2024/12/19 更新

写真a

シタムカイ アツノリ
下向 敦範
Shitamukai Atsunori
所属
医歯薬学域 講師
職名
講師
通称等の別名
Atsunori Shitamukai
外部リンク

学位

  • 理学博士 ( 2003年12月   広島大学 )

研究キーワード

  • 脳発生

  • 神経幹細胞

  • ライブイメージング

  • 大脳皮質形成

研究分野

  • ライフサイエンス / 細胞生物学

  • ライフサイエンス / 神経科学一般

  • ライフサイエンス / 解剖学

経歴

  • 岡山大学 学術研究院医歯薬学域   人体構成学   講師

    2023年 - 現在

      詳細を見る

    国名:日本国

    researchmap

  • 理化学研究所 生命機能科学研究センター   非対称細胞分裂研究チーム   専門職研究員

    2018年 - 2023年

      詳細を見る

  • 理化学研究所 多細胞システム形成研究センター   非対称細胞分裂研究チーム   専門職研究員

    2014年 - 2017年

      詳細を見る

  • 理化学研究所 発生再生科学総合研究センター   非対称細胞分裂研究グループ   専門職研究員

    2012年 - 2014年

      詳細を見る

  • 理化学研究所 発生再生科学総合研究センター   非対称細胞分裂研究グループ   研究員

    2008年 - 2012年

      詳細を見る

  • 理化学研究所 発生再生科学総合研究センター   非対称細胞分裂研究グループ   CREST研究員

    2005年 - 2008年

      詳細を見る

  • 広島大学   Graduate School of Advanced Sciences of Matter, Department of Molecular Biotechnology   研究員

    2004年 - 2005年

      詳細を見る

  • 広島大学   Graduate School of Advanced Sciences of Matter, Department of Molecular Biotechnology   日本学術振興会 特別研究員(PD)

    2004年

      詳細を見る

  • 広島大学   Graduate School of Advanced Sciences of Matter, Department of Molecular Biotechnology   日本学術振興会 特別研究員(DC1)

    2001年 - 2003年

      詳細を見る

▼全件表示

所属学協会

 

論文

  • Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals 査読

    Merve Bilgic, Quan Wu, Taeko Suetsugu, Atsunori Shitamukai, Yuji Tsunekawa, Tomomi Shimogori, Mitsutaka Kadota, Osamu Nishimura, Shigehiro Kuraku, Hiroshi Kiyonari, Fumio Matsuzaki

    eLife   2023年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:eLife Sciences Publications, Ltd  

    The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and, found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.

    DOI: 10.7554/elife.91406.2

    researchmap

  • Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders 査読

    Chen Yang, Atsunori Shitamukai, Shucai Yang, Ayano Kawaguchi

    International Journal of Molecular Sciences   24 ( 18 )   14128 - 14128   2023年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:MDPI AG  

    The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.

    DOI: 10.3390/ijms241814128

    researchmap

  • Notch1 and Notch2 collaboratively maintain radial glial cells in mouse neurogenesis 査読 国際誌

    Shun Mase, Atsunori Shitamukai, Quan Wu, Mitsuru Morimoto, Thomas Gridley, Fumio Matsuzaki

    Neuroscience Research   170   122 - 132   2021年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    DOI: 10.1016/j.neures.2020.11.007

    PubMed

    researchmap

  • Endfoot regeneration restricts radial glial state and prevents translocation into the outer subventricular zone in early mammalian brain development. 査読 国際誌

    Ikumi Fujita*, Atsunori Shitamukai*, Fumiya Kusumoto*, Shun Mase, Taeko Suetsugu, Ayaka Omori, Kagayaki Kato, Takaya Abe, Go Shioi, Daijiro Konno, Fumio Matsuzaki, *equal contribution

    Nature cell biology   22 ( 1 )   26 - 37   2020年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media {LLC}  

    Neural stem cells, called radial glia, maintain epithelial structure during the early neocortical development. The prevailing view claims that when radial glia first proliferate, their symmetric divisions require strict spindle orientation; its perturbation causes precocious neurogenesis and apoptosis. Here, we show that despite this conventional view, radial glia at the proliferative stage undergo normal symmetric divisions by regenerating an apical endfoot even if it is lost by oblique divisions. We found that the Notch-R-Ras-integrin β1 pathway promotes the regeneration of endfeet, whose leading edge bears ectopic adherens junctions and the Par-polarity complex. However, this regeneration ability gradually declines during the subsequent neurogenic stage and hence oblique divisions induce basal translocation of radial glia to form the outer subventricular zone, a hallmark of the development of the convoluted brain. Our study reveals that endfoot regeneration is a temporally changing cryptic property, which controls the radial glial state and its shift is essential for mammalian brain size expansion.

    DOI: 10.1038/s41556-019-0436-9

    PubMed

    researchmap

  • Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development 査読 国際誌

    T. Kawaue, A. Shitamukai, A. Nagasaka, Y. Tsunekawa, T. Shinoda, K. Saito, R. Terada, M. Bilgic, T. Miyata, F. Matsuzaki, A. Kawaguchi

    Nature Communications   10 ( 1 )   2019年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media LLC  

    DOI: 10.1038/s41467-019-10730-y

    PubMed

    researchmap

    その他リンク: http://www.nature.com/articles/s41467-019-10730-y

  • Reconstruction of Par-dependent polarity in apolar cells reveals a dynamic process of cortical polarization. 査読 国際誌

    Kalyn Kono, Shigeki Yoshiura, Ikumi Fujita, Yasushi Okada, Atsunori Shitamukai, Tatsuo Shibata, Fumio Matsuzaki

    eLife   8   2019年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:{eLife} Sciences Publications, Ltd  

    Cellular polarization is fundamental for various biological processes. The Par network system is conserved for cellular polarization. Its core complex consists of Par3, Par6, and aPKC. However, the general dynamic processes that occur during polarization are not well understood. Here, we reconstructed Par-dependent polarity using non-polarized Drosophila S2 cells expressing all three components endogenously in the cytoplasm. The results indicated that elevated Par3 expression induces cortical localization of the Par-complex at the interphase. Its asymmetric distribution goes through three steps: emergence of cortical dots, development of island-like structures with dynamic amorphous shapes, repeating fusion and fission, and polarized clustering of the islands. Our findings also showed that these islands contain a meshwork of unit-like segments. Furthermore, Par-complex patches resembling Par-islands exist in Drosophila mitotic neuroblasts. Thus, this reconstruction system provides an experimental paradigm to study features of the assembly process and structure of Par-dependent cell-autonomous polarity.

    DOI: 10.7554/eLife.45559

    PubMed

    researchmap

  • Developing a de novo targeted knock-in method based on in utero electroporation into the mammalian brain. 査読 国際誌

    Yuji Tsunekawa, Raymond Kunikane Terhune, Ikumi Fujita, Atsunori Shitamukai, Taeko Suetsugu, Fumio Matsuzaki

    Development (Cambridge, England)   143 ( 17 )   3216 - 22   2016年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Genome-editing technology has revolutionized the field of biology. Here, we report a novel de novo gene-targeting method mediated by in utero electroporation into the developing mammalian brain. Electroporation of donor DNA with the CRISPR/Cas9 system vectors successfully leads to knock-in of the donor sequence, such as EGFP, to the target site via the homology-directed repair mechanism. We developed a targeting vector system optimized to prevent anomalous leaky expression of the donor gene from the plasmid, which otherwise often occurs depending on the donor sequence. The knock-in efficiency of the electroporated progenitors reached up to 40% in the early stage and 20% in the late stage of the developing mouse brain. Furthermore, we inserted different fluorescent markers into the target gene in each homologous chromosome, successfully distinguishing homozygous knock-in cells by color. We also applied this de novo gene targeting to the ferret model for the study of complex mammalian brains. Our results demonstrate that this technique is widely applicable for monitoring gene expression, visualizing protein localization, lineage analysis and gene knockout, all at the single-cell level, in developmental tissues.

    DOI: 10.1242/dev.136325

    Web of Science

    PubMed

    researchmap

  • Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development. 査読 国際誌

    Fumio Matsuzaki, Atsunori Shitamukai

    Cold Spring Harbor perspectives in biology   7 ( 9 )   a015719   2015年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:論文集(書籍)内論文  

    During mammalian brain development, neural progenitor cells undergo symmetric proliferative divisions followed by asymmetric neurogenic divisions. The division mode of these self-renewing progenitors, together with the cell fate of their progeny, plays critical roles in determining the number of neurons and, ultimately, the size of the adult brain. In the past decade, remarkable progress has been made toward identifying various types of neuronal progenitors. Recent technological advances in live imaging and genetic manipulation have enabled us to link dynamic cell biological events to the molecular mechanisms that control the asymmetric divisions of self-renewing progenitors and have provided a fresh perspective on the modes of division of these progenitors. In addition, comparison of progenitor repertoires between species has provided insight into the expansion and the development of the complexity of the brain during mammalian evolution.

    DOI: 10.1101/cshperspect.a015719

    Web of Science

    PubMed

    researchmap

  • Novel and robust transplantation reveals the acquisition of polarized processes by cortical cells derived from mouse and human pluripotent stem cells. 査読 国際誌

    Fumiaki Nagashima, Ikuo K Suzuki, Atsunori Shitamukai, Haruko Sakaguchi, Misato Iwashita, Taeko Kobayashi, Shigenobu Tone, Kazunori Toida, Pierre Vanderhaeghen, Yoichi Kosodo

    Stem cells and development   23 ( 18 )   2129 - 42   2014年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MARY ANN LIEBERT, INC  

    Current stem cell technologies have enabled the induction of cortical progenitors and neurons from embryonic stem cells (ESCs) and induced pluripotent stem cells in vitro. To understand the mechanisms underlying the acquisition of apico-basal polarity and the formation of processes associated with the stemness of cortical cells generated in monolayer culture, here, we developed a novel in utero transplantation system based on the moderate dissociation of adherens junctions in neuroepithelial tissue. This method enables (1) the incorporation of remarkably higher numbers of grafted cells and (2) quantitative morphological analyses at single-cell resolution, including time-lapse recording analyses. We then grafted cortical progenitors induced from mouse ESCs into the developing brain. Importantly, we revealed that the mode of process extension depends on the extrinsic apico-basal polarity of the host epithelial tissue, as well as on the intrinsic differentiation state of the grafted cells. Further, we successfully transplanted cortical progenitors induced from human ESCs, showing that our strategy enables investigation of the neurogenesis of human neural progenitors within the developing mouse cortex. Specifically, human cortical cells exhibit multiple features of radial migration. The robust transplantation method established here could be utilized both to uncover the missing gap between neurogenesis from ESCs and the tissue environment and as an in vivo model of normal and pathological human corticogenesis.

    DOI: 10.1089/scd.2013.0251

    Web of Science

    PubMed

    researchmap

  • Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. 査読 国際誌

    Togo Shimozawa, Kazuo Yamagata, Takefumi Kondo, Shigeo Hayashi, Atsunori Shitamukai, Daijiro Konno, Fumio Matsuzaki, Jun Takayama, Shuichi Onami, Hiroshi Nakayama, Yasuhito Kosugi, Tomonobu M Watanabe, Katsumasa Fujita, Yuko Mimori-Kiyosue

    Proceedings of the National Academy of Sciences of the United States of America   110 ( 9 )   3399 - 404   2013年2月

     詳細を見る

    記述言語:英語  

    A recent key requirement in life sciences is the observation of biological processes in their natural in vivo context. However, imaging techniques that allow fast imaging with higher resolution in 3D thick specimens are still limited. Spinning disk confocal microscopy using a Yokogawa Confocal Scanner Unit, which offers high-speed multipoint confocal live imaging, has been found to have wide utility among cell biologists. A conventional Confocal Scanner Unit configuration, however, is not optimized for thick specimens, for which the background noise attributed to "pinhole cross-talk," which is unintended pinhole transmission of out-of-focus light, limits overall performance in focal discrimination and reduces confocal capability. Here, we improve spinning disk confocal microscopy by eliminating pinhole cross-talk. First, the amount of pinhole cross-talk is reduced by increasing the interpinhole distance. Second, the generation of out-of-focus light is prevented by two-photon excitation that achieves selective-plane illumination. We evaluate the effect of these modifications and test the applicability to the live imaging of green fluorescent protein-expressing model animals. As demonstrated by visualizing the fine details of the 3D cell shape and submicron-size cytoskeletal structures inside animals, these strategies dramatically improve higher-resolution intravital imaging.

    DOI: 10.1073/pnas.1216696110

    PubMed

    researchmap

  • Amplification of progenitors in the mammalian telencephalon includes a new radial glial cell type. 査読 国際誌

    Gregor-Alexander Pilz, Atsunori Shitamukai, Isabel Reillo, Emilie Pacary, Julia Schwausch, Ronny Stahl, Jovica Ninkovic, Hugo J Snippert, Hans Clevers, Leanne Godinho, Francois Guillemot, Victor Borrell, Fumio Matsuzaki, Magdalena Götz

    Nature communications   4   2125 - 2125   2013年

     詳細を見る

    記述言語:英語  

    The mechanisms governing the expansion of neuron number in specific brain regions are still poorly understood. Enlarged neuron numbers in different species are often anticipated by increased numbers of progenitors dividing in the subventricular zone. Here we present live imaging analysis of radial glial cells and their progeny in the ventral telencephalon, the region with the largest subventricular zone in the murine brain during neurogenesis. We observe lineage amplification by a new type of progenitor, including bipolar radial glial cells dividing at subapical positions and generating further proliferating progeny. The frequency of this new type of progenitor is increased not only in larger clones of the mouse lateral ganglionic eminence but also in cerebral cortices of gyrated species, and upon inducing gyrification in the murine cerebral cortex. This implies key roles of this new type of radial glia in ontogeny and phylogeny.

    DOI: 10.1038/ncomms3125

    Web of Science

    PubMed

    researchmap

  • Control of asymmetric cell division of mammalian neural progenitors. 招待

    Atsunori Shitamukai, Fumio Matsuzaki

    Development, growth & differentiation   54 ( 3 )   277 - 86   2012年4月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Although the vertebrate brain commonly stems from the neuroepithelial tube, the size and complexity of the pseudostratified organization of the brain have drastically expanded during mammalian evolution, resulting in the formation of a highly folded cortex. Developmental controls of neural progenitor divisions underlie these events. In this review, we introduce recent progress in understanding the control of proliferation and differentiation of neural progenitors from a structural point of view. We particularly shed light on the roles of epithelial structure and mitotic spindle orientation in the generation of various types of neural progenitors.

    DOI: 10.1111/j.1440-169X.2012.01345.x

    Web of Science

    PubMed

    researchmap

  • Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. 査読 国際誌

    Atsunori Shitamukai, Daijiro Konno, Fumio Matsuzaki

    The Journal of neuroscience : the official journal of the Society for Neuroscience   31 ( 10 )   3683 - 95   2011年3月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語  

    Radial glia cells function as neural stem cells in the developing brain and generate self-renewing and differentiating daughter cells by asymmetric cell divisions. During these divisions, the apical process or basal process of the elongated epithelial structure is asymmetrically partitioned into daughter cells, depending on developmental contexts. However, in mammalian neurogenesis, the relationship between these subcellular structures and self-renewability is largely unknown. We induced oblique cleavages of radial glia cells to split the apical and basal processes into two daughters, and investigated the fate and morphology of the daughters in slice cultures. We observed that the more basal daughter cell that inherits the basal process self-renews outside of the ventricular zone (VZ), while the more apical daughter cell differentiates. These self-renewing progenitors, termed "outer VZ progenitors," retain the basal but not the apical process, as recently reported for the outer subventricular zone (OSVZ) progenitors in primates (Fietz et al., 2010; Hansen et al., 2010); to self-renew, they require clonal Notch signaling between sibling cells. We also found a small endogenous population of outer VZ progenitors in the mouse embryonic neocortex, consistent with a low frequency of oblique radial glia divisions. Our results describe the general role of the basal process in the self-renewal of neural progenitors and implicate the loss of the apical junctions during oblique divisions as a possible mechanism for generating OSVZ progenitors. We propose that mouse outer VZ progenitors, induced by oblique cleavages, provide a model to study both progenitor self-renewal and OSVZ progenitors.

    DOI: 10.1523/JNEUROSCI.4773-10.2011

    Web of Science

    PubMed

    researchmap

  • Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. 査読 国際誌

    Daijiro Konno, Go Shioi, Atsunori Shitamukai, Asako Mori, Hiroshi Kiyonari, Takaki Miyata, Fumio Matsuzaki

    Nature cell biology   10 ( 1 )   93 - 101   2008年1月

     詳細を見る

    記述言語:英語  

    During mammalian development, neuroepithelial cells function as mitotic progenitors, which self-renew and generate neurons. Although spindle orientation is important for such polarized cells to undergo symmetric or asymmetric divisions, its role in mammalian neurogenesis remains unclear. Here we show that control of spindle orientation is essential in maintaining the population of neuroepithelial cells, but dispensable for the decision to either proliferate or differentiate. Knocking out LGN, (the G protein regulator), randomized the orientation of normally planar neuroepithelial divisions. The resultant loss of the apical membrane from daughter cells frequently converted them into abnormally localized progenitors without affecting neuronal production rate. Furthermore, overexpression of Inscuteable to induce vertical neuroepithelial divisions shifted the fate of daughter cells. Our results suggest that planar mitosis ensures the self-renewal of neuroepithelial progenitors by one daughter inheriting both apical and basal compartments during neurogenesis.

    DOI: 10.1038/ncb1673

    Web of Science

    PubMed

    researchmap

  • Ras/cAMP-dependent protein kinase (PKA) regulates multiple aspects of cellular events by phosphorylating the Whi3 cell cycle regulator in budding yeast. 査読 国際誌

    Masaki Mizunuma, Ryohei Tsubakiyama, Takafumi Ogawa, Atsunori Shitamukai, Yoshifumi Kobayashi, Tomomi Inai, Kazunori Kume, Dai Hirata

    The Journal of biological chemistry   288 ( 15 )   10558 - 66   2013年4月

     詳細を見る

    記述言語:英語  

    The Start/G1 phase in the cell cycle is an important period during which cells determine their developmental fate, onset of mitotic progression, or the switch to developmental stages in response to both external and internal signals. In the budding yeast Saccharomyces cerevisiae, Whi3, a negative regulator of the G1 cyclins, has been identified as a positive regulator of cell size control and is involved in the regulation of Start. However, the regulatory pathway of Whi3 governing the response to multiple signals remains largely unknown. Here, we show that Whi3 is phosphorylated by the Ras/cAMP-dependent protein kinase (PKA) and that phosphorylation of Ser-568 in Whi3 by PKA plays an inhibitory role in Whi3 function. Phosphorylation of Whi3 by PKA led to its decreased interaction with CLN3 G1 cyclin mRNA and was required for the promotion of G1/S progression. Furthermore, we demonstrate that the phosphomimetic S568D mutation of Whi3 prevented the developmental fate switch to sporulation or invasive growth. Thus, PKA modulated the function of Whi3 by phosphorylation, thus implicating PKA-mediated modulation of Whi3 in multiple cellular events.

    DOI: 10.1074/jbc.M112.402214

    Web of Science

    PubMed

    researchmap

  • Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging (vol 110, pg 3399, 2013) 査読

    Shimozawa Togo, Yamagata Kazuo, Kondo Takefumi, Hayashi Shigeo, Shitamukai Atsunori, Konno Daijiro, Matsuzaki Fumio, Takayama Jun, Onami Shuichi, Nakayama Hiroshi, Kosugi Yasuhito, Watanabe Tomonobu M, Fujita Katsumasa, Mimori-Kiyosue Yuko

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   110 ( 15 )   6240   2013年4月

  • Evidence of antagonistic regulation of restart from G(1) delay in response to osmotic stress by the Hog1 and Whi3 in budding yeast. 査読 国際誌

    Masaki Mizunuma, Takafumi Ogawa, Tetsuya Koyama, Atsunori Shitamukai, Ryohei Tsubakiyama, Tadamasa Komaruyama, Toshinaga Yamaguchi, Kazunori Kume, Dai Hirata

    Bioscience, biotechnology, and biochemistry   77 ( 10 )   2002 - 7   2013年

     詳細を見る

    記述言語:英語  

    Hog1 of Saccharomyces cerevisiae is activated by hyperosmotic stress, and this leads to cell-cycle delay in G1, but the mechanism by which cells restart from G1 delay remains elusive. We found that Whi3, a negative regulator of G1 cyclin, counteracted Hog1 in the restart from G1 delay caused by osmotic stress. We have found that phosphorylation of Ser-568 in Whi3 by RAS/cAMP-dependent protein kinase (PKA) plays an inhibitory role in Whi3 function. In this study we found that the phosphomimetic Whi3 S568D mutant, like the Δwhi3 strain, slightly suppressed G1 delay of Δhog1 cells under osmotic stress conditions, whereas the non-phosphorylatable S568A mutation of Whi3 caused prolonged G1 arrest of Δhog1 cells. These results indicate that Hog1 activity is required for restart from G1 arrest under osmotic stress conditions, whereas Whi3 acts as a negative regulator for this restart mechanism.

    DOI: 10.1271/bbb.130260

    Web of Science

    PubMed

    researchmap

  • Structural basis for self-renewal of neural progenitors in cortical neurogenesis. 査読 国際誌

    Go Shioi, Daijiro Konno, Atsunori Shitamukai, Fumio Matsuzaki

    Cerebral cortex (New York, N.Y. : 1991)   19 Suppl 1   i55-61 - 61   2009年7月

     詳細を見る

    記述言語:英語  

    In mammalian brain development, neuroepithelial cells act as progenitors that produce self-renewing and differentiating cells. Recent technical advances in live imaging and gene manipulation now enable us to investigate how neural progenitors generate the 2 different types of cells with unprecedented accuracy and resolution, shedding new light on the roles of epithelial structure in cell fate decisions and also on the plasticity of neurogenesis.

    DOI: 10.1093/cercor/bhp042

    Web of Science

    PubMed

    researchmap

  • Identification of Tup1 and Cyc8 mutations defective in the responses to osmotic stress. 査読 国際誌

    Yoshifumi Kobayashi, Tomomi Inai, Masaki Mizunuma, Ichitaro Okada, Atsunori Shitamukai, Dai Hirata, Tokichi Miyakawa

    Biochemical and biophysical research communications   368 ( 1 )   50 - 5   2008年3月

     詳細を見る

    記述言語:英語  

    In the yeast Saccharomyces cerevisiae, Tup1, in association with Cyc8 (Ssn6), functions as a general transcriptional corepressor. This repression is mediated by recruitment of the Tup1-Cyc8 complex to target promoters through sequence-specific DNA-binding proteins such as Sko1, which mediates the HOG pathway-dependent regulation. We identified tup1 and cyc8 mutant alleles as the suppressor of osmo-sensitivity of the hog1Delta strain. In these mutants, although the expression of the genes under the control of DNA-binding proteins other than Sko1 was apparently normal, the Sko1-regulated genes GRE2 and AHP1 were derepressed under non-stress conditions, suggesting that the Tup1 and Cyc8 mutant proteins were specifically defective in the repression of the Sko1-dependent genes. Chromatin immunoprecipitation analyses of the GRE2 promoter in the mutants demonstrated that the Sko1-Tup1-Cyc8 complex was localized to the promoter, together with Gcn5/SAGA, suggesting that the erroneous recruitment of SAGA to the promoter led to the derepression.

    DOI: 10.1016/j.bbrc.2008.01.033

    Web of Science

    PubMed

    researchmap

  • Effect of ethanol on cell growth of budding yeast: genes that are important for cell growth in the presence of ethanol. 査読 国際誌

    Shunsuke Kubota, Ikuko Takeo, Kazunori Kume, Muneyoshi Kanai, Atsunori Shitamukai, Masaki Mizunuma, Tokichi Miyakawa, Hitoshi Shimoi, Haruyuki Iefuji, Dai Hirata

    Bioscience, biotechnology, and biochemistry   68 ( 4 )   968 - 72   2004年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The budding yeast Saccharomyces cerevisiae has been used in the fermentation of various kinds of alcoholic beverages. But the effect of ethanol on the cell growth of this yeast is poorly understood. This study shows that the addition of ethanol causes a cell-cycle delay associated with a transient dispersion of F-actin cytoskeleton, resulting in an increase in cell size. We found that the tyrosine kinase Swe1, the negative regulator of Cdc28-Clb kinase, is related to the regulation of cell growth in the presence of ethanol. Indeed, the increase in cell size due to ethanol was partially abolished in the SWE1-deleted cells, and the amount of Swe1 protein increased transiently in the presence of ethanol. These results indicated that Swe1 is involved in cell size control in the presence of ethanol, and that a signal produced by ethanol causes a transient up-regulation of Swe1. Further we investigated comprehensively the ethanol-sensitive strains in the complete set of 4847 non-essential gene deletions and identified at least 256 genes that are important for cell growth in the presence of ethanol.

    DOI: 10.1271/bbb.68.968

    PubMed

    researchmap

  • Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. 査読 国際誌

    Atsunori Shitamukai, Dai Hirata, Shinya Sonobe, Tokichi Miyakawa

    The Journal of biological chemistry   279 ( 5 )   3651 - 61   2004年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語  

    Because Ca(2+) signaling of budding yeast, through the activation of calcineurin and the Mpk1/Slt2 mitogen-activated protein kinase cascade, performs redundant function(s) in the events essential for growth, the simultaneous deletion of both these pathways (Delta cnb1 Delta mpk1) leads to lethality. A PTC4 cDNA that encodes a protein phosphatase belonging to the PP2C family was obtained as a high dosage suppressor of the lethality of Delta cnb1 Delta mpk1 strain. Overexpression of PTC4 led to a decrease in the high osmolarity-induced Hog1 phosphorylation, and HOG1 deletion remarkably suppressed the synthetic lethality, indicating an antagonistic role of the high osmolarity glycerol (HOG) pathway and the Ca(2+) signaling pathway in growth regulation. The calcineurin-Crz1 pathway was required for the down-regulation of the HOG pathway. Analysis of the time course of actin polarization, bud formation, and the onset of mitosis in synchronous cell cultures demonstrated that calcineurin negatively regulates actin polarization at the bud site, whereas the HOG pathway positively regulates bud formation at a later step after actin has polarized.

    DOI: 10.1074/jbc.M306098200

    PubMed

    researchmap

  • 酵母の特殊な変異形質を利用するCa^<2+>シグナル伝達に作用する薬剤のポジティブスクリーニング 招待

    下向 敦範, 水沼 正樹, 平田 大, 高橋 英俊, 宮川 都吉

    日本農芸化学会誌   76 ( 8 )   734 - 735   2002年8月

     詳細を見る

    記述言語:日本語   出版者・発行元:Japan Society for Bioscience, Biotechnology, and Agrochemistry  

    DOI: 10.1271/nogeikagaku1924.76.734

    CiNii Article

    CiNii Books

    researchmap

  • 酵母の特殊な変異形質を利用するCa2+シグナル伝達に作用する薬剤のポジティブスクリーニング 招待

    下向 敦範, 水沼 正樹, 平田 大, 高橋 英俊, 宮川 都吉

    化学と生物(日本農芸化学会誌)   76   38 - 39   2002年

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)  

    researchmap

  • 酵母を使った生理活性物質の新規スクリーニング法 招待

    平田 大, 下向 敦範, 水沼 正樹, 宮川 都吉

    生物工学会誌   79 ( 3 )   79 - 79   2001年

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:日本生物工学会  

    CiNii Article

    CiNii Books

    researchmap

    その他リンク: https://projects.repo.nii.ac.jp/?action=repository_uri&item_id=300687

  • A positive screening for drugs that specifically inhibit the Ca2+-signaling activity on the basis of the growth promoting effect on a yeast mutant with a peculiar phenotype. 査読 国際誌

    A Shitamukai, M Mizunuma, D Hirata, H Takahashi, T Miyakawa

    Bioscience, biotechnology, and biochemistry   64 ( 9 )   1942 - 6   2000年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語  

    An inappropriate activation of a signaling pathway in yeast often has a deleterious physiological effect and causes various defects, including growth defects. In a certain genetic background (deltazds1) of Saccharomyces cerevisiae, the cell-cycle progression in G2 is specifically blocked in the medium with CaCl2 by the hyperactivation of the Ca2+-signaling pathways. Here, we developed a novel drug screening procedure designed to detect the active compounds that specifically attenuate the Ca2+-signaling activity on the basis of the ability to abrogate the growth defect of the cells suffering from the hyperactivated Ca2+ signal. Using known calcineurin inhibitors as model compounds, we have established the screening conditions for the drugs that suppress the Ca2+-induced growth inhibition. An indicator strain with an increased drug sensitivity was constructed with a syr1/erg3 null mutation.

    PubMed

    researchmap

▼全件表示

MISC

  • 神経幹細胞の形態制御と脳発生 招待

    下向敦範, 杨晨, 川口綾乃

    月刊 細胞   55 ( 10 )   94 - 97   2023年8月

     詳細を見る

    担当区分:筆頭著者   記述言語:日本語   掲載種別:記事・総説・解説・論説等(学術雑誌)  

    researchmap

受賞

  • The poster award at the 22nd Biennial Meeting of the International Society for Developmental Neuroscience.

    2017年5月   The International Society of Developmental Neuroscience   Feedback signaling from neuron to neural stem cell.

    Atsunori Shitamukai

     詳細を見る

  • Biosci. Biotech. Biochem.(日本農芸化学会英文誌)2000年度論文賞

    2000年3月   日本農芸化学会  

    下向敦範, 水沼正樹, 平田大, 高橋英俊, 宮川都吉

     詳細を見る

共同研究・競争的資金等の研究

  • 細胞治療のための液性因子作用局所化による人工合成ニッチの開発

    研究課題/領域番号:24K22406  2024年06月 - 2027年03月

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

    川口 綾乃, 下向 敦範

      詳細を見る

    配分額:6500000円 ( 直接経費:5000000円 、 間接経費:1500000円 )

    researchmap

  • 神経上皮構造の復元力減少による脳の局所的肥厚化メカニズムの解明

    研究課題/領域番号:24K09984  2024年04月 - 2027年03月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    下向 敦範

      詳細を見る

    配分額:4550000円 ( 直接経費:3500000円 、 間接経費:1050000円 )

    researchmap

  • 1細胞空間エピゲノム解析による大脳新皮質微小カラム構造形成機構の解明

    研究課題/領域番号:23K27271  2023年04月 - 2027年03月

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    今野 大治郎, 下向 敦範, 丸岡 久人

      詳細を見る

    配分額:19110000円 ( 直接経費:14700000円 、 間接経費:4410000円 )

    researchmap

  • mRNAでオンになるスイッチ分子の開発と脳発生解析における応用

    研究課題/領域番号:19K22441  2019年06月 - 2022年03月

    日本学術振興会  科学研究費助成事業 挑戦的研究(萌芽)  挑戦的研究(萌芽)

    下向 敦範

      詳細を見る

    配分額:6500000円 ( 直接経費:5000000円 、 間接経費:1500000円 )

    Cas13をベースとしたgRNAによる特異的RNA結合活性を利用した分子スイッチの設計を行い、Cas13タンパク質、インテイン、リンカー、gRNA、局在シグナルの選別と改良を行った。その結果、培養細胞レベルで、性質の異なるインテインをベースにした活性の異なる二つのスイッチ分子の作成に成功した。バックグランドの高さや活性の低さから、まだ実用面では克服すべき問題点があると考えている。この両者を克服するために、今後、活性の高いgRNAの選定と、バックグランドを下げるための局在制御ドメインの検討が重要であり、引き続き研究を継続し、生体での実証を目指す。

    researchmap

  • 高等脳における神経細胞から幹細胞へのフィードバックシグナルの役割

    研究課題/領域番号:16K18381  2016年04月 - 2019年03月

    日本学術振興会  科学研究費助成事業 若手研究(B)  若手研究(B)

    下向 敦範

      詳細を見る

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    哺乳類の脳神経発生を担う神経幹細胞は自己を維持しながら、分化した神経細胞を生み出し続ける。また、神経幹細胞は組織内を貫通する構造を持ち組織構築の構造体としても機能する。しかし、この構造と自己複製能との関連は不明であった。本研究では、神経側に伸びた突起構造が、神経細胞から分泌される増殖シグナルを受容/伝搬するのに機能していることを見出した。具体的には、神経から分泌されたFGF増殖因子が、神経幹細胞の突起構造によって受け取られ、内部のシグナル伝達分子がモーターで輸送されることが判明した。これらは組織内における空間的な情報交換のメカニズムの一端であり、神経と幹細胞のバランスを調整している考えられる。

    researchmap

  • 神経から幹細胞へのフィードバックシグナル機構の解析

    研究課題/領域番号:24700361  2012年04月 - 2014年03月

    日本学術振興会  科学研究費助成事業 若手研究(B)  若手研究(B)

    下向 敦範

      詳細を見る

    配分額:4420000円 ( 直接経費:3400000円 、 間接経費:1020000円 )

    脳の発生において機能の異なる神経がどのようにその数を調整しながら産生されるのかそのメカニズムはほとんど分かっていない。本研究では、胎児期に初期の神経で発現する増殖因子FGF18が神経幹細胞を制御することによって、後期に産生される神経の数を制御する事を発見した。FGF18は脳の発生の中期から後期にかけて初期に産生された神経で発現しており、FGF18遺伝子欠損マウスは、後期の産生される神経の特異的な減少が見られた。この事は、初期に産生された神経細胞がFGF18を分泌することにより、つぎに産生される後期の神経の生産量を神経幹細胞の維持を介して制御すると言うフィードバック制御の可能性を示唆している。

    researchmap

  • 二つのMAPキナーゼ(Hog1及びMpk1)の拮抗作用による細胞周期制御

    研究課題/領域番号:01J09026  2001年 - 2003年

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    下向 敦範

      詳細を見る

    配分額:3000000円 ( 直接経費:3000000円 )

    本研究により、Hog1 MAPキナーゼ経路とカルシニューリン(CN)を介したCa^<2+>情報伝達経路が細胞増殖において拮抗的に作用していることを新たに見いだした。具体的にどのような点に作用しているかを解析したところ、Ca^<2+>-CNの経路は出芽が始まる直前のアクチン細胞骨格の極性化を阻害しており、Hog1経路はその後の出芽を促進するのに重要であることが明らかとなった。更に,CNの下流の転写因子であるCrz1がHog1経路の上流経路の一つであるSln1経路を介して阻害していることをも発見した。これら二つの新たなる発見を論文にまとめ発表した。さらに、これらの増殖制御機構を解明するために、Δhog1欠損株のCa^<2+>感受性を抑圧する変異株の取得を行ったところ、出芽の異常や細胞周期の遅れを解消する様々な変異株が得られた。それらの株はCa^<2+>感受性だけではなく高浸透圧感受性も抑圧していることがわかり、その中の一つが出芽時期であるG1-S期の移行に重要な働きを持つWHI3遺伝子の変異であることが明らかとなった。WHI3遺伝子はG1サイクリンの負の調節因子であり変異により,G1サイクリンが活性化されていることが考えられる。実際にΔhog1欠損株の高浸透圧感受性はG1サイクリンの高発現により抑圧することがわかり、更なる解析によりHog1経路が高浸透圧ストレス後のG1-S期の移行に重要な働きをしていることが示唆された。

    researchmap

▼全件表示

 

担当授業科目

  • 人体の構造:入門 (2024年度) 特別  - その他

  • 人体構成学実習 (2024年度) 特別  - その他

  • 人体構成学演習 (2024年度) 特別  - その他

  • 人体構成学I(演習・実習) (2024年度) 特別  - その他

  • 人体構成学I(講義・演習) (2024年度) 特別  - その他

  • 人体構成学II(演習・実習) (2024年度) 特別  - その他

  • 人体構成学II(講義・演習) (2024年度) 特別  - その他

  • 人体構造学 (2024年度) 集中  - その他

  • 人体解剖学 (2024年度) 特別  - その他

  • 人体解剖学 (2024年度) 第3学期  - 水4~5

  • 人体解剖学 (2024年度) 第3学期  - 水4~5

  • 人体解剖学実習 (2024年度) 集中  - その他

  • 系統解剖学実習 (2024年度) 特別  - その他

  • 人体構成学実習 (2023年度) 特別  - その他

  • 人体構成学演習 (2023年度) 特別  - その他

  • 人体解剖学 (2023年度) 特別  - その他

  • 人体解剖学実習 (2023年度) 集中  - その他

  • 系統解剖学実習 (2023年度) 特別  - その他

▼全件表示