2024/12/19 更新

写真a

リュウ スゴウ
LIU ZIANG
LIU ZIANG
所属
環境生命自然科学学域 助教
職名
助教
ホームページ

学位

  • 博士(工学) ( 大阪大学 )

研究キーワード

  • 経営工学

  • 強化学習

  • オペレーションズ・リサーチ

  • 最適化

  • 人工知能

  • ソフトコンピューティング

  • 意思決定

  • ロジスティクス

  • サプライチェーン・マネジメント

  • ゲーム理論

研究分野

  • ものづくり技術(機械・電気電子・化学工学) / 制御、システム工学

  • 情報通信 / 知能情報学

  • 社会基盤(土木・建築・防災) / 社会システム工学

学歴

  • 大阪大学   Graduate School of Engineering Science   Department of Systems Innovation Division of Mathematical Science for Social Systems

    2019年4月 - 2021年3月

      詳細を見る

経歴

  • 岡山大学   学術研究院 環境生命自然科学学域   助教

    2023年4月 - 現在

      詳細を見る

  • 岡山大学   学術研究院 自然科学学域   助教

    2021年4月 - 2023年3月

      詳細を見る

所属学協会

  • 米国電気電子学会(IEEE)

    2024年3月 - 現在

      詳細を見る

  • システム制御情報学会

    2021年4月 - 現在

      詳細を見る

  • サイバーフィジカル・フレキシブル・オートメーション(CyFA)研究分科会

    2021年4月 - 現在

      詳細を見る

  • 日本機械学会

    2020年5月 - 現在

      詳細を見る

 

論文

  • Surrogate-Assisted Multi-Objective Optimization for Simultaneous Three-Dimensional Packing and Motion Planning Problems Using the Sequence-Triple Representation 査読

    Ziang Liu, Tomoya Kawabe, Tatsushi Nishi, Shun Ito, Tomofumi Fujiwara

    Applied Artificial Intelligence   2024年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1080/08839514.2024.2398895

    researchmap

  • Neural network assisted branch and bound algorithm for dynamic berth allocation problems 査読

    Shinya Korekane, Tatsushi Nishi, Kevin Tierney, Ziang Liu

    European Journal of Operational Research   2024年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.ejor.2024.06.040

    researchmap

  • 粒子群最適化による産業用スカラ型ロボットの省エネルギー動作計画の検討 査読

    藤原 始史, 西 竜志, 劉 子昂

    システム制御情報学会論文誌   37 ( 11 )   283 - 290   2024年11月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)  

    researchmap

  • Task Planning for Robot Manipulator Using Natural Language Task Input with Large Language Models 査読

    Tomoya Kawabe, Tatsushi Nishi, Ziang Liu, Tomofumi Fujiwara

    2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)   3484 - 3489   2024年8月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/case59546.2024.10711671

    researchmap

  • Deep Q-Networkとグラフ探索を組み合わせた複数台移動ロボットの経路計画法 査読

    福島 昂之介, 西 竜志, 劉 子昂, 藤原 始史

    システム制御情報学会論文誌   37 ( 8 )   207 - 215   2024年8月

     詳細を見る

    記述言語:日本語   出版者・発行元:京都 : システム制御情報学会  

    CiNii Books

    J-GLOBAL

    researchmap

    その他リンク: https://ndlsearch.ndl.go.jp/books/R000000004-I033642525

  • Designing a Mobile Manipulator and Motion Planning for Autonomous Navigation With A* and Q-Learning Algorithms 査読

    Md. Kaimujjaman, Tatsushi Nishi, Tomofumi Fujiwara, Ziang Liu

    2024 International Symposium on Flexible Automation   2024年7月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:American Society of Mechanical Engineers  

    Abstract

    Mobile manipulators have a crucial role in large manufacturing industries, production houses and retailer shops. Although fixed manipulator arms are very familiar in industries and production houses, a manipulator arm mounted on a movable robot equipped with the feature of autonomous navigation is still unfamiliar in this age. In this research, we propose an autonomous navigation method with A* and Q learning algorithm for a 6-DOF manipulator robot arm that is mounted on a movable 2-wheeled robot and the robot can find its path autonomously in a dynamic environment where knowledge of the environment was not known to the robot previously. The robot scans its surroundings with laser scanners and generates a map of its environment in ROS. The robot’s ability to move from its current location to a desired destination while avoiding obstacles and optimizing its trajectory depends heavily on its motion planning. For motion planning of the manipulator robot graph based and reinforcement learning based algorithms can be integrated. Incorporation of these algorithms helps the manipulator robot to find its path to a known or unknown environment. The result demonstrates the environment map generation using laser scans in RViz and applying A* and Q-Learning algorithms the robot finds its path to move from its initial state to its goal state on a generated map.

    DOI: 10.1115/isfa2024-141112

    researchmap

  • Surrogate-Assisted Evolutionary Computation for Distributed Simulation-Based Inventory Optimization in Serial Supply Chains 査読

    Ziang Liu, Tatsushi Nishi

    2024 IEEE Congress on Evolutionary Computation (CEC)   104   1 - 7   2024年6月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    添付ファイル: main.pdf

    DOI: 10.1109/cec60901.2024.10612189

    researchmap

  • Data-Driven Scheduling of Cellular Manufacturing Systems Using Process Mining with Petri Nets 査読

    Hidefumi Kurakado, Tatsushi Nishi, Ziang Liu

    IFIP Advances in Information and Communication Technology   2024年

     詳細を見る

    記述言語:英語  

    DOI: 10.1007/978-3-031-65894-5_2

    researchmap

  • Distributed optimization algorithm for multi-agent optimization problems using consensus control 査読

    Tatsushi NISHI, Naoto DEBUCHI, Ziang LIU

    Journal of Advanced Mechanical Design, Systems, and Manufacturing   2024年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1299/jamdsm.2024jamdsm0073

    researchmap

  • Resource constrained project scheduling formulation for optimization of product input sequence and workforce scheduling for multi-stage multi-product cellular production lines 査読

    Tatsushi NISHI, Hidefumi KURAKADO, Ziang LIU

    Journal of Advanced Mechanical Design, Systems, and Manufacturing   2024年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1299/jamdsm.2024jamdsm0062

    researchmap

  • Three-Dimensional Bin Packing Problems with the Operating Time of a Robot Manipulator 査読

    Naoya Mikyu, Tatsushi Nishi, Ziang Liu, Tomofumi Fujiwara

    IFIP Advances in Information and Communication Technology   2024年

     詳細を見る

    記述言語:英語  

    DOI: 10.1007/978-3-031-65894-5_4

    researchmap

  • Motion Planning of Industrial Robot by Data-Driven Optimization Using Petri Nets 査読

    Masaya Shiraga, Tatsushi Nishi, Ziang Liu, Tomofumi Fujiwara

    2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)   2023年12月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/ieem58616.2023.10406354

    researchmap

  • Deep Reinforcement Learning for Perishable Inventory Optimization Problem 査読

    Yusuke Nomura, Ziang Liu, Tatsushi Nishi

    2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)   2023年12月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/ieem58616.2023.10406759

    researchmap

  • Multi-Objective Optimization for Three-Dimensional Packing Problem Using the Sequence-Triple Representation with Robot Motion Planning 査読

    Ziang Liu, Shun Ito, Tomoya Kawabe, Tatsushi Nishi, Tomofumi Fujiwara

    2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)   2023年12月

     詳細を見る

    担当区分:筆頭著者, 最終著者   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/ieem58616.2023.10406772

    researchmap

  • Evolutionary-Game-Theory-Based Epidemiological Model for Prediction of Infections with Application to Demand Forecasting in Pharmaceutical Inventory Management Problems 査読

    Yu Nishihata, Ziang Liu, Tatsushi Nishi

    Applied Sciences   2023年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.3390/app132011308

    researchmap

  • Robust Optimization for Bilevel Production Planning Problems under Customer's Uncertainties 査読

    Jun Nakao, Tatsushi Nishi, Ziang Liu

    2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC)   2023年10月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/smc53992.2023.10394540

    researchmap

  • Surrogate-Assisted Evolutionary Optimization for Perishable Inventory Management in Multi-Echelon Distribution Systems 査読

    Ziang Liu, Tatsushi Nishi

    Expert Systems with Applications   238   122179 - 122179   2023年10月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier {BV}  

    Simulation is widely used for analyzing supply chains with complex structures and stochastic nature. However, optimizing supply chain simulation models is usually computationally expensive. This study proposes a surrogate-assisted evolutionary optimization approach to optimize the inventory policies in multi-echelon distribution systems for perishable items under a limited number of evaluations. The random forest algorithm is used to build the surrogate model for a faster estimation of the performance of the inventory policies. A co-evolutionary differential evolution algorithm is proposed to simultaneously evolve the population through multiple searching strategies. The generated solutions are estimated by the low-cost surrogate model to select the promising solutions, which will be evaluated by the inventory model. Moreover, this study also integrates the surrogate model into two classic metaheuristic algorithms, particle swarm optimization and differential evolution. Also, a new performance indicator is proposed to examine the efficiency of the surrogate model in evolutionary computation. Two case studies are used to investigate the performance of the proposed algorithms. The experimental results show that both particle swarm optimization and differential evolution exhibit performance improvements exceeding 55% by using surrogate models under the limited number of function evaluations. Furthermore, the surrogate model reduces computational time for both algorithms by over 34% to achieve equivalent objective values. Finally, the proposed co-evolutionary differential evolution algorithm is compared with 12 algorithms, and the results show that the proposed algorithm consistently outperforms them. These findings confirm the usefulness of the surrogate model in evolutionary algorithms and the effectiveness of the proposed co-evolutionary strategy for solving perishable inventory problems.

    DOI: 10.1016/j.eswa.2023.122179

    Scopus

    researchmap

  • A Novel Sampling-Based Optimal Motion Planning Algorithm for Energy-Efficient Robotic Pick and Place 査読

    Md Moktadir Alam, Tatsushi Nishi, Ziang Liu, Tomofumi Fujiwara

    Energies   16 ( 19 )   2023年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Energy usage in robotic applications is rapidly increasing as industrial robot installations grow. This research introduces a novel approach, using the rapidly exploring random tree (RRT)-based scheme for optimizing the robot’s motion planning and minimizing energy consumption. Sampling-based algorithms for path planning, such as RRT and its many other variants, are widely used in robotic motion planning due to their efficiency in solving complex high-dimensional problems efficiently. However, standard versions of these algorithms cannot guarantee that the generated trajectories are always optimum and mostly ignore the energy consumption in robotic applications. This paper proposes an energy-efficient industrial robotics motion planning approach using the novel flight cost-based RRT (FC-RRT*) algorithm in pick-and-place operation to generate nodes in a predetermined direction and then calculate energy consumption using the circle point method. After optimizing the motion trajectory, power consumption is computed for the rotary axes of a six degree of freedom (6DOF) serial type of industrial robot using the work–energy hypothesis for the rotational motion of a rigid body. The results are compared to the traditional RRT and RRT* (RRT-star) algorithm as well as the kinematic solutions. The experimental results of axis indexing tests indicate that by employing the sampling-based FC-RRT* algorithm, the robot joints consume less energy (1.6% to 16.5% less) compared to both the kinematic solution and the conventional RRT* algorithm.

    DOI: 10.3390/en16196910

    Scopus

    researchmap

  • Inventory Control with Lateral Transshipment Using Proximal Policy Optimization 査読

    Ziang Liu, Tatsushi Nishi

    2023 5th International Conference on Data-driven Optimization of Complex Systems (DOCS)   2023年9月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/docs60977.2023.10294547

    researchmap

  • Collision-Free Motion Planning for Multiple Robot Arms by Combining Deep Q-Network and Graph Search Algorithm 査読

    Kengo Hara, Tatsushi Nishi, Ziang Liu, Tomofumi Fujiwara

    2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)   2023年8月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    DOI: 10.1109/case56687.2023.10260329

    researchmap

  • Data-driven evolutionary computation for service constrained inventory optimization in multi-echelon supply chains 査読

    Ziang Liu, Tatsushi Nishi

    Complex & Intelligent Systems   2023年8月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(学術雑誌)  

    Supply chain digital twin has emerged as a powerful tool in studying the behavior of an actual supply chain. However, most studies in the field of supply chain digital twin have only focused on what-if analysis that compares several different scenarios. This study proposes a data-driven evolutionary algorithm to efficiently solve the service constrained inventory optimization problem using historical data that generated by supply chain digital twins. The objective is to minimize the total costs while satisfying the required service level for a supply chain. The random forest algorithm is used to build surrogate models which can be used to estimate the total costs and service level in a supply chain. The surrogate models are optimized by an ensemble approach-based differential evolution algorithm which can adaptively use different search strategies to improve the performance during the computation process. A three-echelon supply chain digital twin on the geographic information system (GIS) map in real-time is used to examine the efficiency of the proposed method. The experimental results indicate that the data-driven evolutionary algorithm can reduce the total costs and maintain the required service level. The finding suggests that our proposed method can learn from the historical data and generate better inventory policies for a supply chain digital twin.

    DOI: 10.1007/s40747-023-01179-0

    Scopus

    researchmap

  • Flexible Route Planning for Multiple Mobile Robots by Combining Q–Learning and Graph Search Algorithm 査読

    Tomoya Kawabe, Tatsushi Nishi, Ziang Liu

    Applied Sciences   13 ( 3 )   2023年1月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The use of multiple mobile robots has grown significantly over the past few years in logistics, manufacturing and public services. Conflict–free route planning is one of the major research challenges for such mobile robots. Optimization methods such as graph search algorithms are used extensively to solve route planning problems. Those methods can assure the quality of solutions, however, they are not flexible to deal with unexpected situations. In this article, we propose a flexible route planning method that combines the reinforcement learning algorithm and a graph search algorithm for conflict–free route planning problems for multiple robots. In the proposed method, Q–learning, a reinforcement algorithm, is applied to avoid collisions using off–line learning with a limited state space to reduce the total learning time. Each vehicle independently finds the shortest route using the A* algorithm, and Q–learning is used to avoid collisions. The effectiveness of the proposed method is examined by comparing it with conventional methods in terms of computation time and the quality of solutions. Computational results show that for dynamic transportation problems, the proposed method can generate the solutions with approximately 10% of the computation time compared to the conventional Q–learning approach. We found that the required computation time is linearly increased with respect to the number of vehicles and nodes in the problems.

    DOI: 10.3390/app13031879

    Scopus

    researchmap

  • Simulation-Based Optimization Using Virtual Supply Chain Structured by the Configuration Platform 査読

    Ziang Liu, Reimon Shirakashi, Ryuichi Kamiebisu, Tatsushi Nishi, Michiko Matsuda

    IFAC-PapersOnLine   2023年

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)  

    DOI: 10.1016/j.ifacol.2023.10.1145

    researchmap

  • A Combined Deep Q-Network and Graph Search for Three Dimensional Route Planning Problems for Multiple Mobile Robots 査読

    Konosuke Fukushima, Tatsushi Nishi, Ziang Liu

    IEEE International Conference on Automation Science and Engineering   2023-August   1 - 6   2023年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    In recent years, automated multiple mobile robots are introduced for transporting loads and inspecting final products in factories to reduce the burden of human labor shortage. Mobile robots are required to develop automated systems that can make decisions as flexibly like human operators. Most conventional route planning problems for mobile robots have been utilizing either, optimization methods or learning methods. However, those conventional methods have a difficulty in applying it to the conflict-free route planning problems with a large number of states with three dimensional environment. We propose a method that combines deep reinforcement learning and graph search methods. In the proposed method, the routing is firstly determined by a graph search algorithm, and Deep Q-Network (DQN). A deep reinforcement learning method is used to avoid collisions. A route planning problem in a three dimensional environment is successfully solved by using DQN that can process multi dimensional states. The proposed method is also applied to the multiple drones route planning problem. The performance of the proposed method is compared with that of the optimization methods. As a result, it was found that a near optimal route planning was obtained in approximately 6% of the computation time required to find the optimal solution.

    DOI: 10.1109/CASE56687.2023.10260638

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/case/case2023.html#FukushimaNL23

  • Symbolic Sequence Optimization Approach for Task and Motion Planning of Robot Manipulators. 査読

    Tomoya Kawabe, Tatsushi Nishi, Ziang Liu 0004, Tomofumi Fujiwara

    CASE   1 - 6   2023年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/CASE56687.2023.10260452

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/case/case2023.html#KawabeNLF23

  • Optimal Motion Planning and Layout Design in Robotic Cellular Manufacturing Systems 査読

    Tomoya Kawabe, Ziang Liu, Tatsushi Nishi, Md Moktadir Alam, Tomofumi Fujiwara

    Proceedings of 2022 IEEE International Conference on Industrial Engineering and Engineering Management   2022-December   1541 - 1545   2022年12月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/IEEM55944.2022.9989566

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/ieem/ieem2022.html#KawabeLNAF22

  • Epidemiological Model of COVID-19 based on Evolutionary Game Theory: Considering the Viral Mutations 査読

    Yu Nishihata, Ziang Liu, Tatsushi Nishi

    Proceedings of 2022 IEEE International Conference on Industrial Engineering and Engineering Management   2022-December   686 - 690   2022年12月

     詳細を見る

    担当区分:責任著者   掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/IEEM55944.2022.9989989

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/ieem/ieem2022.html#NishihataLN22

  • Decision Support System for Selecting Robot Systems for Pick-and-place Operation of Robot Manipulator 査読

    Yushi Oyama, Tatsushi Nishi, Ziang Liu, Md, Moktadir Alam, Tomofumi Fujiwara

    Proceedings of 2022 IEEE International Conference on Industrial Engineering and Engineering Management   2022-December   530 - 534   2022年12月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/IEEM55944.2022.9989780

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/ieem/ieem2022.html#OyamaNLAF22

  • Automatic Generation of Optimization Model using Process Mining and Petri Nets for Optimal Motion Planning of 6-DOF Manipulators 査読

    Takuma Bando, Tatsushi Nishi, Md Moktadir Alam, Ziang Liu, Tomofumi Fujiwara

    Proceedings of 2022 IEEE International Conference on Intelligent Robots and Systems   2022-October   11767 - 11772   2022年12月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    DOI: 10.1109/IROS47612.2022.9982201

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/iros/iros2022.html#BandoNA0F22

  • Machine Learning and Inverse Optimization for Estimation of Weighting Factors in Multi-Objective Production Scheduling Problems 査読

    Hidetoshi Togo, Kohei Asanuma, Tatsushi Nishi, Ziang Liu

    Applied Sciences   12 ( 19 )   2022年9月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    In recent years, scheduling optimization has been utilized in production systems. To construct a suitable mathematical model of a production scheduling problem, modeling techniques that can automatically select an appropriate objective function from historical data are necessary. This paper presents two methods to estimate weighting factors of the objective function in the scheduling problem from historical data, given the information of operation time and setup costs. We propose a machine learning-based method, and an inverse optimization-based method using the input/output data of the scheduling problems when the weighting factors of the objective function are unknown. These two methods are applied to a multi-objective parallel machine scheduling problem and a real-world chemical batch plant scheduling problem. The results of the estimation accuracy evaluation show that the proposed methods for estimating the weighting factors of the objective function are effective.

    DOI: 10.3390/app12199472

    Scopus

    researchmap

  • Energy-Efficient Robot Configuration and Motion Planning Using Genetic Algorithm and Particle Swarm Optimization 査読

    Kazuki Nonoyama, Ziang Liu, Tomofumi Fujiwara, Md Moktadir Alam, Tatsushi Nishi

    Energies   15 ( 6 )   2074 - 2074   2022年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:{MDPI} {AG}  

    The implementation of Industry 5.0 necessitates a decrease in the energy consumption of industrial robots. This research investigates energy optimization for optimal motion planning for a dual-arm industrial robot. The objective function for the energy minimization problem is stated based on the execution time and total energy consumption of the robot arm configurations in its workspace for pick-and-place operation. Firstly, the PID controller is being used to achieve the optimal parameters. The parameters of PID are then fine-tuned using metaheuristic algorithms such as Genetic Algorithms and Particle Swarm Optimization methods to create a more precise robot motion trajectory, resulting in an energy-efficient robot configuration. The results for different robot configurations were compared with both motion planning algorithms, which shows better compatibility in terms of both execution time and energy efficiency. The feasibility of the algorithms is demonstrated by conducting experiments on a dual-arm robot, named as duAro. In terms of energy efficiency, the results show that dual-arm motions can save more energy than single-arm motions for an industrial robot. Furthermore, combining the robot configuration problem with metaheuristic approaches saves energy consumption and robot execution time when compared to motion planning with PID controllers alone.

    DOI: 10.3390/en15062074

    Web of Science

    Scopus

    researchmap

  • Distributed Optimization for Supply Chain Planning for Multiple Companies Using Subgradient Method and Consensus Control 査読

    Naoto Debuchi, Tatsushi Nishi, Ziang Liu

    IFIP Advances in Information and Communication Technology   664 IFIP   216 - 223   2022年

     詳細を見る

    掲載種別:論文集(書籍)内論文   出版者・発行元:Springer Nature Switzerland  

    With recent liberalization and enlarging of trade among companies, it is necessary to generate an optimal supply chain planning by cooperation and coordination of supply chain planning for multiple companies without sharing sensitive information such as costs and profit among competitive companies. A distributed optimization can solve the optimization problems with limited information. A distributed optimization method using subgradient and consensus control methods has been proposed to solve continuous optimization problems. However, conventional distributed optimization methods using subgradient and consensus control methods cannot be applied to the supply chain planning for multiple companies including 0–1 decision variables. In this paper, we propose a new distributed optimization method for solving the supply chain planning problem for multiple companies by subgradient method and consensus control. By branching the cases 0–1 variables, an optimal solution can be obtained by the enumeration. A method to reduce the computational effort has been developed in the proposed method. From numerical experiments, it is confirmed that we can obtain an optimal solution by the reduction of the computation.

    DOI: 10.1007/978-3-031-16411-8_27

    Scopus

    researchmap

  • Use cases of the platform for structuring a smart supply chain in discrete manufacturing 査読

    Ryuichi Kamiebisu, Taiki Saso, Jun Nakao, Ziang Liu, Tatsushi Nishi, Michiko Matsuda

    Procedia CIRP   107   687 - 692   2022年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier {BV}  

    It has been proposed a method of constructing a supply chain in the cyber space as a multi-agent system by linking enterprise agents which is generated from each model of the component enterprise in a supply chain, by authors. Based on the proposed method, a prototype of the CPS platform for smart supply chain configuration has been implemented for discrete manufacturing. By using this platform, it is possible to register models of retailer, manufacturer and supplier enterprises with different behavior types, as an enterprise e-catalog. Furthermore, it is also possible to configure various virtual supply chains by changing the combination of enterprises. On the configured supply chain, it can simulate the behavior from the viewpoints of each enterprise and an entire supply chain. Several use cases of the platform have been executed. These use cases and their considerations are provided useful findings towards construction of a further practical CPS platform for a smart supply chain configuration.

    DOI: 10.1016/j.procir.2022.05.046

    Scopus

    researchmap

  • Adaptive heterogeneous particle swarm optimization with comprehensive learning strategy 査読

    Ziang LIU, Tatsushi NISHI

    Journal of Advanced Mechanical Design, Systems, and Manufacturing   16 ( 4 )   JAMDSM0035 - JAMDSM0035   2022年

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Japan Society of Mechanical Engineers  

    This paper proposes an adaptive heterogeneous particle swarm optimization with a comprehensive learning strategy for solving single-objective constrained optimization problems. In this algorithm, particles can use an exploration strategy and an exploitation strategy to update their positions. The historical success rates of the two strategies are used to adaptively control the adoption rates of strategies in the next iteration. The search strategy in the canonical particle swarm optimization algorithm is based on elite solutions. As a result, when no particles can discover better solutions for several generations, this algorithm is likely to fall into stagnation. To respond to this challenge, a new strategy is proposed to explore the neighbors of the elite solutions in this study. Finally, a constraint handling method is equipped to the proposed algorithm to make it be able to solve constrained optimization problems. The proposed algorithm is compared with the canonical particle swarm optimization, differential evolution, and several recently proposed algorithms on the benchmark test suite. The Wilcoxon signed-rank test results show that the proposed algorithm is significantly better on most of the benchmark problems compared with the competitors. The proposed algorithm is also applied to solve two real-world mechanical engineering problems. The experimental results show that the proposed algorithm performs consistently well on these problems.

    DOI: 10.1299/jamdsm.2022jamdsm0035

    Scopus

    researchmap

  • Strategy Dynamics Particle Swarm Optimizer 査読

    Ziang Liu, Tatsushi Nishi

    Information Sciences   582   665 - 703   2021年10月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier BV  

    This paper proposes a particle swarm optimization with strategy dynamics (SDPSO) to solve single-objective optimization problems. SDPSO consists of four PSO search strategies. Evolutionary game theory is introduced to control the population state. In evolutionary game theory, through the interaction between players, better strategies will eventually dominate among the players. By extending this idea to PSO, a selection mechanism and a mutation mechanism are proposed. By using the selection mechanism, the adoption probability of the high payoff strategies will increase. The mutation mechanism can examine the stability of the incumbent strategy to evolutionary pressures. The performance of SDPSO is compared with 14 algorithms on the CEC 2014 test suite. The results show that SDPSO has the highest rank. SDPSO is applied to solve a real-world problem. SDPSO can find the best mean results comparing with 4 algorithms. The findings show that the proposed evolutionary game theory-based framework can adaptively control the population state. This study proposes a new application of evolutionary game theory to the design of swarm intelligence and contributes to a better understanding of the usefulness of the evolutionary game theory in the optimization method. The source codes of SDPSO are available at https://github.com/zi-ang-liu/SDPSO.

    DOI: 10.1016/j.ins.2021.10.028

    Scopus

    researchmap

  • Use of virtual supply chain constructed by cyber-physical systems concept 査読

    Michiko Matsuda, Tatsushi Nishi, Ryuichi Kamiebisu, Mao Hasegawa, Roghayyeh Alizadeh, Ziang Liu

    Procedia CIRP   104   351 - 356   2021年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Elsevier {BV}  

    This research project aims to provide a common methodology for constructing a virtual supply chain as a field to determine more appropriate action for each component enterprise. Describing method for an enterprise model including behavior description and sharing them as an enterprise e-catalog have been proposed. In this paper, the agent program codes for each enterprise are automatically generated from the retailer, manufacturer and supplier models selected from the e-catalogs, and the virtual supply chain is configured as a multi-agent system by connecting them. Test simulations are performed to verify whether this virtual supply chain operates correctly and produces appropriate results.

    DOI: 10.1016/j.procir.2021.11.059

    Scopus

    researchmap

  • Multipopulation Ensemble Particle Swarm Optimizer for Engineering Design Problems 査読

    Ziang Liu, Tatsushi Nishi

    MATHEMATICAL PROBLEMS IN ENGINEERING   2020   2020年11月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:HINDAWI LTD  

    Particle swarm optimization (PSO) is an efficient optimization algorithm and has been applied to solve various real-world problems. However, the performance of PSO on a specific problem highly depends on the velocity updating strategy. For a real-world engineering problem, the function landscapes are usually very complex and problem-specific knowledge is sometimes unavailable. To respond to this challenge, we propose a multipopulation ensemble particle swarm optimizer (MPEPSO). The proposed algorithm consists of three existing efficient and simple PSO searching strategies. The particles are divided into four subpopulations including three indicator subpopulations and one reward subpopulation. Particles in the three indicator subpopulations update their velocities by different strategies. During every learning period, the improved function values of the three strategies are recorded. At the end of a learning period, the reward subpopulation is allocated to the best-performed strategy. Therefore, the appropriate PSO searching strategy can have more computational expense. The performance of MPEPSO is evaluated by the CEC 2014 test suite and compared with six other efficient PSO variants. These results suggest that MPEPSO ranks the first among these algorithms. Moreover, MPEPSO is applied to solve four engineering design problems. The results show the advantages of MPEPSO. The MATLAB source codes of MPEPSO are available at .

    DOI: 10.1155/2020/1450985

    Web of Science

    Scopus

    researchmap

  • Automatic Construction of Virtual Supply Chain as Multi-Agent System Using Enterprise E-Catalogues 査読

    Tatsushi Nishi, Michiko Matsuda, Mao Hasegawa, Roghayyeh Alizadeh, Ziang Liu, Takuto Terunuma

    INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY   14 ( 5 )   713 - 722   2020年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:FUJI TECHNOLOGY PRESS LTD  

    In Industry 4.0, a network of enterprises and factories is constructed collaboratively and dynamically according to the cyber physical system (CPS) paradigm. It is necessary to build smart supply chains according to this concept. A network of component enterprises in a supply chain would be modeled as a virtual supply chain in the cyber world. From the viewpoint of Industry 4.0, virtualizing a supply chain is the foundation for constructing a CPS for a supply chain. The virtualization of a supply chain makes it easier for companies to study their integrating and expanding opportunities. By using this CPS, comprehensive and autonomous optimization of the supply chain can be achieved. This virtual supply chain can be used to simulate the planning phase with negotiation, as well as the production phase. In this paper, instead of specific mathematical modeling for each supply chain, a general configuration method of a virtual supply chain is proposed. The configuration method of a supply chain model is proposed as a virtual supply chain using enterprise e-catalogues. A virtual supply chain is constructed as a multi-agent system, which is connections of software agents that are automatically created from each selected enterprise model in the e-catalogues. Three types of component enterprise models are provided: manufacturer model, part/material supplier model, and retailer model. Modeling templates for these three types of enterprises are prepared, and each template is a nominal model in terms of enterprise's behavior. Specific component-enterprise models are prepared by filling the appropriate template. Each component enterprise agent is implemented using the enterprise model selected from the catalogues. Manufacturer, retailer, and supplier e-catalogues, as well as an automatic construction system of a virtual supply chain, are implemented. Methods for developing templates for the manufacturer, retailer and supplier were provided, and the construction system for specific enterprise models (as e-catalogues) is implemented as a trial.

    DOI: 10.20965/ijat.2020.p0713

    Web of Science

    Scopus

    researchmap

  • Analyzing just-in-time purchasing strategy in supply chains using an evolutionary game approach 査読

    Ziang Liu, Tatsushi Nishi

    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING   14 ( 5 )   2020年

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:JAPAN SOC MECHANICAL ENGINEERS  

    Many researchers have focused on the comparison between the JIT model and the EOQ model. However, few of them studied this problem from an evolutionary perspective. In this paper, a JIT purchasing with the single-setup-multi-delivery model is introduced to compare the total costs of the JIT model and the EOQ model. Also, we extend the classical JIT-EOQ models to a two-echelon supply chain which consists of one manufacturer and one supplier. Considering the bounded rationality of players and the quickly changing market, an evolutionary game model is proposed to discuss how these factors impact the strategy selection of the companies. And the evolutionarily stable strategy of the proposed model is analyzed. Based on the analysis, we derive the conditions when the supply chain system will choose the JIT strategy and propose a contract method to ensure that the system converges to the JIT strategy. Several numerical experiments are provided to observe the JIT and EOQ purchasing strategy selection of the manufacturer and the supplier. The results suggest that, in most situations, the JIT strategy is preferred. However, the EOQ strategy remains competitive when the supplier's inventory cost level is high or the demand is low. Supply chain members can choose the EOQ strategy even when the JIT strategy is more profitable. In some situations, strategy selection also depends on the market situation. The JIT policy with low investment costs and high supply chain performance is preferred for the companies.

    DOI: 10.1299/jamdsm.2020jamdsm0070

    Web of Science

    Scopus

    researchmap

  • Government Regulations on Closed-Loop Supply Chain with Evolutionarily Stable Strategy 査読

    Ziang Liu, Tatsushi Nishi

    SUSTAINABILITY   11 ( 18 )   5030 - 5030   2019年9月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:MDPI  

    The government plays a critical role in the promotion of recycling strategy among supply chain members. The purpose of this study is to investigate the optimal government policies on closed-loop supply chains and how these policies impact the market demand and the returning strategies of manufacturers and retailers. This paper presents a design of closed-loop supply chains under government regulation by considering a novel three-stage game theoretic model. Firstly, Stackelberg models are adopted to describe the one-shot game between the manufacturer and the retailer in a local market. Secondly, based on the Stackelberg equilibriums, a repeated and dynamic population game is developed. Thirdly, the government analyzes the population game to find the optimal tax and subsidy policies in the whole market. To solve the proposed model, the idea of backward induction is adopted. The results suggest that, by collecting tax and allocating subsidy, the government can influence the market demands and return rates. The centralized supply chain structure is always preferred for the government and the market. The government prefers to allocate subsidy to low-pollution, low-profit remanufactured products. The environmental attention of the government affects the subsidy policy.

    DOI: 10.3390/su11185030

    Web of Science

    Scopus

    researchmap

  • An Evolutionary Game Model in Closed-Loop Supply Chain 査読

    Ziang Liu, Tatsushi Nishi

    2019 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM)   896 - 900   2019年

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:IEEE  

    An evolutionary game model is investigated to study the stability conditions for four different reverse channel structures in the closed-loop supply chain. The proper channel structures are analyzed for the given conditions. We consider one centrally coordinated model and three decentralized models that consist of manufacturer collection, retailer collection, and third-party collection model. The profit function is maximized for the centralized model and Stackelberg equilibriums are obtained for the other three decentralized models. Using the optimal profit functions, an evolutionary game model is proposed. On the basis of the stable conditions, we propose a profit sharing allocation method that can make the centralized supply chain model stable from a long-term view. Also, several numerical experiments are conducted. The results show that the coordinated channel structure is preferable over other structures with a proper profit sharing allocation method.

    DOI: 10.1109/IEEM44572.2019.8978741

    Web of Science

    Scopus

    researchmap

    その他リンク: https://dblp.uni-trier.de/db/conf/ieem/ieem2019.html#LiuN19

▼全件表示

MISC

▼全件表示

講演・口頭発表等

受賞

  • Distinguished Young IEOM Researcher Award

    2024年9月   IEOM Society International  

    Ziang Liu

     詳細を見る

  • Best Paper Award

    2019年12月   IEEE International Conference on Industrial Engineering and Engineering Management  

    Ziang Liu, Tatsushi Nishi

     詳細を見る

    受賞区分:国際学会・会議・シンポジウム等の賞  受賞国:マカオ(澳門)特別行政区

    researchmap

共同研究・競争的資金等の研究

  • 深層強化学習を用いた在庫管理のための説明可能な意思決定支援システム

    研究課題/領域番号:23K13514  2023年04月 - 2026年03月

    日本学術振興会  科学研究費助成事業 若手研究  若手研究

    劉 子昂

      詳細を見る

    配分額:3640000円 ( 直接経費:2800000円 、 間接経費:840000円 )

    researchmap

  • 在庫数最適化アルゴリズムの構築と基幹システム実装に向けた研究

    2023年04月 - 2024年03月

    劉 子昂, 西 竜志

      詳細を見る

    担当区分:研究代表者 

    researchmap

  • 動的モデル構成基盤によるサプライチェーンを対象としたデータ駆動最適化基盤の構築

    研究課題/領域番号:22H01714  2022年04月 - 2026年03月

    日本学術振興会  科学研究費助成事業 基盤研究(B)  基盤研究(B)

    西 竜志, 劉 子昂

      詳細を見る

    配分額:17160000円 ( 直接経費:13200000円 、 間接経費:3960000円 )

    researchmap

  • サプライチェーンにおけるデータ駆動型進化計算手法の開発

    2022年04月 - 2023年03月

    ウエスコ学術振興財団  研究費助成 

      詳細を見る

    担当区分:研究代表者 

    researchmap

 

担当授業科目

  • システム工学で何ができるか (2024年度) 第2学期  - 金1~2

  • システム工学演習 (2024年度) 第3学期  - 火8

  • システム工学総合Ⅱ (2024年度) 3・4学期  - 火5~7

  • システム工学総合Ⅱ (2024年度) 3・4学期  - 火5~7

  • プログラミング (2024年度) 3・4学期  - 水1~2

  • プログラミング (2024年度) 3・4学期  - 水1~2

  • プログラミング1 (2024年度) 第3学期  - 水1~2

  • プログラミング2 (2024年度) 第4学期  - 水1~2

  • ロボティクス・知能システム工学演習 1 (2024年度) 前期  - その他

  • ロボティクス・知能システム工学演習 2 (2024年度) 後期  - その他

  • 機械システム工学演習1 (2024年度) 前期  - その他

  • 機械システム工学演習2 (2024年度) 後期  - その他

  • 機械工作実習Ⅰ (2024年度) 1・2学期  - 水5~8

  • 機械工作実習Ⅰ (2024年度) 1・2学期  - 木5~8

  • 機械工作実習I (2024年度) 1・2学期  - 水5~8

  • 機械工作実習I (2024年度) 1・2学期  - 木5~8

  • 特別研究 (2024年度) その他  - その他

  • プログラミング (2023年度) 3・4学期  - 水1~2

  • プログラミング (2023年度) 3・4学期  - 水1~2

  • プログラミング1 (2023年度) 第3学期  - 水1~2

  • プログラミング2 (2023年度) 第4学期  - 水1~2

  • ロボティクス・知能システム工学演習 1 (2023年度) 前期  - その他

  • ロボティクス・知能システム工学演習 2 (2023年度) 後期  - その他

  • 機械システム工学演習1 (2023年度) 前期  - その他

  • 機械工作実習Ⅰ (2023年度) 1・2学期  - 水5~8

  • 機械工作実習Ⅰ (2023年度) 1・2学期  - 木5~8

  • 機械工作実習I (2023年度) 1・2学期  - 水5~8

  • 機械工作実習I (2023年度) 1・2学期  - 木5~8

  • 特別研究 (2023年度) その他  - その他

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング (2022年度) 3・4学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング1 (2022年度) 第3学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • プログラミング2 (2022年度) 第4学期  - 水1~2

  • 機械工作実習Ⅰ (2022年度) 1・2学期  - 水5~8

  • 機械工作実習Ⅰ (2022年度) 1・2学期  - 木5~8

  • 機械工作実習I (2022年度) 1・2学期  - 水5~8

  • 機械工作実習I (2022年度) 1・2学期  - 木5~8

  • プログラミング (2021年度) 3・4学期  - 水1,水2

  • プログラミング (2021年度) 3・4学期  - 水1,水2

  • プログラミング1 (2021年度) 第3学期  - 水1,水2

  • プログラミング2 (2021年度) 第4学期  - 水1,水2

  • 機械工作実習 (2021年度) 1~4学期  - [第1学期]木5,木6,木7,木8, [第2学期]木5,木6,木7,木8, [第3学期]水5,水6,水7,水8, [第4学期]水5,水6,水7,水8

  • 機械工作実習I (2021年度) 1・2学期  - 水5,水6,水7,水8

  • 機械工作実習I (2021年度) 1・2学期  - 木5,木6,木7,木8

▼全件表示

 

社会貢献活動

▼全件表示