More details

    Authorship:Last author   Publishing type:Research paper (scientific journal)   Publisher:Public Library of Science (PLoS)  

    Proper control of gene expression levels upon various perturbations is a fundamental aspect of cellular robustness. Protein-level dosage compensation is one mechanism buffering perturbations to stoichiometry of multiprotein complexes through accelerated proteolysis of unassembled subunits. Although N-terminal acetylation- and ubiquitin-mediated proteasomal degradation by the Ac/N-end rule pathway enables selective compensation of excess subunits, it is unclear how widespread this pathway contributes to stoichiometry control. Here we report that dosage compensation depends only partially on the Ac/N-end rule pathway. Our analysis of genetic interactions between 18 subunits and 12 quality control factors in budding yeast demonstrated that multiple E3 ubiquitin ligases and N-acetyltransferases are involved in dosage compensation. We find that N-acetyltransferases-mediated compensation is not simply predictable from N-terminal sequence despite their sequence specificity for N-acetylation. We also find that the compensation of Pop3 and Bet4 is due in large part to a minor N-acetyltransferase NatD. Furthermore, canonical NatD substrates histone H2A/H4 were compensated even in its absence, suggesting N-acetylation-independent stoichiometry control. Our study reveals the complexity and robustness of the stoichiometry control system.

    DOI: 10.1371/journal.pgen.1009091

    PubMed

    researchmap

  • N-terminal deletion of Swi3 created by the deletion of a dubious ORF YJL175W mitigates protein burden effect in S. cerevisiae. Reviewed International journal

    Nozomu Saeki, Yuichi Eguchi, Reiko Kintaka, Koji Makanae, Yuichi Shichino, Shintaro Iwasaki, Manabu Kanno, Nobutada Kimura, Hisao Moriya

    Scientific reports   10 ( 1 )   9500 - 9500   2020.6

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Extreme overproduction of gratuitous proteins can overload cellular protein production resources, leading to growth defects, a phenomenon known as the protein burden/cost effect. Genetic screening in the budding yeast Saccharomyces cerevisiae has isolated several dubious ORFs whose deletions mitigated the protein burden effect, but individual characterization thereof has yet to be delineated. We found that deletion of the YJL175W ORF yielded an N-terminal deletion of Swi3, a subunit of the SWI/SNF chromatin remodeling complex, and partial loss of function of Swi3. The deletion mutant showed a reduction in transcription of genes encoding highly expressed, secreted proteins and an overall reduction in translation. Mutations in the chromatin remodeling complex could thus mitigate the protein burden effect, likely by reallocating residual cellular resources used to overproduce proteins. This cellular state might also be related to cancer cells, as they frequently harbor mutations in the SWI/SNF complex.

    DOI: 10.1038/s41598-020-66307-z

    PubMed

    researchmap

  • Development of an experimental method of systematically estimating protein expression limits in HEK293 cells. Reviewed International journal

    Yoshihiro Mori, Yuki Yoshida, Ayano Satoh, Hisao Moriya

    Scientific reports   10 ( 1 )   4798 - 4798   2020.3

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Protein overexpression sometimes causes cellular defects, although the underlying mechanism is still unknown. A protein's expression limit, which triggers cellular defects, is a useful indication of the underlying mechanism. In this study, we developed an experimental method of estimating the expression limits of target proteins in the human embryonic kidney cell line HEK293 by measuring the proteins' expression levels in cells that survived after the high-copy introduction of plasmid DNA by which the proteins were expressed under a strong cytomegalovirus promoter. The expression limits of nonfluorescent target proteins were indirectly estimated by measuring the levels of green fluorescent protein (GFP) connected to the target proteins with the self-cleaving sequence P2A. The expression limit of a model GFP was ~5.0% of the total protein, and sustained GFP overexpression caused cell death. The expression limits of GFPs with mitochondria-targeting signals and endoplasmic reticulum localization signals were 1.6% and 0.38%, respectively. The expression limits of four proteins involved in vesicular trafficking were far lower compared to a red fluorescent protein. The protein expression limit estimation method developed will be valuable for defining toxic proteins and consequences of protein overexpression.

    DOI: 10.1038/s41598-020-61646-3

    PubMed

    researchmap

  • The expression level and cytotoxicity of green fluorescent protein are modulated by an additional N-terminal sequence Invited Reviewed

    Moriya, H.

    AIMS Biophysics   7 ( 2 )   2020

     More details

    Authorship:Lead author, Last author, Corresponding author   Publishing type:Research paper (scientific journal)  

    DOI: 10.3934/BIOPHY.2020010

    Scopus

    researchmap

  • Yeast screening system reveals the inhibitory mechanism of cancer cell proliferation by benzyl isothiocyanate through down-regulation of Mis12. Reviewed International journal

    Naomi Abe-Kanoh, Narumi Kunisue, Takumi Myojin, Ayako Chino, Shintaro Munemasa, Yoshiyuki Murata, Ayano Satoh, Hisao Moriya, Yoshimasa Nakamura

    Scientific reports   9 ( 1 )   8866 - 8866   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Benzyl isothiocyanate (BITC) is a naturally-occurring isothiocyanate derived from cruciferous vegetables. BITC has been reported to inhibit the proliferation of various cancer cells, which is believed to be important for the inhibition of tumorigenesis. However, the detailed mechanisms of action remain unclear. In this study, we employed a budding yeast Saccharomyces cerevisiae as a model organism for screening. Twelve genes including MTW1 were identified as the overexpression suppressors for the antiproliferative effect of BITC using the genome-wide multi-copy plasmid collection for S. cerevisiae. Overexpression of the kinetochore protein Mtw1 counteracts the antiproliferative effect of BITC in yeast. The inhibitory effect of BITC on the proliferation of human colon cancer HCT-116 cells was consistently suppressed by the overexpression of Mis12, a human orthologue of Mtw1, and enhanced by the knockdown of Mis12. We also found that BITC increased the phosphorylated and ubiquitinated Mis12 level with consequent reduction of Mis12, suggesting that BITC degrades Mis12 through an ubiquitin-proteasome system. Furthermore, cell cycle analysis showed that the change in the Mis12 level affected the cell cycle distribution and the sensitivity to the BITC-induced apoptosis. These results provide evidence that BITC suppresses cell proliferation through the post-transcriptional regulation of the kinetochore protein Mis12.

    DOI: 10.1038/s41598-019-45248-2

    PubMed

    researchmap

  • Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins. Reviewed International journal

    Yuichi Eguchi, Koji Makanae, Tomohisa Hasunuma, Yuko Ishibashi, Keiji Kito, Hisao Moriya

    eLife   7   2018.8

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    The ultimate overexpression of a protein could cause growth defects, which are known as the protein burden. However, the expression limit at which the protein-burden effect is triggered is still unclear. To estimate this limit, we systematically measured the overexpression limits of glycolytic proteins in Saccharomyces cerevisiae. The limits of some glycolytic proteins were up to 15% of the total cellular protein. These limits were independent of the proteins' catalytic activities, a finding that was supported by an in silico analysis. Some proteins had low expression limits that were explained by their localization and metabolic perturbations. The codon usage should be highly optimized to trigger the protein-burden effect, even under strong transcriptional induction. The S-S-bond-connected aggregation mediated by the cysteine residues of a protein might affect its expression limit. Theoretically, only non-harmful proteins could be expressed up to the protein-burden limit. Therefore, we established a framework to distinguish proteins that are harmful and non-harmful upon overexpression.

    DOI: 10.7554/eLife.34595

    PubMed

    researchmap

    Other Link: http://orcid.org/0000-0001-7638-3640

  • Genetic Analysis of Signal Generation by the Rgt2 Glucose Sensor of Saccharomyces cerevisiae. Reviewed International journal

    Peter Scharff-Poulsen, Hisao Moriya, Mark Johnston

    G3 (Bethesda, Md.)   8 ( 8 )   2685 - 2696   2018.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    The yeast S. cerevisiae senses glucose through Snf3 and Rgt2, transmembrane proteins that generate an intracellular signal in response to glucose that leads to inhibition of the Rgt1 transcriptional repressor and consequently to derepression of HXT genes encoding glucose transporters. Snf3 and Rgt2 are thought to be glucose receptors because they are similar to glucose transporters. In contrast to glucose transporters, they have unusually long C-terminal tails that bind to Mth1 and Std1, paralogous proteins that regulate function of the Rgt1 transcription factor. We show that the C-terminal tail of Rgt2 is not responsible for its inability to transport glucose. To gain insight into how the glucose sensors generate an intracellular signal, we identified RGT2 mutations that cause constitutive signal generation. Most of the mutations alter evolutionarily-conserved amino acids in the transmembrane spanning regions of Rgt2 that are predicted to be involved in maintaining an outward-facing conformation or to be in the substrate binding site. Our analysis of these mutations suggests they cause Rgt2 to adopt inward-facing or occluded conformations that generate the glucose signal. These results support the idea that Rgt2 and Snf3 are glucose receptors that signal in response to binding of extracellular glucose and inform the basis of their signaling.

    DOI: 10.1534/g3.118.200338

    PubMed

    researchmap

  • Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells. Reviewed International journal

    Takashi Miura, Hisao Moriya, Sosuke Iwai

    FEMS microbiology letters   364 ( 12 )   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/femsle/fnx117

    Web of Science

    PubMed

    researchmap

  • Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes Reviewed

    Koji Ishikawa, Koji Makanae, Shintaro Iwasaki, Nicholas T. Ingolia, Hisao Moriya

    PLOS GENETICS   13 ( 1 )   e1006554   2017.1

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1006554

    Web of Science

    researchmap

    Other Link: http://orcid.org/0000-0001-7638-3640

  • Cellular growth defects triggered by an overload of protein localization processes. Reviewed International journal

    Reiko Kintaka, Koji Makanae, Hisao Moriya

    Scientific reports   6   31774 - 31774   2016.8

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/srep31774

    Web of Science

    PubMed

    researchmap

  • Quantitative nature of overexpression experiments. Reviewed International journal

    Hisao Moriya

    Molecular biology of the cell   26 ( 22 )   3932 - 9   2015.11

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression.

    DOI: 10.1091/mbc.E15-07-0512

    PubMed

    researchmap

  • Aneuploid proliferation defects in yeast are not driven by copy number changes of a few dosage-sensitive genes. Reviewed International journal

    Megan E Bonney, Hisao Moriya, Angelika Amon

    Genes & development   29 ( 9 )   898 - 903   2015.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Aneuploidy-the gain or loss of one or more whole chromosome-typically has an adverse impact on organismal fitness, manifest in conditions such as Down syndrome. A central question is whether aneuploid phenotypes are the consequence of copy number changes of a few especially harmful genes that may be present on the extra chromosome or are caused by copy number alterations of many genes that confer no observable phenotype when varied individually. We used the proliferation defect exhibited by budding yeast strains carrying single additional chromosomes (disomes) to distinguish between the "few critical genes" hypothesis and the "mass action of genes" hypothesis. Our results indicate that subtle changes in gene dosage across a chromosome can have significant phenotypic consequences. We conclude that phenotypic thresholds can be crossed by mass action of copy number changes that, on their own, are benign.

    DOI: 10.1101/gad.261743.115

    PubMed

    researchmap

    Other Link: http://orcid.org/0000-0001-7638-3640

  • Small toxic protein encoded on chromosome VII of Saccharomyces cerevisiae. Reviewed International journal

    Koji Makanae, Reiko Kintaka, Koji Ishikawa, Hisao Moriya

    PloS one   10 ( 3 )   e0120678   2015

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    In a previous study, we found an unknown element that caused growth inhibition after its copy number increased in the 3' region of DIE2 in Saccharomyces cerevisiae. In this study, we further identified this element and observed that overexpression of a small protein (sORF2) of 57 amino acids encoded in this region caused growth inhibition. The transcriptional response and multicopy suppression of the growth inhibition caused by sORF2 overexpression suggest that sORF2 overexpression inhibits the ergosterol biosynthetic pathway. sORF2 was not required in the normal growth of S. cerevisiae, and not conserved in related yeast species including S. paradoxus. Thus, sORF2 (designated as OTO1) is an orphan ORF that determines the specificity of this species.

    DOI: 10.1371/journal.pone.0120678

    PubMed

    J-GLOBAL

    researchmap

  • Evaluation of the lower protein limit in the budding yeast Saccharomyces cerevisiae using TIPI-gTOW. Reviewed International journal

    Masataka Sasabe, Sayumi Shintani, Reiko Kintaka, Kazunari Kaizu, Koji Makanae, Hisao Moriya

    BMC systems biology   8 ( 1 )   2 - 2   2014.1

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1186/1752-0509-8-2

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Completing SBGN-AF networks by logic-based hypothesis finding Reviewed

    Yoshitaka Yamamoto, Adrien Rougny, Hidetomo Nabeshima, Katsumi Inoue, Hisao Moriya, Christine Froidevaux, Koji Iwanuma

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)   8738   165 - 179   2014

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)   Publisher:Springer Verlag  

    DOI: 10.1007/978-3-319-10398-3_14

    Scopus

    researchmap

  • Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk Reviewed

    Tsunematsu, Yuta, Ishikawa, Noriyasu, Wakana, Daigo, Goda, Yukihiro, Noguchi, Hiroshi, Moriya, Hisao, Hotta, Kinya, Watanabe, Kenji

    Nature Chemical Biology   9 ( 12 )   818 - 825   2013.12

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/NCHEMBIO.1366

    Web of Science

    PubMed

    researchmap

  • A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. Reviewed International journal

    Mamoru Yamanishi, Yoichiro Ito, Reiko Kintaka, Chie Imamura, Satoshi Katahira, Akinori Ikeuchi, Hisao Moriya, Takashi Matsuyama

    ACS synthetic biology   2 ( 6 )   337 - 47   2013.6

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1021/sb300116y

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Reviewed International journal

    Koji Makanae, Reiko Kintaka, Takashi Makino, Hiroaki Kitano, Hisao Moriya

    Genome research   23 ( 2 )   300 - 11   2013.2

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1101/gr.146662.112

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Parallel real-time PCR on a chip for genetic tug-of-war (gTOW) method. Reviewed

    Toyohiro Naito, Ai Yatsuhashi, Noritada Kaji, Taeko Ando, Kazuo Sato, Hisao Moriya, Hiroaki Kitano, Takao Yasui, Manabu Tokeshi, Yoshinobu Baba

    Analytical sciences : the international journal of the Japan Society for Analytical Chemistry   29 ( 3 )   367 - 71   2013

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.2116/analsci.29.367

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Relationships between cell cycle regulator gene copy numbers and protein expression levels in Schizosaccharomyces pombe. Reviewed International journal

    Ayako Chino, Koji Makanae, Hisao Moriya

    PloS one   8 ( 9 )   e73319   2013

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0073319

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Robustness analysis of cellular systems using the genetic tug-of-war method. Reviewed International journal

    Hisao Moriya, Koji Makanae, Kenji Watanabe, Ayako Chino, Yuki Shimizu-Yoshida

    Molecular bioSystems   8 ( 10 )   2513 - 22   2012.10

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1039/c2mb25100k

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Establishing a new methodology for genome mining and biosynthesis of polyketides and peptides through yeast molecular genetics. Reviewed International journal

    Kan'ichiro Ishiuchi, Takehito Nakazawa, Takashi Ookuma, Satoru Sugimoto, Michio Sato, Yuta Tsunematsu, Noriyasu Ishikawa, Hiroshi Noguchi, Kinya Hotta, Hisao Moriya, Kenji Watanabe

    Chembiochem : a European journal of chemical biology   13 ( 6 )   846 - 54   2012.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/cbic.201100798

    Web of Science

    PubMed

    researchmap

  • Overexpression limits of fission yeast cell-cycle regulators in vivo and in silico. Reviewed International journal

    Hisao Moriya, Ayako Chino, Orsolya Kapuy, Attila Csikász-Nagy, Béla Novák

    Molecular systems biology   7   556 - 556   2011.12

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/msb.2011.91

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • A comprehensive molecular interaction map of the budding yeast cell cycle. Reviewed International journal

    Kazunari Kaizu, Samik Ghosh, Yukiko Matsuoka, Hisao Moriya, Yuki Shimizu-Yoshida, Hiroaki Kitano

    Molecular systems biology   6   415 - 415   2010.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1038/msb.2010.73

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle Reviewed

    Kazunari Kaizu, Hisao Moriya, Hiroaki Kitano

    PLOS GENETICS   6 ( 4 )   2010.4

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.1000919

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Plasmid Construction Using Recombination Activity in the Fission Yeast Schizosaccharomyces pombe Reviewed

    Ayako Chino, Kenji Watanabe, Hisao Moriya

    PLOS ONE   5 ( 3 )   2010.3

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pone.0009652

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • On-chip real-time PCR for genetic tug-of-war (g-TOW) experiment Reviewed

    Toyohiro Naito, Ai Yatsuhashi, Noritada Kaji, Taeko Ando, Kazuo Sato, Hisao Moriya, Hiroaki Kitano, Yukihiro Okamoto, Manabu Tokeshi, Yosinobu Baba

    Proceedings of Conference, MicroTAS 2009 - The 13th International Conference on Miniaturized Systems for Chemistry and Life Sciences   627 - 629   2009

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    Scopus

    researchmap

  • In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae Reviewed

    Hisao Moriya, Yuki Shimizu-Yoshida, Hiroaki Kitano

    PLOS GENETICS   2 ( 7 )   1034 - 1045   2006.7

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1371/journal.pgen.0020111

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae Reviewed

    JH Kim, Brachet, V, H Moriya, M Johnston

    EUKARYOTIC CELL   5 ( 1 )   167 - 173   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1128/EC.5.1.167-173.2006

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • A robustness analysis of eukaryotic cell cycle concerning Cdc25 and weel proteins Reviewed

    Takehito Azuma, Hisao Moriya, Hayato Matsumuro, Hiroaki Kitano

    PROCEEDINGS OF THE 2006 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1-4   1058 - 1063   2006

     More details

    Language:English   Publishing type:Research paper (international conference proceedings)  

    Web of Science

    researchmap

  • Inhibition of nuclear factor kappa B by I kappa B superrepressor gene transfer ameliorates ischemia-reperfusion injury after experimental lung transplantation Reviewed

    T Ishiyama, S Dharmarajan, M Hayama, H Moriya, K Grapperhaus, GA Patterson

    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY   130 ( 1 )   194 - 201   2005.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.jtcvs.2005.02.040

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I Reviewed

    H Moriya, M Johnston

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   101 ( 6 )   1572 - 1577   2004.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1073/pnas.0305901101

    Web of Science

    PubMed

    J-GLOBAL

    researchmap

  • Yak1p, a DYRK family kinase, translocates to the nucleus and phosphorylates yeast Pop2p in response to a glucose signal Reviewed

    H Moriya, Y Shimizu-Yoshida, A Omori, S Iwashita, M Katoh, A Sakai

    GENES & DEVELOPMENT   15 ( 10 )   1217 - 1228   2001.5

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1101/gad.884001

    Web of Science

    researchmap

  • Analysis of genetic interactions between DHH1, SSD1 and ELM1 indicates their involvement in cellular morphology determination in Saccharomyces cerevisiae Reviewed

    H Moriya, K Isono

    YEAST   15 ( 6 )   481 - 496   1999.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1002/(SICI)1097-0061(199904)15:6<481::AID-YEA391>3.0.CO;2-M

    Web of Science

    researchmap

  • CLONING AND CHARACTERIZATION OF THE HRPA GENE IN THE TERC REGION OF ESCHERICHIA-COLI THAT IS HIGHLY SIMILAR TO THE DEAH FAMILY RNA HELICASE GENES OF SACCHAROMYCES-CEREVISIAE Reviewed

    H MORIYA, H KASAI, K ISONO

    NUCLEIC ACIDS RESEARCH   23 ( 4 )   595 - 598   1995.2

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1093/nar/23.4.595

    Web of Science

    researchmap

▼display all

MISC

  • Assessment of S. cerevisiae Adaptability to Wine Grape Must Using the ADOPT Method of Overexpression Profiling

    Hisao Moriya, Chiyuki Ono

    113   1 - 6   2024.2

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Rapid communication, short report, research note, etc. (bulletin of university, research institution)  

    researchmap

  • Identification of Growth-Limiting Factors in Yeast via Gene Overexpression Profiling Invited

    Hisao Moriya

    82 ( 1 )   2024.1

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • Yeast and Systems Biology: Using AI to Accurately Predict Gene Expression Levels as an Example Invited

    Hisao Moriya

    13 ( 1 )   106 - 113   2023.1

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    researchmap

  • A Miscellaneous Talk on Transformation Methods of Microorganisms, Especially Budding Yeast Invited

    Hisao Moriya

    100 ( 12 )   670 - 673   2022.12

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    DOI: 10.34565/seibutsukogaku.100.12_670

    researchmap

  • Evaluation of Phase Separation Structures and Cytotoxicity Induced by Protein Overexpression Invited

    Shotaro Namba, Hisao Moriya

    2022.7

     More details

    Authorship:Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    researchmap

  • Genetic Profiling of Resource Overload Invited

    Hisao MORIYA

    Seibutsu Butsuri   62 ( 2 )   134 - 136   2022.2

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:Biophysical Society of Japan  

    DOI: 10.2142/biophys.62.134

    researchmap

  • たくさんつくれるタンパク質に隠された秘密 Invited

    現代化学   608   34 - 39   2021.11

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)  

    researchmap

  • Constraints of expression levels of intracellular proteins

    守屋 央朗

    生体の科学   69 ( 1 )   83 - 87   2018.1

     More details

    Language:Japanese   Publisher:金原一郎記念医学医療振興財団 ; 1949-  

    DOI: 10.11477/mf.2425200762

    CiNii Article

    researchmap

  • My experience of Great Hanshin-Awaji Earthquake

    守屋 央朗

    生物科学   69 ( 1 )   4 - 11   2017.8

     More details

    Language:Japanese   Publisher:日本生物科学者協会 ; 1949-  

    CiNii Article

    CiNii Books

    researchmap

  • Resource Allocation and Capacity of Protein Expression in a Yeast Cell

    MORIYA Hisao

    KAGAKU TO SEIBUTSU   54 ( 8 )   555 - 561   2016

     More details

    Language:Japanese   Publisher:Japan Society for Bioscience, Biotechnology, and Agrochemistry  

    細胞の機能は数千種類のタンパク質が協調的に働くことで達成される.それぞれのタンパク質の発現量はどのように決まっているのだろうか,またその量が変化したときに何が起きるのだろうか? 本稿では,主に酵母を対象として,近年のオーミックスデータや筆者らのタンパク質発現限界のシステマティックな測定結果などを通じて,細胞がタンパク質発現リソースをどのように配分しているのか,細胞がどれくらいのタンパク質発現のキャパシティをもっているのかという視点で細胞を眺めてみたい.なお,本稿のデータや図の一部は,最近筆者が執筆した文献1から引用している.詳細な内容についてはそれも合わせて参照していただきたい.

    DOI: 10.1271/kagakutoseibutsu.54.555

    CiNii Article

    CiNii Books

    researchmap

  • Analysis of the mechanism of cell death triggered by gene overexpression, and its application toward the material production

    1 - 5   2015

     More details

  • What are determinants for the expression limits of proteins?

    Moriya Hisao, Makanae Koji, Kintaka Reiko, Ishikawa Kouji

    Abstracts for Annual Meeting of Japanese Proteomics Society   2014 ( 0 )   32 - 32   2014

     More details

    Language:Japanese   Publisher:Japanese Proteomics Society (Japan Human Proteome Organisation)  

    DOI: 10.14889/jhupo.2014.0.32.0

    CiNii Article

    researchmap

  • Measuring Robustness of The Cellular System against Changes in Protein Expression

    守屋 央朗

    細胞工学   33 ( 1 )   19 - 25   2014

     More details

    Language:Japanese   Publisher:学研メディカル秀潤社 ; 1982-  

    CiNii Article

    CiNii Books

    researchmap

  • OVERVIEW (特集 生命システムのロバストネスとは何か?)

    守屋 央朗

    細胞工学   33 ( 1 )   10 - 12   2014

     More details

    Language:Japanese   Publisher:学研メディカル秀潤社 ; 1982-  

    CiNii Article

    CiNii Books

    researchmap

  • Measuring the Copy Number Limits of All Genes in Yeast

    MORIYA Hisao

    Seibutsu Butsuri   53 ( 6 )   323 - 325   2013.11

     More details

    Language:Japanese   Publisher:The Biophysical Society of Japan General Incorporated Association  

    DOI: 10.2142/biophys.53.323

    CiNii Article

    CiNii Books

    researchmap

  • 微量天然物spirotryprostatin類生物全合成によるスピロ環形成機構の解明

    恒松雄太, 石川格靖, 若菜大悟, 合田幸広, 野口博司, 守屋央朗, 堀田欣也, 渡辺賢二

    日本生薬学会年会講演要旨集   60th   101   2013.8

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • 研コミュ白書 第1回 酵母コロキアム 21世紀酵母生物学のオンラインフォーラム

    谷内江望, 吉田知史, 大西雅之, 丑丸敬史, 守屋央朗

    細胞工学   31 ( 5 )   604 - 607   2012.4

     More details

  • Engineered Biosynthesis of Natural Products in Saccharomyces cerevisiae

    TSUNEMATSU Yuta, MORIYA Hisao, WATANABE Kenji

    KAGAKU TO SEIBUTSU   50 ( 3 )   163 - 174   2012.3

     More details

    Language:Japanese   Publisher:日本農芸化学会  

    近年,天然物の生合成遺伝子の情報をもとに,有用天然物を獲得する取り組みが行なわれるようになってきた.中でも植物および真菌といった真核生物から単離された生物活性物質の生物合成に関する報告がなされてきた.ここでは,特に真核生物由来の天然物生合成遺伝子を出芽酵母の異種発現系を用いて発現させ,有用物質の生産に挑戦する取り組みについて解説する.

    DOI: 10.1271/kagakutoseibutsu.50.163

    CiNii Article

    CiNii Books

    researchmap

  • 生命システムのロバストネスを探る : 出芽酵母の研究を中心として

    守屋 央朗

    化学と生物   47 ( 4 )   269 - 274   2009.4

     More details

    Language:Japanese   Publisher:社団法人 日本農芸化学会  

    DOI: 10.1271/kagakutoseibutsu.47.269

    CiNii Article

    CiNii Books

    researchmap

  • 細胞がつくるシステムのロバストネスを測る--細胞の頑健性とアキレス腱

    守屋 央朗

    現代化学   ( 456 )   26 - 32   2009.3

     More details

    Language:Japanese   Publisher:東京化学同人  

    CiNii Article

    CiNii Books

    researchmap

  • In vivo robustness analysis of cell division cycle in Saccharomyces cerevisiae (vol 2, pg 7, 2006)

    Hisao Moriya, Yuki Shimizu-Yoshida, Hiroaki Kitano

    PLOS GENETICS   2 ( 12 )   2176 - 2176   2006.12

     More details

  • Understanding of Basic Systems for Eukaryotic Cell Cycle(<Special Issue>Life as Systems)

    AZUMA Takehito, MORIYA Hisao, KITANO Hiroaki

    Systems, control and information   50 ( 8 )   309 - 314   2006.8

     More details

    Language:Japanese   Publisher:システム制御情報学会  

    DOI: 10.11509/isciesci.50.8_309

    CiNii Article

    CiNii Books

    researchmap

  • Glucose sensing system of the budding yeast Saccharomyces cerevisiae

    MORIYA Hisao

    Bioscience & industry   63 ( 6 )   390 - 393   2005.6

     More details

    Language:Japanese   Publisher:バイオインダストリー協会  

    CiNii Article

    CiNii Books

    researchmap

▼display all

Industrial property rights

  • カビ類ポリケチド合成遺伝子の酵母での異種発現

    渡辺 賢二, 守屋 央朗

     More details

    Applicant:静岡県公立大学法人, 国立大学法人 岡山大学

    Application no:JP2011004566  Date applied:2011.8.11

    Announcement no:WO2012-020574  Date announced:2012.2.16

    J-GLOBAL

    researchmap

  • サッカロミセス属微生物用プラスミドベクター

    守屋 央朗, 北野 宏明, 吉田 由紀

     More details

    Applicant:独立行政法人科学技術振興機構, 特定非営利活動法人システム・バイオロジー研究機構

    Application no:特願2007-290659  Date applied:2007.11.8

    Announcement no:特開2009-112271  Date announced:2009.5.28

    J-GLOBAL

    researchmap

  • シゾサッカロミセス属微生物用プラスミドベクター

    守屋 央朗, 北野 宏明

     More details

    Applicant:独立行政法人科学技術振興機構, 特定非営利活動法人システム・バイオロジー研究機構

    Application no:特願2007-290660  Date applied:2007.11.8

    Announcement no:特開2009-112272  Date announced:2009.5.28

    J-GLOBAL

    researchmap

Awards

  • 長瀬研究振興賞

    2023.4   長瀬科学技術振興財団  

     More details

  • 酵母コンソーシアムフェロー

    2020.10   大隅基礎科学創成財団  

     More details

Research Projects

  • Unraveling the comprehensive picture of expression constraints mechanisms with the new expression system gTOW2.0

    Grant number:24K02013  2024.04 - 2028.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    守屋 央朗, 牧野 能士, 山本 泰生

      More details

    Grant amount:\18460000 ( Direct expense: \14200000 、 Indirect expense:\4260000 )

    researchmap

  • 連続するアミノ酸(PolyX)が生み出す細胞毒性のメカニズム

    Grant number:22K19294  2022.06 - 2024.03

    日本学術振興会  科学研究費助成事業 挑戦的研究(萌芽)  挑戦的研究(萌芽)

    守屋 央朗, 牧野 能士, 紀藤 圭治

      More details

    Grant amount:\6500000 ( Direct expense: \5000000 、 Indirect expense:\1500000 )

    researchmap

  • Cellar differentiation on the electronic semiconductor device induced by the electric stimulation

    Grant number:22K18976  2022.06 - 2024.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Challenging Research (Exploratory)  Grant-in-Aid for Challenging Research (Exploratory)

    狩野 旬, 山本 泰生, 竹田 哲也, 守屋 央朗

      More details

    Grant amount:\6500000 ( Direct expense: \5000000 、 Indirect expense:\1500000 )

    researchmap

  • ヒザラガイの磁鉄鉱歯特異的な歯舌マトリックスタンパク質の機能解明

    Grant number:21K05781  2021.04 - 2025.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    根本 理子, 守屋 央朗

      More details

    Grant amount:\4290000 ( Direct expense: \3300000 、 Indirect expense:\990000 )

    本研究では、ヒザラガイの歯冠部特異的タンパク質である歯舌マトリックスタンパク質1(RTMP1)について、遺伝子ノックダウンおよび組換えタンパク質を用いた機能解析を行ない、歯冠部への酸化鉄沈着におけるRTMP1の役割を明らかにすることを目的とする。
    2021年度は、まず、オオバンヒザラガイの遺伝子ノックダウンシステムの確立を目指して実験を行った。実験には、北海道大学の厚岸臨海実験所のご協力の下、採取したオオバンヒザラガイ個体を用いた。使用する個体重量、飼育条件、dsRNA注入量およびノックダウン後、表現型解析を行なうまでの時間を検討し、各条件について最適化した。その結果、RTMP1遺伝子をターゲットとするdsRNAを注入した個体において、陰性対照と比較して有意にRTMP1遺伝子発現量が低下することが確認された。顕微鏡観察から、遺伝子発現量が低下した個体において、歯の沈着鉄量の減少を示唆する結果が得られた。
    また、in vitro機能解析に向けて、酵母でRTMP1を組換え発現させ、その精製を行った。RTMP1遺伝子全長及びシグナル配列をコードする領域を除いたRTMP1遺伝子(RTMP1-delta-ss)をGST融合発現用ベクターpEG(KT)に組み込み酵母に発現させた。研究分担者の守屋とともに、プロモーター、可溶化タグ、コドンの最適化による発現量の増加を試みた結果、RTMP1-delta-ssの発現を確認することができた。また、発現が確認されたRTMP1-delta-ssについて、グルタチオンビーズを用いた粗精製に成功した。

    researchmap

  • Mechanism of growth inhibition by overexpression explored from the expression level of the limiting mutant protein

    Grant number:20H03242  2020.04 - 2024.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    守屋 央朗

      More details

    Grant amount:\17550000 ( Direct expense: \13500000 、 Indirect expense:\4050000 )

    本研究では、酵母細胞をモデルとして過剰発現により細胞機能に悪影響を及ぼすタンパク質が、どのようなメカニズムで細胞機能に悪影響を及ぼすのかを、変異をもとに探ることを目的としている。
    本年度はモデルタンパク質や解糖系のタンパク質による増殖阻害のメカニズムについて変異導入により探った。その1つの結果として、システインを含有するタンパク質の過剰発現が酵母細胞の細胞伸長を引き起こすことを見いだし、システインの改変によりこの細胞伸長が起きなくなることを見いだした。システインを含有するタンパク質の過剰発現は細胞伸長だけでなく細胞の増殖も阻害する、すなわち細胞機能に悪影響を与える事も分かった。この原因を酵母の様々な変異体での過剰発現実験により探ったところ、システインを含有するタンパク質の過剰発現はプロテアソームの機能を傷害することで増殖阻害を引き起こしていることが示唆された。別の実験として、モデルタンパク質に特定のアミノ酸を複数付加するという変異を導入し、過剰発現した際の増殖への悪影響についても調査した。その結果、特定のアミノ酸を付加したモデルタンパク質は酵母の増殖を著しく阻害することを見いだし、現在そのメカニズムの解明を行っている。

    researchmap

  • 発現量揺らぎ-適応系により探索する発現変動の適応-進化への影響

    Grant number:20H04870  2020.04 - 2022.03

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    守屋 央朗

      More details

    Grant amount:\10270000 ( Direct expense: \7900000 、 Indirect expense:\2370000 )

    背景と目的: 細胞内のタンパク質には、発現量の変動が適応度に強い影響を与える(強い制約を受けている)ものと、発現量を多少変動させても適応度に影響を与えない(制約を受けていない)ものがある。私たちは、出芽酵母(S. cerevisiae)のほとんどの種類のタンパク質について、それぞれの発現量がどれくらい制約を受けているのかを、独自の発現量揺らぎ-適応系(gTOW法)により調べてきた。その結果、大半のタンパク質の発現量は制約を受けていない一方、2%程度のタンパク質の発現量のみが強い制約を受けている事を明らかにした。本研究では、発現量揺らぎ-適応をハイスループット化させた実験系(ADOPT法)により、課題1:発現量の制約は環境により変わるのか、課題2:発現量揺らぎは適応-進化に寄与するのか、課題3:発現変動による適応はどのようなメカニズムにより達成されるのかを追求する。
    <BR>
    研究実績: 本年度はADOPT法により高塩ストレスで適応的な遺伝子群について調査した。その結果、高塩ストレスに関してカルシウム応答性遺伝子群の過剰が適応的になること、それ以外に新興遺伝子の過剰が適応的になることが見いだされた。これらの結果から、(過剰による)適応は、環境要因の補完、および新規メカニズムの外挿により達成できることが示唆された。

    researchmap

  • Cell processing capacity explored by expression limits of proteins

    Grant number:18K19300  2018.06 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Research (Exploratory)

    Moriya Hisao

      More details

    Grant amount:\6240000 ( Direct expense: \4800000 、 Indirect expense:\1440000 )

    In the process of expressing their functions, proteins undergo various processes such as synthesis, folding, transport, and degradation. These processes are thought to have different processing capacities, depending on the amount of resources devoted to them. However, the processing capacity of intracellular processes has never been investigated before. In this study, we identified the proteins that are processed by specific processes in budding yeast with the highest critical expression levels by using the genetic tug-of-war method, which measures the critical expression level of proteins, and protein quantification. By using these proteins as indicator proteins, the ability to process intracellular processes, especially protein synthesis and transport processes, was clarified.

    researchmap

  • 発現量揺らぎー適応系により探るプロテオームの制約条件とその適応ー進化への影響

    Grant number:18H04824  2018.04 - 2020.03

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    守屋 央朗

      More details

    Grant amount:\11180000 ( Direct expense: \8600000 、 Indirect expense:\2580000 )

    背景と目的 細胞内のタンパク質には、その発現量の変動が適応度に強い影響を与える―強い制約を受けているものと、発現量を多少変動させても適応度に影響を与えない―制約を受けていないものがある。申請者らは、出芽酵母(Saccharomyces cerevisiae)のほぼすべての種類のタンパク質を対象として、それぞれの発現量がどれくらい制約を受けているのかを、独自に開発した発現量揺らぎ-適応系(gTOW法)により調べてきた。その結果、大半のタンパク質の発現量は制約を受けていない一方、2%程度のタンパク質の発現量のみが強い制約を受けている事を明らかにした。本研究では、先行研究で構築されたこの発現量揺らぎ-適応系をハイスループット化することで、課題1:発現量の制約は環境により変わるのか、課題2:発現量揺らぎは適応-進化に寄与するのかを追求する。
    <BR>
    研究方法 研究目的の2つの課題を追求するために、従来の発現量揺らぎ-適応系をハイスループット化し、様々な環境における発現量の制約と発現上昇による適応を並列に評価する実験系の構築を行う。実験系は、以下の3つのステップから成る。1)S. cerevisiaeの5,800種類の各遺伝子を2ミクロンプラスミドに連結し、それぞれを酵母に導入する(すべての遺伝子を発現量揺らぎ-適応系に乗せる)、2)この5,800種類の株を混合し様々な環境下で培養する(コピー数適応を一斉に行わせる)、3)混合培養後の細胞集団からプラスミドを回収し、各プラスミドのコピー数を次世代シーケンサーによるインサートの出現頻度により解析する(コピー数の制約と適応的コピー数を測る)。
    <BR>
    研究実績 2年間の研究機関で上記の新規実験系の構築を完了した。この実験系を用いて、高温条件、高塩条件など複数の条件での適応実験を行い、これらの条件で高発現が適応的な遺伝子を複数同定した。

    researchmap

  • Systematic analysis of proteins that cause overload of transport resources due to overexpression

    Grant number:17H03618  2017.04 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Moriya Hisao

      More details

    Grant amount:\17160000 ( Direct expense: \13200000 、 Indirect expense:\3960000 )

    Overexpression of certain proteins inhibits cell proliferation. However, the mechanism of this is largely unknown. Our previous studies have shown that the depletion of essential factors due to an overload of proteins transported in the cell--transportation overload--may explain most of the growth inhibition caused by overexpression. In this study, we aimed to elucidate the mechanism of growth inhibition by transport overload through the identification of proteins that cause transport overload and restriction factors that are targets of overload. As a result, we identified several candidate limiting factors for nuclear transport in particular.

    researchmap

  • Identification and characterization of phytochemical-targeted genes using a genome wide yeast screening system

    Grant number:17H03818  2017.04 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Nakamura Yoshimasa

      More details

    Grant amount:\17680000 ( Direct expense: \13600000 、 Indirect expense:\4080000 )

    We identified 12 resistance genes against benzyl isothiocyanate (BITC) from total 6000 yeast genes using a new evaluation model system, the budding yeast gene tug-of-war method (gTOW method). A human cancer cell line stably overexpressing the human homologue (Mis12) of BITC resistance gene MTW1 was established, which showed high resistance to BITC. Mis12 knockdown conversely increased sensitivity. It was also suggested that the expression of Mis12 is down-regulated by BITC via post-translational modification, which contributes to suppressive effect of BITC on colon cancer cell proliferation by enhancing the sensitivity to apoptosis in a cell cycle-dependent manner.

    researchmap

  • Analysis of mechanisms avoiding stoichometry imbalance(Fostering Joint International Research)

    Grant number:15KK0258  2016.04 - 2018.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Fund for the Promotion of Joint International Research (Fostering Joint International Research)

    Moriya Hisao, Boone Charles, Knop Michael

      More details

    Authorship:Principal investigator  Grant type:Competitive

    It is known that expression levels of intracellular proteins are highly regulated. Disturbance of those levels, by overexpression, sometimes cause defects in cellular functions. However, little is known about the mechanisms. In this study, we tried to reveal mechanisms of overexpression- triggered cellular defects with large-scale genetic profilings performed in international collaborations. As a result, we obtained groups of genes exacerbate and mitigates the growth defects. We also established an experimental method to isolate genes whose overexpression positively function for cellular growth in specific conditions.

    researchmap

  • Analysis of mechanisms to avoid stoichiometry imbalance

    Grant number:26290069  2014.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Moriya Hisao

      More details

    Grant amount:\17420000 ( Direct expense: \13400000 、 Indirect expense:\4020000 )

    About one third of proteins function as protein complexes. Imbalances in the stoichiometry of subunits constituting protein complexes sometimes cause harmful effects on cellular functions. In this study, using budding yeast, we revealed a mechanism to avoid stoichiometry imbalances in protein complexes. We identified several proteins whose expressions were not increased as expected when their gene copy numbers were artificially increased. The buffering of protein expression was performed through active degradation of excess proteins by the ubiquitin-proteasome system.

    researchmap

  • Experimental verification of gene loss patterns in yeast genome after whole genome duplication

    Grant number:26650130  2014.04 - 2016.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Exploratory Research

    Makino Takashi, Moriya Hisao, Kawata Masakado

      More details

    Grant amount:\3900000 ( Direct expense: \3000000 、 Indirect expense:\900000 )

    The purpose of this study is to establish an artificial evolutionary experiment approach for tetraploid yeast, and examine the pattern of gene function losses. We cultured tetraploid yeast for 200 days under exposure to intense ultraviolet irradiation. As a result, we observed many mutations in the genome of tetraploid yeast. In particular, deleterious mutations were enriched in genes on the same chromosome of functional gene clusters.

    researchmap

  • Improving logic-based hypothesis-finding methods with inverse subsumption and its applications to systems biology

    Grant number:25730133  2013.04 - 2016.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    YAMAMOTO Yoshitaka, MORIYA HISAO

      More details

    Grant amount:\4290000 ( Direct expense: \3300000 、 Indirect expense:\990000 )

    This research aims at improving logic-based hypothesis-finding methods and furthermore prompting to apply them to real problems in systems biology. First, we focus on so-called Inverse Subsumption (IS), which is a novel approach for finding hypotheses from observations with the background theory. Recently, it has been growing interests in IS to find such hypotheses that cannot be inherently obtained by the previously proposed approach. IS however has yet to achieve sufficient scalability in real problems. We consider to improve the two procedures of IS (dualization and subsumption-lattice search) in this research. Next, we focus on so-called SGBN, which is the standard markup language to describe molecular networks in systems biology. We establish an efficient way to translate SBGN into first-order logic (FOL). Together with SBGN-FOL translation, we apply hypothesis-finding methods to derive new knowledge in real SBGN-based molecular networks of cells.

    researchmap

  • Analysis of the mechanisms of process burdens in yeast

    Grant number:25640115  2013.04 - 2015.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Exploratory Research

    HISAO Moriya, KITO Keiji

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\3900000 ( Direct expense: \3000000 、 Indirect expense:\900000 )

    Strong expression of a protein in a cell sometimes causes cellular defects. However, it is not systematically understood the mechanisms causing the defects. In this study, we discovered that the strong expression of proteins localized to intracellular compartments caused cellular defects due to the burdens for protein localization processes themselves.

    researchmap

  • 酵母の生合成キャパシティーの拡大

    Grant number:25108717  2013.04 - 2015.03

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    守屋 央朗

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\7020000 ( Direct expense: \5400000 、 Indirect expense:\1620000 )

    本研究では、酵母細胞の「生合成キャパシティー」の拡大を目的としている。申請者らは遺伝子つなひき(gTOW)法という実験手法を開発し、さまざまな遺伝子(タンパク質)が、酵母の細胞内でどれくらいの量発現できるのか、という限界発現量を測ることに成功している。さらに、最近来れを発展させ、様々に局在化した異種タンパク質(GFP)の限界発現量を測ることにも成功している。本研究の目的は、これらの局在化GFPの限界発現量は、細胞内のそれぞれのプロセスにおける異種タンパク質合成マシナリーの「キャパシティー」を反映していると考え、その拡大を目指すことである。具体的には、その変異や過剰発現により、局在化GFPをより多く発現できるようになる遺伝子を取得する。さらにこれらの遺伝子を組み合わせて生合成キャパシティーの拡大した酵母株の構築をおこなう。H25年度は様々な局在化シグナルを付加したGFPならびにTEVプロテアーゼタンパク質をモデルタンパク質として、その酵母内での過剰発現の限界の測定を行った。また、光らないGFPのや活性のないTEVプロテアーゼでも同じ実験を行うことで、タンパク質の持つ活性と局在化、細胞内の過剰発現との関連についても測定を行った。さらに、タンパク質を過剰に発現している細胞の生理状態を顕微鏡観察とRNAseqにより解析した。H26年度は、過剰発現により生合成キャパシティーを拡大させる遺伝子の取得を試みた。複数の遺伝子の過剰発現により、局在化GFPの発現を上昇させることができた。現在上記のデータをまとめた論文を投稿中である。

    researchmap

  • Analysis of the network constructed by dosage balanced genes in yeast

    Grant number:23310140  2011.04 - 2014.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    MORIYA Hisao, MAKINO Takashi

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\20150000 ( Direct expense: \15500000 、 Indirect expense:\4650000 )

    Dosage balanced gene (DBG) is a gene whose expression is balanced against more than two genes, and the perturbation of the balance causes cellular dysfunction. Using a genetic method designated "genetic tug-of-war", we have been trying to identify "dosage sensitive genes" whose minor overexpression cause cellular dysfunction. In this study, we proceeded this analysis, and identified 115 dosage sensitive genes in the budding yeast genome. We further identified 13 dosage-balanced interactions. This study is the first example for the systematic identification of dosage sensitive genes in a organism's genome, and for the identification of multiple dosage balanced genes at a time.

    researchmap

  • 情報場への摂動を緩衝するメカニズムの解明

    Grant number:23114715  2011.04 - 2013.03

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    守屋 央朗

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\10140000 ( Direct expense: \7800000 、 Indirect expense:\2340000 )

    本研究の主目的は、研究代表者が独自に開発した「遺伝子つなひき法」を用いて、遺伝子のコピー数の上昇という情報場への摂動が細胞システムによってどのように緩衝されるのかを、酵母の細胞周期制御遺伝子ならびに酵母のすべての遺伝子を対象に調査することである。またこの結果を組み込んで酵母の細胞周期の数理モデルの評価や改良を行うことも目的に含まれている。分裂酵母の細胞周期制御遺伝子のコピー数が変動した時にそれがタンパク質のレベルに反映されるのかを調査した。測定できた20の遺伝子・タンパク質のうち、1つ(Cig1)が正のフィードバックにより制御されている可能性が得られた。また2つ(Cdc16、Sid2)はタンパク質の発現上昇により自分自身の分解が加速され、遺伝子コピー数の上昇がタンパク質のレベルの上昇に結びつかないという緩衝機構があることが示唆された。また、遺伝子発現の上昇に対する緩衝機構のみならず、遺伝子発現の減少に対する緩衝機構の発見を可能にするため、遺伝子/タンパク質発現量の下限を測定する実験系を出芽酵母で開発した。具体的には、TEVプロテアーゼによる標的タンパク質の切断により分解を加速するTIPI(TEV protease-mediated induction of protein instability)と遺伝子つなひき法を組み合わせることで、いくつかの遺伝子の発現量の加減を評価する実験系を完成させることができた。

    researchmap

  • 生命のネットワークのダイナミクスとロバストネス

    2010.04 - 2013.03

    国立研究開発法人科学技術振興機構  戦略的国際科学技術協力推進事業 

    守屋 央朗

      More details

    Authorship:Principal investigator 

    本研究交流は、複雑性をもつさまざまな生命システムをモデル系として、生物の形や動き(ダイナミクス)と、生命機能の維持能力(ロバストネス)を反映したモデリング方法をシステムバイオロジーの手法で築くことを目的とする。酵母の細胞周期やバクテリア鞭毛モーターを主な対象とし、具体的には、日本側は独自に開発した遺伝子綱引き法(gTOW)の手法を用い、細胞周期や走化性に関する定量的情報の取得を担当し、英国側はこれらの情報解析ならびに細胞周期の数理モデリング開発を担当する。本研究交流で日英が相互補完的に取り組むことにより、細胞システムのたんぱく質コピー数変化への対応、信号伝達経路で働く多彩なたんぱく質の認識についての理解向上が期待される。

    researchmap

  • Hypothesis Enumeration for Knowledge Discovery in Systems Biology

    Grant number:22700141  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    YAMAMOTO Yoshitaka, MORIYA Hisao

      More details

    Grant amount:\3770000 ( Direct expense: \2900000 、 Indirect expense:\870000 )

    This research project aims at studying the methodology for finding inductive hypotheses in inductive logic programming (ILP), and applying it to systems biology. We first address two problems: incompleteness and uniqueness in terms of hy

    researchmap

  • 遺伝情報場へのフィードバックの同定

    Grant number:21114515  2009 - 2010

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    守屋 央朗

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\10400000 ( Direct expense: \8000000 、 Indirect expense:\2400000 )

    温度やpHなど細胞外環境の変化や、変異、転写・翻訳過程のゆらぎは、核のDNAにコードされた遺伝情報が正確に機能(蛋白質)に結びつく事を妨害する。これを防ぐにため、細胞システムには、機能から情報へのフィードバックが多数存在していると考えられる。私たちが独自に開発した、「遺伝子綱引き(gTOW)法」は、遺伝子のコピー数を上げて、細胞システムの特定の要素を過剰にドライブさせることができる。このとき、遺伝子のコピー数と蛋白質の発現量の間に相関がないとすれば、核の情報の揺らぎが蛋白質の発現量に影響を与えないようにするフィードバックが、遺伝子発現のシステムに存在している事を示している。そこで、本研究では、酵母の細胞周期関連遺伝子について、gTOWによって遺伝子のコピー数を上げた時に、蛋白質の量にどのように反映されるかを調べ、フィードバックをシステマティックに同定し、その分子機構を明らかにする。最終的には、細胞周期の遺伝子発現制御に組み込まれたフィードバック機構の全容を解明し、その情報を数理モデルへと統合する。
    上記の目的のためには、遺伝子のコピー数が上がった時にそれが蛋白質量にどの程度反映するかを効率よく調べる実験系が必要となる。そのため、昨年度までに、分裂酵母内で効率よく遺伝子の改変を行なうことができる実験系の開発を行ない、分裂酵母内でGap-Rpair法によって効率の良い遺伝子改変法を開発することができ、学会発表、ならびに論文発表を行なった。さらにこのGap-Repair法を用いて約30の分裂酵母の細胞周期関連遺伝子をgTOW用プラスミドにクローニングし、コピー数の上限をはかるとともに、このデータを用いた数理モデルの評価と改良を行った。この内容は現在論文投稿中である。また、これらほとんどの遺伝子について蛋白質検出用のタグを組み込んだプラスミドの構築に成功した。このプラスミドを用いて定量的なウエスタンブロッティングを行ない、コピー数が上昇した時にそれが蛋白質にどのように反映されるかを標的としている約30の遺伝子すべてで測定することができた。

    researchmap

  • 真核細胞のin vivoロバストネス解析

    2006.10 - 2010.03

    科学技術振興機構  さきがけ 

    守屋 央朗

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

▼display all

 

Class subject in charge

  • Laboratory in Agrochemical Bioscience 3 (2024academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

  • Current Topics in Applied Enzyme Chemistry (2024academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2024academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2024academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2024academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2024academic year) Prophase  - その他

  • Seminar in Food Biochemistry (2024academic year) Year-round  - その他

  • Applied Microbiology 1 (2024academic year) 1st and 2nd semester  - 月3,月4

  • Applied Biological Data Science 2 (2024academic year) Fourth semester  - 火1,火2

  • Biochemistry and Bioengineering of Useful Enzymes (2024academic year) Prophase  - 火3~4

  • Advanced Study (2024academic year) Other  - その他

  • Biochemistry 3 (2024academic year) 1st and 2nd semester  - 木3,木4

  • Laboratory Agrochemical Bioscience 3 (2024academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

  • Course Seminar 3 (2023academic year) 1st and 2nd semester  - その他

  • Course Seminar 4 (2023academic year) 3rd and 4th semester  - その他

  • Current Topics in Applied Enzyme Chemistry (2023academic year) Late  - その他

  • Current Topics in Applied Enzyme Chemistry (2023academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2023academic year) Prophase  - その他

  • Seminar in Food Biochemistry (2023academic year) Year-round  - その他

  • Applied Microbiology 1 (2023academic year) 1st and 2nd semester  - 月3,月4

  • Introduction to Applied Microbiology (2023academic year) 1st and 2nd semester  - 月3~4

  • Applied Biological Data Science 2 (2023academic year) Fourth semester  - 火1,火2

  • Biochemistry and Bioengineering of Useful Enzymes (2023academic year) Prophase  - 火3,火4

  • Biochemistry and Bioengineering of Useful Enzymes (2023academic year) Prophase  - 火3~4

  • Advanced Study (2023academic year) Other  - その他

  • Biochemistry 3 (2023academic year) 1st and 2nd semester  - 木3,木4

  • Current Topics in Biofunctional Chemistry (2023academic year) Summer concentration  - その他

  • Specific Research of Bioresources Science (2023academic year) Year-round  - その他

  • Topics in Bioresources Science (2023academic year) Summer concentration  - その他

  • Laboratory Agrochemical Bioscience 3 (2023academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

  • Current Topics in Applied Enzyme Chemistry (2022academic year) Late  - その他

  • Topics in Development of Microbial Function (2022academic year) Prophase  - 水3,水4

  • Seminar in Applied Enzyme Chemistry (2022academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2022academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2022academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2022academic year) Prophase  - その他

  • Applied Molecular Biology (2022academic year) Summer concentration  - その他

  • Applied Microbiology 1 (2022academic year) 1st and 2nd semester  - 月3,月4

  • Introduction to Applied Microbiology (2022academic year) 1st and 2nd semester  - 月3~4

  • Applied Biological Data Science 2 (2022academic year) Fourth semester  - 火1,火2

  • Biochemistry 3 (2022academic year) 1st and 2nd semester  - 木3,木4

  • Specific Research of Bioresources Science (2022academic year) Year-round  - その他

  • Laboratory Agrochemical Bioscience 3 (2022academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

  • Topics in Development of Microbial Function (2021academic year) Prophase  - 水3,水4

  • Seminar in Applied Enzyme Chemistry (2021academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2021academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2021academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2021academic year) Prophase  - その他

  • Applied Biological Data Science 2 (2021academic year) Fourth semester  - 火1,火2

  • Biochemistry 3 (2021academic year) 1st and 2nd semester  - 木3,木4

  • Biochemistry 3-1 (2021academic year) 1st semester  - 木3,木4

  • Biochemistry 3-2 (2021academic year) Second semester  - 木3,木4

  • Specific Research of Bioresources Science (2021academic year) Year-round  - その他

  • Laboratory in Agrochemical Bioscience 3 (2020academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

  • Topics in Development of Microbial Function (2020academic year) Prophase  - 水3,水4

  • Seminar in Applied Enzyme Chemistry (2020academic year) Prophase  - その他

  • Seminar in Applied Enzyme Chemistry (2020academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2020academic year) Late  - その他

  • Seminar in Applied Enzyme Chemistry (2020academic year) Prophase  - その他

  • 応用生物データサイエンス学2 (2020academic year) 第4学期  - 火1,火2

  • Biochemistry 3-1 (2020academic year) 1st semester  - 木3,木4

  • Biochemistry 3-2 (2020academic year) Second semester  - 木3,木4

  • Specific Research of Bioresources Science (2020academic year) Year-round  - その他

  • Laboratory Agrochemical Bioscience 3 (2020academic year) Third semester  - 月5~8,火5~8,木5~8,金5~8

▼display all

 

Academic Activities

  • 第38回 YEAST WORKSHOP

    Role(s):Planning, management, etc.

    YEAST WORKSHOP  2021.11.26

     More details

    Type:Academic society, research group, etc. 

    researchmap