2021/07/12 更新

写真a

ノガミ ヤスユキ
野上 保之
NOGAMI Yasuyuki
所属
自然科学学域 教授
職名
教授
ホームページ
外部リンク

学位

  • 博士(工学) ( 信州大学 )

研究キーワード

  • 暗号・セキュリティ

  • 情報理論

  • Intormation Security

  • Cryptography

  • Information Theory

研究分野

  • ものづくり技術(機械・電気電子・化学工学) / 通信工学

学歴

  • 信州大学   Graduate School, Division of Engineering  

    - 1999年

      詳細を見る

  • 信州大学    

    - 1999年

      詳細を見る

    国名: 日本国

    researchmap

  • 信州大学   Faculty of Engineering  

    - 1994年

      詳細を見る

  • 信州大学   工学部   電気電子工学科

    - 1994年

      詳細を見る

    国名: 日本国

    researchmap

経歴

  • - Professor,Graduate School of Natural Science and Technology,Okayama University

    2017年

      詳細を見る

  • - 岡山大学自然科学研究科 教授

    2017年

      詳細を見る

  • Associate Professor,Graduate School of Natural Science and Technology,Okayama University

    2010年 - 2017年

      詳細を見る

  • 岡山大学自然科学研究科 准教授

    2010年 - 2017年

      詳細を見る

所属学協会

 

書籍等出版物

  • 情報セキュリティ対策の要点

    コロナ社  2004年 

     詳細を見る

MISC

  • Uniform Binary Sequence Generated over Odd Characteristic Field

    8 ( 1 )   5 - 9   2018年3月

  • Uniform Binary Sequence Generated over Odd Characteristic Field

    8 ( 1 )   5 - 9   2018年3月

  • An Implementation of ECC with Twisted Montgomery Curve over 32nd Degree Tower Field on Arduino Uno

    Yuta Hashimoto, Md. Al-Amin Khandaker, Yuta Kodera, Taehwan Park, Takuya Kusaka, Howon Kim, Yasuyuki Nogami

    International Journal of Networking and Computing (IJNC)   8 ( 2 )   341 - 350   2018年

     詳細を見る

  • Highly Efficient GF(28) Inversion Circuit Based on Hybrid GF Arithmetic

    Rei Ueno, Naofumi Homma, Yasuyuki Nogami, Takafumi Aoki

    Journal of Cryptographic Engineering   2018年

     詳細を見る

  • An Efficient Hierarchical Multi-Authority Attribute Based Encryption Scheme for Profile Matching using a Fast Ate Pairing in Cloud Environment

    Balaji Chandrasekaran, Yasuyuki Nogami, Ramadoss Balakrishnan

    International Journal of Information and Electronics Engineering   2018年

     詳細を見る

  • Secure Data Communication using File Hierarchy Attribute Based Encryption in Wireless Body Area Network

    B. Chandrasekaran, R. Balakrishnan, Y. Nogami

    Journal of Communications Software and Systems   2018年

     詳細を見る

  • An Implementation of ECC with Twisted Montgomery Curve over 32nd Degree Tower Field on Arduino Uno

    Yuta Hashimoto, Md. Al-Amin Khandaker, Yuta Kodera, Taehwan Park, Takuya Kusaka, Howon Kim, Yasuyuki Nogami

    International Journal of Networking and Computing (IJNC)   8 ( 2 )   341 - 350   2018年

     詳細を見る

  • Highly Efficient GF(28) Inversion Circuit Based on Hybrid GF Arithmetic

    Rei Ueno, Naofumi Homma, Yasuyuki Nogami, Takafumi Aoki

    Journal of Cryptographic Engineering   2018年

     詳細を見る

  • An Efficient Hierarchical Multi-Authority Attribute Based Encryption Scheme for Profile Matching using a Fast Ate Pairing in Cloud Environment

    Balaji Chandrasekaran, Yasuyuki Nogami, Ramadoss Balakrishnan

    International Journal of Information and Electronics Engineering   2018年

     詳細を見る

  • Secure Data Communication using File Hierarchy Attribute Based Encryption in Wireless Body Area Network

    B. Chandrasekaran, R. Balakrishnan, Y. Nogami

    Journal of Communications Software and Systems   2018年

     詳細を見る

  • Interleaved sequences of geometric sequences binarized with legendre symbol of two types

    Kazuyoshi Tsuchiya, Yasuyuki Nogami, Satoshi Uehara

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E100A ( 12 )   2720 - 2727   2017年12月

     詳細を見る

    記述言語:英語   出版者・発行元:Institute of Electronics, Information and Communication, Engineers, IEICE  

    A pseudorandom number generator is widely used in cryptography. A cryptographic pseudorandom number generator is required to generate pseudorandom numbers which have good statistical properties as well as unpredictability. An m-sequence is a linear feedback shift register sequence with maximal period over a finite field. M-sequences have good statistical properties, however we must nonlinearize m-sequences for cryptographic purposes. A geometric sequence is a binary sequence given by applying a nonlinear feedforward function to an m-sequence. Nogami, Tada and Uehara proposed a geometric sequence whose nonlinear feedforward function is given by the Legendre symbol. They showed the geometric sequences have good properties for the period, periodic autocorrelation and linear complexity. However, the geometric sequences do not have the balance property. In this paper, we introduce geometric sequences of two types and show some properties of interleaved sequences of the geometric sequences of two types. These interleaved sequences have the balance property and double the period of the geometric sequences by the interleaved structure. Moreover, we show correlation properties and linear complexity of the interleaved sequences. A key of our observation is that the second type geometric sequence is the complement of the left shift of the first type geometric sequence by half-period positions.

    DOI: 10.1587/transfun.E100.A.2720

    Scopus

    researchmap

  • Long period sequences generated by the logistic map over finite fields with control parameter four

    Kazuyoshi Tsuchiya, Yasuyuki Nogami

    IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences   E100A ( 9 )   1816 - 1824   2017年9月

     詳細を見る

    記述言語:英語   出版者・発行元:Institute of Electronics, Information and Communication, Engineers, IEICE  

    Pseudorandom number generators have been widely used in Monte Carlo methods, communication systems, cryptography and so on. For cryptographic applications, pseudorandom number generators are required to generate sequences which have good statistical properties, long period and unpredictability. ADickson generator is a nonlinear congruential generator whose recurrence function is the Dickson polynomial. Aly and Winterhof obtained a lower bound on the linear complexity profile of a Dickson generator. Moreover Vasiga and Shallit studied the state diagram given by the Dickson polynomial of degree two. However, they do not specify sets of initial values which generate a long period sequence. In this paper, we show conditions for parameters and initial values to generate long period sequences, and asymptotic properties for periods by numerical experiments. We specify sets of initial values which generate a long period sequence. For suitable parameters, every element of this set occurs exactly once as a component of generating sequence in one period. In order to obtain sets of initial values, we consider a logistic generator proposed by Miyazaki, Araki, Uehara and Nogami, which is obtained from a Dickson generator of degree two with a linear transformation. Moreover, we remark on the linear complexity profile of the logistic generator. The sets of initial values are described by values of the Legendre symbol. The main idea is to introduce a structure of a hyperbola to the sets of initial values. Our results ensure that generating sequences of Dickson generator of degree two have long period. As a consequence, the Dickson generator of degree two has some good properties for cryptographic applications.

    DOI: 10.1587/transfun.E100.A.1816

    Scopus

    researchmap

  • Multi-Valued Sequences Generated by Power Residue Symbols over Odd Characteristic Fields

    Begum Nasima, Yasuyuki Nogami, Satoshi Uehara, Robert H. Moleros-Zaragoza

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E100A ( 4 )   922 - 929   2017年4月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper proposes a new approach for generating pseudo random multi-valued (including binary-valued) sequences. The approach uses a primitive polynomial over an odd characteristic prime field F-p, where p is an odd prime number. Then, for the maximum length sequence of vectors generated by the primitive polynomial, the trace function is used for mapping these vectors to scalars as elements in the prime field. Power residue symbol (Legendre symbol in binary case) is applied to translate the scalars to k-value scalars, where k is a prime factor of p-1. Finally, a pseudo random k-value sequence is obtained. Some important properties of the resulting multi-valued sequences are shown, such as their period, autocorrelation, and linear complexity together with their proofs and small examples.

    DOI: 10.1587/transfun.E100.A.922

    Web of Science

    researchmap

  • An Improvement of Scalar Multiplication by Skew Frobenius Map with Multi-Scalar Multiplication for KSS Curve.

    Md. Al-Amin Khandaker, Yasuyuki Nogami

    IEICE Transactions   100-A ( 9 )   1838 - 1845   2017年

  • A Comparative Study of Twist Property in KSS Curves of Embedding Degree 16 and 18 from the Implementation Perspective.

    Md. Al-Amin Khandaker, Taehwan Park, Yasuyuki Nogami, Howon Kim

    J. Inform. and Commun. Convergence Engineering   15 ( 2 )   97 - 103   2017年

  • Binary field multiplication on ARMv8

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    SECURITY AND COMMUNICATION NETWORKS   9 ( 13 )   2051 - 2058   2016年9月

     詳細を見る

    記述言語:英語   出版者・発行元:WILEY-HINDAWI  

    In this paper, we show efficient implementations of binary field multiplication over ARMv8. We exploit an advanced 64-bit polynomial multiplication (PMULL) supported by ARMv8 and conduct multiple levels of asymptotically faster Karatsuba multiplication for polynomial multiplication. Finally, our method completed binary field multiplication within 57 and 153 clock cycles for B-251 and B-571 cases, respectively. Proposed method improves the speed-performance by a factor of 4.5 times than previous techniques on same target platform. Copyright (c) 2016 John Wiley & Sons, Ltd.

    DOI: 10.1002/sec.1462

    Web of Science

    researchmap

  • Hybrid Montgomery Reduction

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS   15 ( 3 )   2016年7月

     詳細を見る

    記述言語:英語   出版者・発行元:ASSOC COMPUTING MACHINERY  

    In this article, we present a hybrid method to improve the performance of the Montgomery reduction by taking advantage of the Karatsuba technique. We divide the Montgomery reduction into two sub-parts, including one for the conventional Montgomery reduction and the other one for Karatsuba-aided multiplication. This approach reduces the multiplication complexity of n-limb Montgomery reduction from theta(n(2) + n) to asymptotic complexity theta(7n(2)/8 + n). Our practical implementation results over an 8-bit microcontroller also show performance enhancements by 11%.

    DOI: 10.1145/2890502

    Web of Science

    researchmap

  • Hybrid Montgomery Reduction

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS   15 ( 3 )   2016年7月

     詳細を見る

    記述言語:英語   出版者・発行元:ASSOC COMPUTING MACHINERY  

    In this article, we present a hybrid method to improve the performance of the Montgomery reduction by taking advantage of the Karatsuba technique. We divide the Montgomery reduction into two sub-parts, including one for the conventional Montgomery reduction and the other one for Karatsuba-aided multiplication. This approach reduces the multiplication complexity of n-limb Montgomery reduction from theta(n(2) + n) to asymptotic complexity theta(7n(2)/8 + n). Our practical implementation results over an 8-bit microcontroller also show performance enhancements by 11%.

    DOI: 10.1145/2890502

    Web of Science

    researchmap

  • Hybrid Montgomery Reduction

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS   15 ( 3 )   2016年7月

     詳細を見る

    記述言語:英語   出版者・発行元:ASSOC COMPUTING MACHINERY  

    In this article, we present a hybrid method to improve the performance of the Montgomery reduction by taking advantage of the Karatsuba technique. We divide the Montgomery reduction into two sub-parts, including one for the conventional Montgomery reduction and the other one for Karatsuba-aided multiplication. This approach reduces the multiplication complexity of n-limb Montgomery reduction from theta(n(2) + n) to asymptotic complexity theta(7n(2)/8 + n). Our practical implementation results over an 8-bit microcontroller also show performance enhancements by 11%.

    DOI: 10.1145/2890502

    Web of Science

    researchmap

  • FPGA Implementation of Various Elliptic Curve Pairings over Odd Characteristic Field with Non Supersingular Curves

    Yasuyuki Nogami, Hiroto Kagotani, Kengo Iokibe, Hiroyuki Miyatake, Takashi Narita

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E99D ( 4 )   805 - 815   2016年4月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    Pairing-based cryptography has realized a lot of innovative cryptographic applications such as attribute-based cryptography and semi homomorphic encryption. Pairing is a bilinear map constructed on a torsion group structure that is defined on a special class of elliptic curves, namely pairing-friendly curve. Pairing-friendly curves are roughly classified into supersingular and non supersingular curves. In these years, non supersingular pairing-friendly curves have been focused on from a security reason. Although non supersingular pairing-friendly curves have an ability to bridge various security levels with various parameter settings, most of software and hardware implementations tightly restrict them to achieve calculation efficiencies and avoid implementation difficulties. This paper shows an FPGA implementation that supports various parameter settings of pairings on non supersingular pairing-friendly curves for which Montgomery reduction, cyclic vector multiplication algorithm, projective coordinates, and Tate pairing have been combinatorially applied. Then, some experimental results with resource usages are shown.

    DOI: 10.1587/transinf.2015ICP0018

    Web of Science

    researchmap

  • Dynamic Job Scheduling Method Based on Expected Probability of Completion of Voting in Volunteer Computing

    Yuto Miyakoshi, Shinya Yasuda, Kan Watanabe, Masaru Fukushi, Yasuyuki Nogami

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E98D ( 12 )   2132 - 2140   2015年12月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper addresses the problem of job scheduling in volunteer computing (VC) systems where each computation job is replicated and allocated to multiple participants (workers) to remove incorrect results by a votingmechanism. In the job scheduling of VC, the number of workers to complete a job is an important factor for the system performance; however, it cannot be fixed because some of the workers may secede in real VC. This is the problem that existing methods have not considered in the job scheduling. We propose a dynamic job scheduling method which considers the expected probability of completion (EPC) for each job based on the probability of worker's secession. The key idea of the proposed method is to allocate jobs so that EPC is always greater than a specified value (SPC). By setting SPC as a reasonable value, the proposed method enables to complete jobs without excess allocation, which leads to the higher performance of VC systems. We assume in this paper that worker's secession probability follows Weibull-distribution which is known to reflect more practical situation. We derive parameters for the distribution using actual trace data and compare the performance of the proposed and the previous method under the Weibull-distribution model, as well as the previous constant probability model. Simulation results show that the performance of the proposed method is up to 5 times higher than that of the existing method especially when the time for completing jobs is restricted, while keeping the error rate lower than a required value.

    DOI: 10.1587/transinf.2015PAP0027

    Web of Science

    researchmap

  • Dynamic Job Scheduling Method Based on Expected Probability of Completion of Voting in Volunteer Computing

    Yuto Miyakoshi, Shinya Yasuda, Kan Watanabe, Masaru Fukushi, Yasuyuki Nogami

    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS   E98D ( 12 )   2132 - 2140   2015年12月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper addresses the problem of job scheduling in volunteer computing (VC) systems where each computation job is replicated and allocated to multiple participants (workers) to remove incorrect results by a votingmechanism. In the job scheduling of VC, the number of workers to complete a job is an important factor for the system performance; however, it cannot be fixed because some of the workers may secede in real VC. This is the problem that existing methods have not considered in the job scheduling. We propose a dynamic job scheduling method which considers the expected probability of completion (EPC) for each job based on the probability of worker's secession. The key idea of the proposed method is to allocate jobs so that EPC is always greater than a specified value (SPC). By setting SPC as a reasonable value, the proposed method enables to complete jobs without excess allocation, which leads to the higher performance of VC systems. We assume in this paper that worker's secession probability follows Weibull-distribution which is known to reflect more practical situation. We derive parameters for the distribution using actual trace data and compare the performance of the proposed and the previous method under the Weibull-distribution model, as well as the previous constant probability model. Simulation results show that the performance of the proposed method is up to 5 times higher than that of the existing method especially when the time for completing jobs is restricted, while keeping the error rate lower than a required value.

    DOI: 10.1587/transinf.2015PAP0027

    Web of Science

    researchmap

  • Montgomery multiplication and squaring for Optimal Prime Fields

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    COMPUTERS & SECURITY   52   276 - 291   2015年7月

     詳細を見る

    記述言語:英語   出版者・発行元:ELSEVIER ADVANCED TECHNOLOGY  

    Optimal Prime Fields (OPFs) are considered to be one of the best choices for lightweight elliptic curve cryptography implementations on resource-constraint embedded processors. In this paper, we revisit the efficient modular arithmetic over the special prime fields, and present improved implementations of modular multiplication and squaring for OPFs, called Optimal Prime Field Coarsely Integrated Operand Caching (OPF-CIOC) and Coarsely Integrated Sliding Block Doubling (OPF-CISBD) methods. The OPF-CIOC and OPF-CISBD methods follow the general ideas of (consecutive) operand caching and sliding block doubling techniques, respectively. The methods have been carefully optimized and redesigned for Montgomery multiplication and squaring in an integrated fashion. We then evaluate the practical performance of proposed methods on representative 8-bit AVR processor. Experimental results show that the proposed OPF-CIOC and OPF-CISBD methods outperform the previous best known results in ACNS'14 by a factor of 8% and 32%. Furthermore, our methods are implemented in a regular way which helps to reduce the leakage of side-channel information. (C) 2015 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.cose.2015.03.005

    Web of Science

    researchmap

  • Montgomery multiplication and squaring for Optimal Prime Fields

    Hwajeong Seo, Zhe Liu, Yasuyuki Nogami, Jongseok Choi, Howon Kim

    COMPUTERS & SECURITY   52   276 - 291   2015年7月

     詳細を見る

    記述言語:英語   出版者・発行元:ELSEVIER ADVANCED TECHNOLOGY  

    Optimal Prime Fields (OPFs) are considered to be one of the best choices for lightweight elliptic curve cryptography implementations on resource-constraint embedded processors. In this paper, we revisit the efficient modular arithmetic over the special prime fields, and present improved implementations of modular multiplication and squaring for OPFs, called Optimal Prime Field Coarsely Integrated Operand Caching (OPF-CIOC) and Coarsely Integrated Sliding Block Doubling (OPF-CISBD) methods. The OPF-CIOC and OPF-CISBD methods follow the general ideas of (consecutive) operand caching and sliding block doubling techniques, respectively. The methods have been carefully optimized and redesigned for Montgomery multiplication and squaring in an integrated fashion. We then evaluate the practical performance of proposed methods on representative 8-bit AVR processor. Experimental results show that the proposed OPF-CIOC and OPF-CISBD methods outperform the previous best known results in ACNS'14 by a factor of 8% and 32%. Furthermore, our methods are implemented in a regular way which helps to reduce the leakage of side-channel information. (C) 2015 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.cose.2015.03.005

    Web of Science

    researchmap

  • Associative Rational Points for Improving Random Walkswith Collision-based Attack on Elliptic Curve Discrete Logarithm Problem

    Yasuyuki Nogami, Thomas H. Austin

    International Journal of Computer and Information Technology   2015年

     詳細を見る

  • Associative Rational Points for Improving Random Walkswith Collision-based Attack on Elliptic Curve Discrete Logarithm Problem

    Yasuyuki Nogami, Thomas H. Austin

    International Journal of Computer and Information Technology   2015年

     詳細を見る

  • The power root calculation for the exponentiation inversion problem

    Taichi Sumo, Yasuyuki Nogami

    Journal of Next Generation Information Technology   4 ( 3 )   105 - 111   2013年5月

     詳細を見る

    記述言語:英語  

    To evaluate the security of pairing-based cryptography, it is also required to consider the pairing inversion problem. According to some previous works, the pairing inversion problem is solvable if exponentiation inversion (EI) problem is solved. This paper introduces an algorithm of power root calculation and the algorithm applies to EI problem.

    DOI: 10.4156/jnit.vol4.issue3.13

    Scopus

    researchmap

  • The Pollard's rho method with XTR group on G3 over Barreto-Naehrig curve

    Yusuke Takai, Kenta Nekado, Yasuyuki Nogami

    Journal of Next Generation Information Technology   4 ( 3 )   112 - 118   2013年5月

     詳細を見る

    記述言語:英語  

    Pollard's rho method is well-known as an efficient method for solving discrete logarithm problem (DLP). This paper adopts the DLP on the so-denoted G3 over Barreto-Naehrig curve, together with XTR group. Then, this paper shows this idea with the proposed algorithm, and the experimental computation time of solving the DLP is reduced by about 15%.

    DOI: 10.4156/jnit.vol4.issue3.14

    Scopus

    researchmap

  • Pseudo 8-Sparse Multiplication for Efficient Ate-based Pairing on Barreto-Naehrig Curve

    Yuki Mori, Shoichi Akagi, Yasuyuki Nogami, Masaaki Shirase

    Pairing2013   2013年

  • A Binarization of Geometric Sequences with Legendre Symbol and Its Autocorrelation

    Yasuyuki Nogami, Kazuki Tada, Satoshi Uehara

    IWSDA2013   2013年

  • A Smaller Final Exponentiation for Tate and Ate Pairings with Barreto-Naehrig Curve

    Yuki Kono, Taichi Sumo, Yasuyuki Nogami

    2013 16TH INTERNATIONAL CONFERENCE ON NETWORK-BASED INFORMATION SYSTEMS (NBIS 2013)   518 - 522   2013年

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE  

    This paper shows an approach for reducing the size of the exponent of final exponentiation with multiplying some extra terms. In the case of Tate and Ate pairings with Barreto-Naehrig curve whose embedding degree is 12, the exponent is reduced to (p(4) - p(2) + 1)/r, where p is the characteristic of the base field and r is the order of pairing.

    DOI: 10.1109/NBiS.2013.86

    Web of Science

    researchmap

  • Finding a Basis Conversion Matrix Using a Polynomial Basis Derived by a Small Multiplicative Cyclic Group

    Yasuyuki Nogami, Hidehiro Kato, Kenta Nekado, Satoshi Uehara, Yoshitaka Morikawa

    IEEE TRANSACTIONS ON INFORMATION THEORY   58 ( 7 )   4936 - 4947   2012年7月

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  

    Several methods for finding a basis conversion matrix between two different bases in an extension field F-p(m) have been proposed. Among them, the one based on Gauss period normal basis (GNB) is on average the most efficient. However, since it needs to construct a certain tower field F-(pm)n, some inefficient cases in which the towering degree n becomes large have been reported. This paper first determines that such inefficient cases are caused by the GNB condition. In order to overcome this inefficiency, we propose a method that does not use any GNB in the target extension field F-p(m), but instead uses a certain polynomial basis in F-p(m) derived by a certain small cyclic group in F-(pm)n. This causes relaxation of the condition for the towering degree n. In addition, our experimental results show that the proposed method substantially accelerates the computation time for finding a basis conversion matrix.

    DOI: 10.1109/TIT.2012.2191477

    Web of Science

    researchmap

  • Finding a Basis Conversion Matrix Using a Polynomial Basis Derived by a Small Multiplicative Cyclic Group

    Yasuyuki Nogami, Hidehiro Kato, Kenta Nekado, Satoshi Uehara, Yoshitaka Morikawa

    IEEE TRANSACTIONS ON INFORMATION THEORY   58 ( 7 )   4936 - 4947   2012年7月

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC  

    Several methods for finding a basis conversion matrix between two different bases in an extension field F-p(m) have been proposed. Among them, the one based on Gauss period normal basis (GNB) is on average the most efficient. However, since it needs to construct a certain tower field F-(pm)n, some inefficient cases in which the towering degree n becomes large have been reported. This paper first determines that such inefficient cases are caused by the GNB condition. In order to overcome this inefficiency, we propose a method that does not use any GNB in the target extension field F-p(m), but instead uses a certain polynomial basis in F-p(m) derived by a certain small cyclic group in F-(pm)n. This causes relaxation of the condition for the towering degree n. In addition, our experimental results show that the proposed method substantially accelerates the computation time for finding a basis conversion matrix.

    DOI: 10.1109/TIT.2012.2191477

    Web of Science

    researchmap

  • Mixed Bases for Efficient Inversion in F(((22)2)2) and Conversion Matrices of Sub Bytes of AES

    Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, Yoshitaka Morikawa

    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2010   6225   234 - 247   2010年

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER-VERLAG BERLIN  

    A lot of improvements and optimizations for the hardware implementation of Sub Bytes of Rijndael, in detail inversion in F(28) have been reported. Instead of the Rijndael original F(28) it is known that its isomorphic tower field F(((22)2)2) has a more efficient inversion. For the towerings, several kinds of bases such as polynomial and normal bases can be used in mixture. Different from the meaning of this mixture of bases, this paper proposes another mixture that contributes to the reduction of the critical path delay of SubBytes. To the F((22)2)-inversion architecture, for example, the proposed mixture inputs and outputs elements represented with normal and polynomial bases, respectively.

    DOI: 10.1007/978-3-642-15031-9_16

    Web of Science

    researchmap

  • Anonymous IEEE802.1X Authentication System Using Group Signatures

    A. Sudarsono, T. Nakanishi, Y. Nogami, N. Funabiki

    IPSJ Journal   51 ( 3 )   691 - 704   2010年

     詳細を見る

  • Mixed Bases for Efficient Inversion in F(((22)2)2) and Conversion Matrices of Sub Bytes of AES

    Yasuyuki Nogami, Kenta Nekado, Tetsumi Toyota, Naoto Hongo, Yoshitaka Morikawa

    CRYPTOGRAPHIC HARDWARE AND EMBEDDED SYSTEMS - CHES 2010   6225   234 - 247   2010年

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER-VERLAG BERLIN  

    A lot of improvements and optimizations for the hardware implementation of Sub Bytes of Rijndael, in detail inversion in F(28) have been reported. Instead of the Rijndael original F(28) it is known that its isomorphic tower field F(((22)2)2) has a more efficient inversion. For the towerings, several kinds of bases such as polynomial and normal bases can be used in mixture. Different from the meaning of this mixture of bases, this paper proposes another mixture that contributes to the reduction of the critical path delay of SubBytes. To the F((22)2)-inversion architecture, for example, the proposed mixture inputs and outputs elements represented with normal and polynomial bases, respectively.

    DOI: 10.1007/978-3-642-15031-9_16

    Web of Science

    researchmap

  • Anonymous IEEE802.1X Authentication System Using Group Signatures

    A. Sudarsono, T. Nakanishi, Y. Nogami, N. Funabiki

    IPSJ Journal   51 ( 3 )   691 - 704   2010年

     詳細を見る

  • Integer Variable chi-Based Cross Twisted Ate Pairing and Its Optimization for Barreto-Naehrig Curve

    Yasuyuki Nogami, Yumi Sakemi, Hidehiro Kato, Masataka Akane, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 8 )   1859 - 1867   2009年8月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    It is said that the lower bound of the number of iterations of Miller's algorithm for pairing calculation is log(2) r/phi(k), where phi(.) is the Euler's function, r is the group order, and k is the embedding degree. Ate pairing reduced the number of the loops of Miller's algorithm of Tate pairing from left perpendicularlog(2) right perpendicular to left perpendicularlog(2)(t-1)right perpendicular, where t is the Frobenius trace. Recently, it is known to systematically prepare a pairing-friendly elliptic curve whose parameters are given by a polynomial of integer variable "chi." For such a curve, this paper gives integer variable chi-based Ate (Xate) pairing that achieves the lower bound. In the case of the well-known Barreto-Naehrig pairing-friendly curve. it reduces the number of loops to left perpendicularlog(2)chi right perpendicular. Then, this paper optimizes Xate pairing for Barreto-Naehrig curve and shows its efficiency based on some simulation results.

    DOI: 10.1587/transfun.E92.A.1859

    Web of Science

    researchmap

  • Integer Variable chi-Based Cross Twisted Ate Pairing and Its Optimization for Barreto-Naehrig Curve

    Yasuyuki Nogami, Yumi Sakemi, Hidehiro Kato, Masataka Akane, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 8 )   1859 - 1867   2009年8月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    It is said that the lower bound of the number of iterations of Miller's algorithm for pairing calculation is log(2) r/phi(k), where phi(.) is the Euler's function, r is the group order, and k is the embedding degree. Ate pairing reduced the number of the loops of Miller's algorithm of Tate pairing from left perpendicularlog(2) right perpendicular to left perpendicularlog(2)(t-1)right perpendicular, where t is the Frobenius trace. Recently, it is known to systematically prepare a pairing-friendly elliptic curve whose parameters are given by a polynomial of integer variable "chi." For such a curve, this paper gives integer variable chi-based Ate (Xate) pairing that achieves the lower bound. In the case of the well-known Barreto-Naehrig pairing-friendly curve. it reduces the number of loops to left perpendicularlog(2)chi right perpendicular. Then, this paper optimizes Xate pairing for Barreto-Naehrig curve and shows its efficiency based on some simulation results.

    DOI: 10.1587/transfun.E92.A.1859

    Web of Science

    researchmap

  • Finding a Basis Conversion Matrix via Prime Gauss Period Normal Basis

    Yasuyuki Nogami, Ryo Namba, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 6 )   1500 - 1507   2009年6月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper proposes a method to construct a basis conversion matrix between two given bases in F-pm. In the proposed method, Gauss period normal basis (GNB) works as a bridge between the two bases. The proposed method exploits this property and construct a basis conversion matrix mostly faster than EDF-based algorithm on average in polynomial time. Finally, simulation results are reported in which the proposed method compute a basis conversion matrix within 30 msec on average with Celeron (2.00 GHz) when m log p approximate to 160.

    DOI: 10.1587/transfun.E92.A.1500

    Web of Science

    researchmap

  • Fast Ate Pairing Computation of Embedding Degree 12 Using Subfield-Twisted Elliptic Curve

    Masataka Akane, Yasuyuki Nogami, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 2 )   508 - 516   2009年2月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper presents implementation techniques of fast Ate pairing of embedding degree 12. In this case, we have no trouble in finding a prime order pairing friendly curve E such as the Barreto-Naehrig curve y(2) = x(3) + a, a is an element of F-p. For the curve, an isomorphic substitution from G(2) is an element of E(F-p(12)) into G(2)'in subfield-twisted elliptic curve E'(F-p(2)) speeds up scalar multiplications over G(2) and wipes out denominator calculations in Miller's algorithm. This paper mainly provides about 30% improvement of the Miller's algorithm calculation using proper subfield arithmetic operations. Moreover, we also provide the efficient parameter settings of the BN curves. When p is a 254-bit prime, the embedding degree is 12, and the processor is Pentium4 (3.6 GHz), it is shown that the proposed algorithm computes Ate pairing in 13.3 milli-seconds including final exponentiation.

    DOI: 10.1587/transfun.E92.A.508

    Web of Science

    researchmap

  • Fast Ate Pairing Computation of Embedding Degree 12 Using Subfield-Twisted Elliptic Curve

    Masataka Akane, Yasuyuki Nogami, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 2 )   508 - 516   2009年2月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper presents implementation techniques of fast Ate pairing of embedding degree 12. In this case, we have no trouble in finding a prime order pairing friendly curve E such as the Barreto-Naehrig curve y(2) = x(3) + a, a is an element of F-p. For the curve, an isomorphic substitution from G(2) is an element of E(F-p(12)) into G(2)'in subfield-twisted elliptic curve E'(F-p(2)) speeds up scalar multiplications over G(2) and wipes out denominator calculations in Miller's algorithm. This paper mainly provides about 30% improvement of the Miller's algorithm calculation using proper subfield arithmetic operations. Moreover, we also provide the efficient parameter settings of the BN curves. When p is a 254-bit prime, the embedding degree is 12, and the processor is Pentium4 (3.6 GHz), it is shown that the proposed algorithm computes Ate pairing in 13.3 milli-seconds including final exponentiation.

    DOI: 10.1587/transfun.E92.A.508

    Web of Science

    researchmap

  • A Multiplication Algorithm in F-pm Such That p > m with a Special Class of Gauss Period Normal Bases

    Hidehiro Kato, Yasuyuki Nogami, Tomoki Yoshida, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 1 )   173 - 181   2009年1月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    In this paper, a multiplication algorithm in extension field F-pm is proposed. Different from the previous works, the proposed algorithm can be applied for an arbitrary pair of characteristic 1) and extension degree in only except for the case when 4p divides m(p-1) and m is an even number. As written in the title, when p > m, 4p does not divice m(p - 1). The proposed algorithm is derived by modifying cyclic vector multiplication algorithm (CVMA). We adopt a special class of Gauss period normal bases. At first in this paper, it is formulated as an algorithm and the calculation cost of the modified algorithm is evaluated. Then, compared to those of the previous works, some experimental results are shown. Finally, it is shown that the proposed algorithm is sufficient practical when extension degree in is small.

    DOI: 10.1587/transfun.E92.A.173

    Web of Science

    researchmap

  • Scalar Multiplication Using Frobenius Expansion over Twisted Elliptic Curve for Ate Pairing Based Cryptography

    Yasuyuki Nogami, Yumi Sakemi, Takumi Okimoto, Kenta Nekado, Masataka Akane, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 1 )   182 - 189   2009年1月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    For ID-based cryptography, not only pairing but also scalar multiplication must be efficiently computable. In this paper, we propose a scalar multiplication method on the circumstances that we work at Ate pairing with Barreto-Naehrig (BN) curve. Note that the parameters of BN curve are given by a certain integer, namely mother parameter. Adhering the authors' previous policy that we execute scalar multiplication on subfield-twisted curve (E) over tilde (F-p2) instead of doing on the original curve E(F-p12), we at first show sextic twisted subfield Frobenius mapping (ST-SFM) in E(Fp2). On BN curves, note (phi) over tilde is identified with the scalar multiplication by p. However a scalar is always smaller than the order r of BN curve for Ate pairing, so ST-SFM does not directly applicable to the above circumstances. We then exploit the expressions of the curve order r and the characteristic p by the mother parameter to derive some radices such that they are expressed as a polynomial of p. Thus, a scalar multiplication [s] can be written by the series of ST-SFMs (phi) over tilde. In combination with the binary method or multi-exponentiation technique, this paper shows that the proposed method runs about twice or more faster than plain binary method.

    DOI: 10.1587/transfun.E92.A.182

    Web of Science

    researchmap

  • Scalar Multiplication Using Frobenius Expansion over Twisted Elliptic Curve for Ate Pairing Based Cryptography

    Yasuyuki Nogami, Yumi Sakemi, Takumi Okimoto, Kenta Nekado, Masataka Akane, Yoshitaka Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E92A ( 1 )   182 - 189   2009年1月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    For ID-based cryptography, not only pairing but also scalar multiplication must be efficiently computable. In this paper, we propose a scalar multiplication method on the circumstances that we work at Ate pairing with Barreto-Naehrig (BN) curve. Note that the parameters of BN curve are given by a certain integer, namely mother parameter. Adhering the authors' previous policy that we execute scalar multiplication on subfield-twisted curve (E) over tilde (F-p2) instead of doing on the original curve E(F-p12), we at first show sextic twisted subfield Frobenius mapping (ST-SFM) in E(Fp2). On BN curves, note (phi) over tilde is identified with the scalar multiplication by p. However a scalar is always smaller than the order r of BN curve for Ate pairing, so ST-SFM does not directly applicable to the above circumstances. We then exploit the expressions of the curve order r and the characteristic p by the mother parameter to derive some radices such that they are expressed as a polynomial of p. Thus, a scalar multiplication [s] can be written by the series of ST-SFMs (phi) over tilde. In combination with the binary method or multi-exponentiation technique, this paper shows that the proposed method runs about twice or more faster than plain binary method.

    DOI: 10.1587/transfun.E92.A.182

    Web of Science

    researchmap

  • Determining Basis Conversion Matrix without Gauss Period Normal Basis

    Y.Nogami, E.Yanagi, M.Hagio, Oki Network LSI, Y.Morikawa

    ITC-CSCC2009   1331 - 1332   2009年

     詳細を見る

  • How to Generate a Secure Composite Order Ordinary Pairing-friendly Curve of Embedding Degree 3

    Y.Nogami, K.Nishii, Y.Sakemi, H.Kato, Y.Morikawa

    ITC-CSCC2009   1474 - 1447   2009年

     詳細を見る

  • Cross Twisted Xate Pairing with Barreto-Naehrig Curve for Multi-pairing Technique

    Y. Sakemi, Y. Nogami, H. Kato, Y. Morikawa

    ISIT 2009   2386 - 2390   2009年

  • Thread Computing for Miller's algorithm of Pairing

    S. Takeuchi, Y. Sakemi, Y. Nogami, Y. Morikawa

    The 13th IEEE International Symposium on Consumer Electronics (ISCE2009)   182 - 186   2009年

  • Cost Evaluation of The Improvement of Twisted Ate Pairing That Uses Integer Variable Chi of Small Hamming Weight

    Y. Sakemi, H. Kato, Y. Nogami, Y. Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   43 ( 15 )   113 - 116   2009年

     詳細を見る

  • Extension Field for Xate Pairing with Freeman Curve

    K.Nekado, H.Kato, Y.Nogami, Y.Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   43 ( 14 )   108 - 112   2009年

     詳細を見る

  • A High-Speed Square Root Algorithm for Extension Fields --Especially for Fast Extension Fields--

    Hidehiro Kato, Yasuyuki Nogami, Yoshitaka Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   43   99 - 107   2009年

     詳細を見る

  • Inversion with Normal Bases in Tower Field F_{((2^{2})^{2})^2} for S-Box of AES

    Y. Nogami, M. Hagio(Oki Network LSI, E. Yanagi, Y. Morikawa

    ITC-CSCC2009   1337 - 1338   2009年

     詳細を見る

  • Zero Correlation Distribution of ZCZ Sequences Obtained from a Perfect Sequence and a Unitary Matrix

    Satoshi Uehara, Shuichi Jono, Yasuyuki Nogami

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E91A ( 12 )   3745 - 3748   2008年12月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    A class of zero-correlation zone (ZCZ) sequences constructed by the recursive procedure from a perfect sequence and a unitary matrix was proposed by T, Nakamura, and Suehiro [1]. In the reference [1], three parameters, s.t., the Sequence length, the family size and the length of the ZCZ, were evaluated for a general estimate of the performance of the ZCZ sequences. In this letter, we give more detailed distributions of that correlation values are zero on their ZCZ sequence sets.

    DOI: 10.1093/ietfec/e91-a.12.3745

    Web of Science

    researchmap

  • Efficient Exponentiation in Extensions of Finite Fields without Fast Frobenius Mappings

    Yasuyuki Nogami, Hidehiro Kato, Kenta Nekado, Yoshitaka Morikawa

    ETRI JOURNAL   30 ( 6 )   818 - 825   2008年12月

     詳細を見る

    記述言語:英語   出版者・発行元:ELECTRONICS TELECOMMUNICATIONS RESEARCH INST  

    This paper proposes an exponentiation method with Frobenius mappings. The main target is an exponentiation in an extension field. This idea can be applied for scalar multiplication of a rational point of an elliptic curve defined over an extension field. The proposed method is closely related to so-called interleaving exponentiation. Unlike interleaving exponentiation methods, it can carry out several exponentiations of the same base at once. This happens in some pairing-based applications. The efficiency of using Frobenius mappings for exponentiation in an extension field was well demonstrated by Avanzi and Mihailescu. Their exponentiation method efficiently decreases the number of multiplications by inversely using many Frobenius mappings. Compared to their method, although the number of multiplications needed for the proposed method increases about 20%, the number of Frobenius mappings becomes small. The proposed method is efficient for cases in which Frobenius mapping cannot be carried out quickly.

    DOI: 10.4218/etrij.08.0108.0178

    Web of Science

    researchmap

  • A method for constructing a self-dual normal basis in odd characteristic extension fields

    Yasuyuki Nogami, Hiroaki Nasu, Yoshitaka Morikawa, Satoshi Uehara

    FINITE FIELDS AND THEIR APPLICATIONS   14 ( 4 )   867 - 876   2008年11月

     詳細を見る

    記述言語:英語   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    This paper proposes a useful method for constructing a self-dual normal basis in an arbitrary extension field F-p(m) such that 4p does not divide m(p - 1) and m is odd. In detail, when the characteristic p and extension degree in satisfies the following conditions (1) and either (2a) or (2b); (1) 2km + 1 is a prime number, (2a) the order of p in F2km+ 1 is 2km, (2b) 2 dagger km and the order of p in F2km + 1 is km, we can consider a class of Gauss period normal bases. Using this Gauss period normal basis, this paper shows a method to construct a self-dual normal basis in the extension field F-p(m). (C) 2008 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ffa.2008.04.001

    Web of Science

    researchmap

  • A method for constructing a self-dual normal basis in odd characteristic extension fields

    Yasuyuki Nogami, Hiroaki Nasu, Yoshitaka Morikawa, Satoshi Uehara

    FINITE FIELDS AND THEIR APPLICATIONS   14 ( 4 )   867 - 876   2008年11月

     詳細を見る

    記述言語:英語   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    This paper proposes a useful method for constructing a self-dual normal basis in an arbitrary extension field F-p(m) such that 4p does not divide m(p - 1) and m is odd. In detail, when the characteristic p and extension degree in satisfies the following conditions (1) and either (2a) or (2b); (1) 2km + 1 is a prime number, (2a) the order of p in F2km+ 1 is 2km, (2b) 2 dagger km and the order of p in F2km + 1 is km, we can consider a class of Gauss period normal bases. Using this Gauss period normal basis, this paper shows a method to construct a self-dual normal basis in the extension field F-p(m). (C) 2008 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.ffa.2008.04.001

    Web of Science

    researchmap

  • Basis translation matrix between two isomorphic extension fields via optimal normal basis

    Yasuyuki Nogami, Ryo Namba, Yoshitaka Morikawa

    ETRI JOURNAL   30 ( 2 )   326 - 334   2008年4月

     詳細を見る

    記述言語:英語   出版者・発行元:ELECTRONICS TELECOMMUNICATIONS RESEARCH INST  

    This paper proposes a method for generating a basis translation matrix between isomorphic extension fields. To generate a basis translation matrix, we need the equality correspondence of a basis between the isomorphic extension fields. Consider an extension field F-p(m) where p is characteristic. As a brute force method, when p(m) is small, we can check the equality correspondence by using the minimal polynomial of a basis element; however, when P, is large, it becomes too difficult. The proposed methods are based on the fact that Type I and Type H optimal normal bases (ONBs) can be easily identified in each isomorphic extension field. The proposed methods efficiently use Type I and Type II ONBs and can generate a pair of basis translation matrices within 15 ms on Pentium 4 (3.6 GHz) when mlog(2)p = 160.

    DOI: 10.4218/etrij.08.0107.0182

    Web of Science

    researchmap

  • Extension Field for Ate Pairing with Freeman Curve

    K.Nekado, H.Kato, M.Akane, Y.Nogami, Y.Morikawa

    ITC-CSCC2008   653 - 656   2008年

     詳細を見る

  • Fast Exponentiation in Extension Field with Frobenius Mappings

    H. Kato, K. Nekado, Y. Nogami, Y.Morikawa

    Memoirs of the Faculty of Engineering, Okayama Universit   42 ( 4 )   36 - 43   2008年

     詳細を見る

  • A Method for Checking the Parity of (#Jc-1)/2 Genus 2 and 3 Hyperelliptic Curves

    Y.Nogami, Y.Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   42 ( 14 )   110 - 114   2008年

     詳細を見る

  • A Necessary Condition for Gauss Period Normal Bases to Be the Same Normal Basis

    Yasuyuki NOGAMI, Ryo NAMBA, Yoshitaka MORIKAWA

    IEICE Trans.   E91-A ( 4 )   1229 - 1232   2008年

     詳細を見る

  • Systematic Generation of An Irreducible Polynomial of An Arbitrary Degree m over F-p Such That p > m

    Hiroaki Nasu, Yasuyuki Nogami, Yoshitaka Morikawa, Shigeki Kobayashi, Tatsuo Sugimura

    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 2, PROCEEDINGS   478 - +   2008年

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE COMPUTER SOC  

    This paper proposes a method for generating an irreducible polynomial of an arbitrary degree m over an arbitrary prime field F, such that p > m. The proposed method is closely related to the minimal polynomial determination and therefore it has the following features: its complexity has little dependency on the size of characteristic p, its calculation cost is explicitly given with degree m, and it can generate primitive polynomials when p(m) - 1 is factorized as the product of prime numbers. The restriction p > m comes from using Newton's formula.

    DOI: 10.1109/ICCIT.2008.171

    Web of Science

    researchmap

  • An Implementation of Anonymous IEEE802.1X Authentication System for Wireless Networks

    A. Sudarsono, T. Nakanishi, Y. Nogami, N. Funabiki

    Proc. the 10th Industrial Electronics Seminar 2008 (IES2008)   2008年

     詳細を見る

  • Skew Frobenius Map and Efficient Scalar Multiplication for Pairing.Based Cryptography

    Yumi Sakemi, Yasuyuki Nogami, Katsuyuki Okeya, Hitachi, Lt, Hidehiro Kato, Yoshitaka Morikawa

    7th International Conference Cryptology and Network Security, CANS 2008   LNCS 5339   226 - 239   2008年

  • An Improvement of Twisted Ate Pairing with Barreto-Naehrig Curve by using Frobenius Mapping

    Yumi Sakemi, Hidehiro Kato, Yasuyuki Nogami, Yoshitaka Morikawa

    Third 2008 International Conference on Convergence and Hybrid Information Technology, Vol 2, Proceedings   2   406 - 410   2008年

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE COMPUTER SOC  

    This paper proposes an improvement of twisted-Ate pairing with Barreto-Naehrig curve so as to efficiently use Frobenius mapping with respect to prime field. Then, this paper shows some simulation results by which it is shown that the improvement accelerates twisted-Ate pairing.

    DOI: 10.1109/ICCIT.2008.193

    Web of Science

    researchmap

  • Efficient Pairings on Twisted Elliptic Curve

    Yasuyuki Nogami, Masataka Akane, Yumi Sakemi, Yoshitaka Morikawa

    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 2, PROCEEDINGS   2   430 - +   2008年

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE COMPUTER SOC  

    This paper proposes an efficient implementation of Ate pairing on twisted elliptic curve. Suppose that a pairing-friendly elliptic curve E has a twisted elliptic curve E' of degree d, and let psi(d) be an isomorphic map from E'(F-p(e)) to the corresponding subgroup of E(F-p(k)). Then, consider G' = psi(-1)(d) (G1) and G(2)' = psi(-1)(d) (G(2)) for G(1), G(2) at Ate pairing alpha. Let P is an element of G(1), Q is an element of G(2), P' is an element of G'(1) and Q' is an element of G'(2), the authors have shown alpha(Q,P) = F-t-q,F-Q (P)((pk-1)/r) = f(t-1,Q')(P')((pk-1)/r). This paper shows that this new Ate pairing, namely cross twisted (Xt) Ate pairing, provides an quite efficient implementation.

    DOI: 10.1109/ICCIT.2008.172

    Web of Science

    researchmap

  • An Improvement of Cyclic Vector Multiplication Algorithm

    Hidehiro Kato, Yasuyuki Nogami, Tomoki Yoshida, Kenta Nekado, Shoichi Takeuchi, Yoshitaka Morikawa

    Third 2008 International Conference on Convergence and Hybrid Information Technology, Vol 2, Proceedings   401 - 405   2008年

     詳細を見る

    記述言語:英語   出版者・発行元:IEEE COMPUTER SOC  

    This paper first introduces cyclic vector multiplication algorithm (CVMA) that is a multiplication algorithm in extension field. Then, it is also introduced that CVMA is useful under the tight restrictions of pairing-based cryptographies. Then, this paper points out a problem about the calculation cost of CVMA. For this problem, this paper proposes an improvement. According to some simulation results, it is shown that the improvement makes CVMA much more efficient.

    DOI: 10.1109/ICCIT.2008.166

    Web of Science

    researchmap

  • A method for constructing a pseudo self-dual normal basis

    Hiroaki Nasu, Yasuyuki Nogami, Satoshi Uehara, Ryo Namba, Yoshitaka Morikawa

    CYBERNETICS AND SYSTEMS   39 ( 6 )   563 - 582   2008年

     詳細を見る

    記述言語:英語   出版者・発行元:TAYLOR & FRANCIS INC  

    Self-dual normal basis is efficient for the arithmetic operations in extension field and especially trace calculation. However, self-dual normal bases do not exist in [image omitted] when characteristic p is odd and degree m is even. This paper proposes a method to construct an efficient normal basis for trace calculation when extension degree is even. In this paper, we call it pseudo self-dual normal basis.

    DOI: 10.1080/01969720802188201

    Web of Science

    researchmap

  • Generating Irreducible Self-reciprocal Polynomials by Using Even Polynomial over Fq

    Shigeki Kobayashi, Yasuyuki Nogami, Tatsuo Sugimura

    The 23rd International Technical Conference on Circuits/Systems, Computers and Communications   121 - 124   2008年

     詳細を見る

  • An Improvement of Twisted Ate Pairing Using Integer Variable with Small Hamming Weight

    Y. Sakemi, H. Kato, Y. Nogami, Y. Morikawa

    The 23rd International Technical Conference on Circuits/Systems, Computers and Communicatio   269 - 272   2008年

     詳細を見る

  • Fast Squaring in TypeI All One Polynomial Field

    Hidehiro Kato, Yasuyuki Nogami, Yoshitaka Morikawa

    The 23rd International Technical Conference on Circuits/Systems, Computers and Communications   273 - 276   2008年

     詳細を見る

  • Integer Variable Chi-based Ate Pairing

    Y.Nogami, M.Akane, Y.Sakemi, H.Kato, Y.Morikawa

    Pairing 2008   LNCS 5209   178 - 191   2008年

  • Cyclic vector multiplication algorithm based on a special class of Gauss period normal basis

    Hidehiro Kato, Yasuyuki Nogami, Tomoki Yoshida, Yoshitaka Morikawa

    ETRI JOURNAL   29 ( 6 )   769 - 778   2007年12月

     詳細を見る

    記述言語:英語   出版者・発行元:ELECTRONICS TELECOMMUNICATIONS RESEARCH INST  

    This paper proposes a multiplication algorithm for F-pm, which can be efficiently applied to many pairs of characteristic p and extension degree m except for the case that 8p divides m(p-1). It uses a special class of type-< k, m > Gauss period normal bases. This algorithm has several advantages: it is easily parallelized; Frobenius mapping is easily carried out since its basis is a normal basis; its calculation cost is clearly given; and it is sufficiently practical and useful when parameters k and m are small.

    DOI: 10.4218/etrij.07.0107.0040

    Web of Science

    researchmap

  • A Multiplication Algorithm in Fpm for Arbitrary Pairs of Characteristic p and Degree m Such That p>m

    T.Yoshida, H.Katou, Y.Nogami, Y.Morikawa

    (The 2nd Joint workshop on information security)   469 - 483   2007年

     詳細を見る

  • 自己相反逆変換を用いたF2上の高次既約多項式の生成法

    小林茂樹, 野上保之, 杉村立夫, 難波諒

    電子情報通信学会論文誌A   J90-A ( 5 )   460 - 469   2007年

     詳細を見る

  • A Multiplication Algorithm in F_{p^m} for An Arbitrary Pair of The Characteristic p and Degree m Such That p>m,

    Hidehiro Kato, Yasuyuki Nogami, Yoshitaka Morikawa, Tomoki Yoshida

    ETRI journal   採録済み   2007年

     詳細を見る

  • An Algorithm for Generating Irreducible Cubic Trinomials over Prime Field

    Yasuyuki Nogami, Yoshitaka Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   41   2007年

     詳細を見る

  • The Number of the Irreducible Cubic Polynomials in the Form of x^3+ax+b with a Certain Fixed Element a

    Yasuyuki Nogami, Yoshitaka Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   41   2007年

     詳細を見る

  • A method for constructing an efficient basis for trace calculation

    Hiroaki Nasu, Yasuyuki Nogami, Ryo Namba, Yoshitaka Morikawa

    2007 International Conference on Convergence Information Technology, ICCIT 2007   229 - 234   2007年

     詳細を見る

    記述言語:英語  

    Self-dual normal basis is efficient for the arithmetic operations in extension field and especially trace calculation. However, self-dual normal bases do not exist in Fpm when characteristic p is odd and degree m is even. This paper proposes a method to construct a normal basis of even degree that is efficient for trace calculation. © 2007 IEEE.

    DOI: 10.1109/ICCIT.2007.4420265

    Scopus

    researchmap

  • A High-Speed Square Root Algorithm in Extension Fields

    Feng Wang, Yasuyuki Nogami, Yoshitaka Morikawa

    Second International Congress on Mathematical Software ICMS2006   2006年

     詳細を見る

  • A Method for Distinguishing the Two Candidate Elliptic Curves in the Complex Multiplication Method

    Yasuyuki Nogami, Mayumi Obara, Yoshitaka Morikawa

    ETRI Journal, vol.28/no.6   2006年

     詳細を見る

  • A High-Speed Square Root Algorithm in Extension Fields

    Hidehiro Katou, Feng Wang, Yasuyuki Nogami, Yoshitaka Morikawa

    The 9th International Conference on Information Security and Cryptology (ICISC2006), LNCS4296   2006年

     詳細を見る

  • A Method for Checking the Parity of (#Jc-1)/2

    M.Akane, Y.Nogami, Y.Morikawa

    The 2006 International Symposium on Information Theory and its Applications   2006年

     詳細を見る

  • A Basis Translation Matrix between Two Isomorphic Extension Fields via Optimal Normal Basis

    R.Namba, Y.Nogami, Y.Morikawa

    The 1st Joint Workshop on Information Security JWIS2006   2006年

     詳細を見る

  • The Orders of Elliptic Curves y^2 = x^3 + b, b in Fp

    Y.Nogami, Y.Morikawa

    Memoirs of the Faculty of Engineering, Okayama University   2006年

     詳細を見る

  • Cyclic vector multilication algorithm makes an inversion in F_{p^3} fastest

    Yasuyuki Nogami, Hidehiro Katou, Yoshitaka Morik

    JWIS2006(Joint workshop on information security)   2006年

     詳細を見る

  • Cyclic Vector Multiplication is Efficient for Small Extension Degrees

    Hidehiro Katou, Feng Wang, Yasuyuki Nogami, Yoshitaka Morikawa

    Second International Congress on Mathematical Software ICMS2006   2006年

     詳細を見る

  • Fast implementation of extension fields with TypeII ONB and cyclic vector multiplication algorithm

    Y Nogami, S Shinonaga, Y Morikawa

    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES   E88A ( 5 )   1200 - 1208   2005年5月

     詳細を見る

    記述言語:英語   出版者・発行元:IEICE-INST ELECTRONICS INFORMATION COMMUNICATIONS ENG  

    This paper proposes an extension field named TypeII AOPF. This extension field adopts TypeII optimal normal basis, cyclic vector multiplication algorithm, and Itoh-Tsujii inversion algorithm. The calculation costs for a multiplication and inversion in this field is clearly given with the extension degree. For example, the arithmetic operations in TypeII AOPF F-p5 is about 20% faster than those in OEF F-p5. Then, since CVMA is suitable for parallel processing, we show that TypeII AOPF is superior to AOPF as to parallel processing and then show that a multiplication in TypeII AOPF becomes about twice faster by parallelizing the CVMA computation in TypeII AOPF.

    DOI: 10.1093/ietfec/e88-a.5.1200

    Web of Science

    researchmap

  • An algorithm for systematically generating irreducible cubic trinomials over prime field

    Yasuyuki Nogami, Yoshitaka Morikawa

    Proceeding of The 2005 International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC2005)   2005年

     詳細を見る

  • Generating prime degree irreducible polynomials by using irreducible all-one polynomial over F-2

    K Makita, Y Nogami, T Sugimura

    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE   88 ( 7 )   23 - 32   2005年

     詳細を見る

    記述言語:英語   出版者・発行元:SCRIPTA TECHNICA-JOHN WILEY & SONS  

    In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which it 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that When the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros. (c) 2005 Wiley Periodicals, Inc.

    DOI: 10.1002/ecjc.20151

    Web of Science

    researchmap

  • Generating prime degree irreducible polynomials by using irreducible all-one polynomial over F-2

    K Makita, Y Nogami, T Sugimura

    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE   88 ( 7 )   23 - 32   2005年

     詳細を見る

    記述言語:英語   出版者・発行元:SCRIPTA TECHNICA-JOHN WILEY & SONS  

    In most of the methods of public key cryptography devised in recent years, a finite field of a large order is used as the field of definition. In contrast, there are many studies in which a higher-degree extension field of characteristic 2 is fast implemented for easier hardware realization. There are also many reports of the generation of the required higher-degree irreducible polynomial, and of the construction of a basis suited to fast implementation, such as an optimal normal basis (ONB). For generating higher-degree irreducible polynomials, there is a method in which it 2m-th degree self-reciprocal irreducible polynomial is generated from an m-th degree irreducible polynomial by a simple polynomial transformation (called the self-reciprocal transformation). This paper considers this transformation and shows that When the set of zeros of the m-th degree irreducible polynomial forms a normal basis, the set of zeros of the generated 2m-th order self-reciprocal irreducible polynomial also forms a normal base. Then it is clearly shown that there is a one-to-one correspondence between the transformed irreducible polynomial and the generated self-reciprocal irreducible polynomial. Consequently, the inverse transformation of the self-reciprocal transformation (self-reciprocal inverse transformation) can be applied to a self-reciprocal irreducible polynomial. It is shown that an m-th degree irreducible polynomial can always be generated from a 2m-th degree self-reciprocal irreducible polynomial by the self-reciprocal inverse transformation. We can use this fact for generating 1/2-degree irreducible polynomials. As an application of 1/2-degree irreducible polynomial generation, this paper proposes a method which generates a prime degree irreducible polynomial with a Type II ONB as its zeros. (c) 2005 Wiley Periodicals, Inc.

    DOI: 10.1002/ecjc.20151

    Web of Science

    researchmap

  • A Method for Generating Prime Order Elliptic Curves over F_{q^{2^c } }

    Y.Nogami, Y.Morikawa

    Memoirs of Faculty of Engineering, Okayama University   2005年

     詳細を見る

  • A High-Speed Square Root Computation in Finite Fields with Application to Elliptic Curve Cryptosystem

    F.Wang, Y.Nogami, Y.Morikawa

    Memoirs of Faculty of Engineering, Okayama University   2005年

     詳細を見る

  • An Efficient Square Root Computation in Finite Fields GF(p^{2^d})

    Wang Feng, Yasuyuki Nogami, Yoshitaka Morikawa

    IEICE Trans. Fundamentals of Electronics, Communications and Computer Science   2005年

  • A Classification of Irreducible Cubic Polynomials over Prime Field

    Y.Nogami, Y.Morikawa

    Proc. of The 2005 International Technical Conference on Circuits/Systems, Computers and Communications 2004 (CD-ROM)   2004年

     詳細を見る

  • The number of xs such that x^2+u u\in F_p^* becomes a quadratic power residue in F_p

    W.Feng, Y.Nogami, Y.Morikawa

    Proc. of Proceeding of The 2005 International Technical Conference on Circuits/Systems, Computers and Communications 2004 (CD-ROM)   2004年

     詳細を見る

  • F_2上の既約 All One Polynomial を用いた素数次の既約多項式の組織的な生成法

    牧田 慶, 野上 保之, 杉村 立夫

    電子情報通信学会論文誌(A)   2004年

     詳細を見る

  • A Method for Distinguishing the Two Candidate Elliptic Curves in CM Method

    Y.Nogami, Y.Morikawa

    Proc. of The 7th International Conference on Information Security and Cryptology (ICISC2004)   2004年

     詳細を見る

  • The parity of (#E-1)/2

    Y.Nogami, Y.Morikawa

    Proc. of The 2004 International Symposium on Information Theory and Its Application (ISITA2004) CD-ROM   2004年

     詳細を見る

  • Fast Generation of Elliptic Curves with Prime Order over F_{p^{2^c } }

    Y.Nogami, Y.Morikawa

    Proceeding of The International Workshop on Coding and Cryptography (WCC2003)   2003年

     詳細を見る

  • A Fast Square Root Computation Using the Frobenius Mapping

    W.Feng, Y.Nogami, Y.Morikawa

    Fifth International Conference on Information and Communications Security (ICICS2003   2003年

     詳細を見る

  • A Fast Square Root Calculation for Elliptic Curve Cryptosystem

    Y.Nogami, Y.Morikawa

    Proceeding of The 2003 International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC2003)   2003年

     詳細を見る

  • Fast Generation of Elliptic Curves with Prime Order over Extension Field of Even Extension Degree

    Y.Nogami, Y.Morikawa

    Proceeding of 2003 IEEE International Symposium on Information Theory (ISIT2003)   2003年

     詳細を見る

  • Finite Extension Field with Modulus of All-One Polynomial and Representation of Its Elements for Fast Arithmetic Operations

    Y.Nogami, A.Saito, Y.Morikawa

    Trans. IEICE   2003年

     詳細を見る

  • 大学における研究活動と特許

    野上保之

    日本弁理士会論文誌パテント   2003年

     詳細を見る

  • A Fast Implementation of Elliptic Curve Cryptosystem with Prime Order Defined over F_{p^{8 } }

    Y.Nogami, Y.Morikawa

    MEMOIRS OF THE FACULTY OF ENGINEERING OKAYAMA UNIVERSITY   2003年

     詳細を見る

  • GF(P)における3次多項式の高速既約判定アルゴリズム

    平本琢士, 野上保之, 森川良孝

    電子情報通信学会 論文誌A   2001年

     詳細を見る

  • Determining Minimal Polynomial of Proper Element by Using Higher Degree Traces

    Y.Nogami, Y.Morikawa

    MEMOIRS OF THE FACULTY OF ENGINEERING OKAYAMA UNIVERSITY   2001年

     詳細を見る

  • 変数変換x<sup>p</sup>-x+Sによる無限個の既約多項式の導出

    電子情報通信学会論文誌   J82-A ( 4 )   587 - 590   1999年

     詳細を見る

  • Deriving Infinite Number of Irreducible Polynomials by Variable Transformation x<sup>p</sup>-x+s

    THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS A   J82-A ( 4 )   587 - 590   1999年

     詳細を見る

  • 変数変換x^P-x+sによる無限個の既約多項式の導出

    野上保之, 田中清, 杉村立夫, 大下眞二郎

    電子情報通信学会論文誌(A)   1999年

     詳細を見る

  • Deriving Infinite Number of Irreducible Polynomials by Variable Transformation x<sup>p</sup>-x+s

    THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS A   J82-A ( 4 )   587 - 590   1999年

     詳細を見る

  • Testing and Deriving Primitive Polynomial

    THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS A   J79-A ( 3 )   761 - 767   1996年

     詳細を見る

  • 原始多項式の判定および導出

    野上保之, 杉村立夫

    電子情報通信学会論文誌(A)   1996年

     詳細を見る

  • 原始多項式の判定および導出

    電子情報通信学会論文誌   J79-A ( 3 )   761 - 767   1996年

     詳細を見る

  • Testing and Deriving Primitive Polynomial

    THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS A   J79-A ( 3 )   761 - 767   1996年

     詳細を見る

▼全件表示

講演・口頭発表等

  • 制御変数が4である有限体上のロジスティック写像による最大周期系列に対する線形複雑度プロファイル

    JSIAM2015  2015年 

     詳細を見る

  • Highly Efficient GF(2^8) Inversion Circuit Based on Redundant GF Arithmetic and Its Application to AES Design

    CHES2015  2015年 

     詳細を見る

  • Doubly Safe Primeを法とする素体上のロジスティック写像による生成系列の平均周期

    SCIS2014  2014年 

     詳細を見る

  • GMPを利用したアプリケーションによるWebベースボランティアコンピューティ ングの性能評価

    情報処理学会技術報告  2014年 

     詳細を見る

  • ボランティアコンピューティングシステムにおける信頼度に基づくジョブスケジューリング法の実装

    電子情報通信学会技術研究報告  2014年 

     詳細を見る

  • 電源線から侵入した外乱に起因するクロックグリッチによる FPGA 誤動作事例

    エレクトロニクス実装学会  2014年 

     詳細を見る

  • BN曲線上のECDLPに対するRho法のDNSを用いた衝突検出の性能評価

    SCIS2014  2014年 

     詳細を見る

  • Barreto-Naehrig曲線上の変数固定2型ペアリング逆問題から削減されたべき乗根問題に関するある分布

    電子情報通信学会、信学技報、ISEC研究会  2014年 

     詳細を見る

  • CUDAを用いた多倍長循環ベクトル乗算アルゴリズムの並列化実装

    IEICE コンピュータシステム研究会  2014年 

     詳細を見る

  • AES回路の等価電流源に基づくハミング距離漏えいモデルの検討

    SCIS2014  2014年 

     詳細を見る

  • 多値M系列からの変換で得られる2値系列に対する考察

    第36回情報理論とその応用シンポジウム(SITA2013)  2013年 

     詳細を見る

  • 楕円曲線暗号におけるDNSを用いた衝突判定

    第36回情報理論とその応用シンポジウム  2013年 

     詳細を見る

  • 71 ビット程度までの素数のBN曲線におけるG1上のrho法型の衝突攻撃の効率的な実装

    SITA2013  2013年 

     詳細を見る

  • 高度な認証を実現する並列代数計算アルゴリズムのLSI実装およびサイドチャネル攻撃に対する安全設計手法の研究開発

    コンピュータセキュリティシンポジウム 2013  2013年 

     詳細を見る

  • BN曲線を用いたペアリングのiPhone実装

    第30回 暗号と情報セキュリティシンポジウム  2013年 

     詳細を見る

  • BN曲線を用いた場合のペアリング逆問題に対する一考察

    電子情報通信学会、信学技報、ISEC研究会  2013年 

     詳細を見る

  • ペアリング暗号に対する攻撃

    シャノン理論ワークショップ  2013年 

     詳細を見る

  • Safe Primeを法とした素体上のロジスティック写像による生成系列に関する一考察

    応用数理学会2013  2013年 

     詳細を見る

  • Legendre シンボルおよび奇標数体上の原始多項式を用いたある二値系列の生成

    電子情報通信学会、信学技報、IT研究会  2013年 

     詳細を見る

  • クラウド時代を担う安全・安心なICT機器の設計手法

    イノベーション・ジャパン2013  2013年 

     詳細を見る

  • 拡大体における巡回ベクトル乗算アルゴリズムとその部分体への効率的な適用

    AC2013  2013年 

     詳細を見る

  • 随伴有理点を考慮したランダムウォーク法の提案

    第36回情報理論とその応用シンポジウム(SITA2013)  2013年 

     詳細を見る

  • Inversion with Normal Bases in Tower Field F_{((2^{2})^{2})^2} for S-Box of AES

    ITC-CSCC2009  2009年 

     詳細を見る

  • Two Improvements of Twisted Ate Pairing with Barreto–Naehrig Curve by Dividing Miller’s Algorithm

    ICCIT2009  2009年 

     詳細を見る

  • How to Implement Furukawa–Imai Group Signature Scheme with Barreto–Naehrig Curv

    The 4th International Workshop on Security (IWSEC2009)  2009年 

     詳細を見る

  • How to Generate a Secure Composite Order Ordinary Pairing-friendly Curve of Embedding Degree 3

    ITC-CSCC2009  2009年 

     詳細を見る

  • Thread Computing for Miller's algorithm of Pairing

    ISCE2009  2009年 

     詳細を見る

  • ガウス周期正規基底に基づく乗算アルゴリズムCVMAの改良

    情報セキュリティ研究会(ISEC)  2009年 

     詳細を見る

  • 2つの大きな素因数を含む合成数位数をもつ非超特異ペアリングフレンドリ曲線の一生成法

    情報セキュリティ研究会(ISEC)  2009年 

     詳細を見る

  • Freeman 曲線を用いた Xate ペアリングに適した拡大体の構成法

    2009年 暗号と情報セキュリティシンポジウム  2009年 

     詳細を見る

  • Determining Basis Conversion Matrix without Gauss Period Normal Basis

    ITC-CSCC2009  2009年 

     詳細を見る

  • Inversion with Normal Bases in Tower Field F_{((2^{2})^{2})^2} for S-Box of AES

    ITC-CSCC2009  2009年 

     詳細を見る

  • Cross Twisted Xate Pairing with Barreto-Naehrig Curve for Multi-pairing Technique

    ISIT2009  2009年 

     詳細を見る

  • 二つの大きな素因数を含む合成数位数をもつ非超特異ペアリングフレンドリ曲線を用いたクロスツイスト Ate ペアリングの高速化

    情報セキュリティ研究会,信学技法  2009年 

     詳細を見る

  • Accelerating Twisted Ate Pairing with Frobenius Map, Small Scalar Multiplication, and Multi-pairing

    ICISC2009  2009年 

     詳細を見る

  • A Relation between Self–Reciprocal Transformation and Normal Basis over Odd Characteristic Field

    ICCIT2009  2009年 

     詳細を見る

  • A Group Signature Scheme with Efficient Verifier-Local Revocation Check

    2009 Symposium on Cryptography and Information Security  2009年 

     詳細を見る

  • Cross Twisted Xateペアリングを用いたマルチペアリング

    2009年暗号と情報セキュリティシンポジウム  2009年 

     詳細を見る

  • ペアリング計算での利用を考慮した拡大体上2乗算の改良

    暗号と情報セキュリティシンポジウム  2009年 

     詳細を見る

  • Cross Twisted Xate Pairing with Barreto-Naehrig Curve for Multi-pairing Technique

    ISIT2009  2009年 

     詳細を見る

  • Thread Computing for Miller's algorithm of Pairing

    ISCE2009  2009年 

     詳細を見る

  • Accelerating Twisted Ate Pairing with Frobenius Map, Small Scalar Multiplication, and Multi-pairing

    ICISC2009  2009年 

     詳細を見る

  • How to Generate a Secure Composite Order Ordinary Pairing-friendly Curve of Embedding Degree 3

    ITC-CSCC2009  2009年 

     詳細を見る

  • Determining Basis Conversion Matrix without Gauss Period Normal Basis

    ITC-CSCC2009  2009年 

     詳細を見る

  • An Implementation of Anonymous IEEE802.1X Authentication System for Wireless Networks

    IES2008  2008年 

     詳細を見る

  • Type I AOPFにおける二乗算の高速化

    第59回中国支部連合大会(IPSJ:優秀論文発表賞,IEICE:奨励賞)  2008年 

     詳細を見る

  • Barreto–Naehrig曲線におけるTwisted AteペアリングのFrobenius写像を用いた改良

    コンピュータセキュリティシンポジウム 2008 (CSS2008)  2008年 

     詳細を見る

  • スマートフォン上でのペアリングライブラリおよびグループ署名の実装

    コンピュータセキュリティシンポジウム2008  2008年 

     詳細を見る

  • Gauss period normal basis を用いたペアリング暗号に効果的な拡大体上冪乗算アルゴリズム

    コンピュータセキュリティシンポジウム2008  2008年 

     詳細を見る

  • 部分体計算を活用する高速なAteペアリングの提案

    2008年 暗号と情報セキュリティシンポジウム(SCIS2008)  2008年 

     詳細を見る

  • An Implementation of Anonymous IEEE802.1X Authentication System for Wireless Networks

    IES2008  2008年 

     詳細を見る

  • 整数変数Xを用いて改良したクロスツイストAteペアリング

    コンピュータセキュリティシンポジウム2008  2008年 

     詳細を見る

  • ペアリング暗号に効果的な拡大体上べき乗算に関する一考察

    情報セキュリティ研究会 (ISEC)  2008年 

     詳細を見る

  • ハミング重みの小さい整数変数をパラメータ設定に用いたTwisted Ateペアリングの改良

    2008年 暗号と情報セキュリティシンポジウム(SCIS2008)  2008年 

     詳細を見る

  • 楕円曲線上の高速スカラー倍算を用いた効率的なグループ署名の高速実装

    2008年 暗号と情報セキュリティシンポジウム  2008年 

     詳細を見る

  • 奇数次拡大体におけるSelf-Dual正規基底の構成法

    情報理論研究会,電子情報通信学会技術研究報告  2007年 

     詳細を見る

  • p>mを満たす拡大体Fpmに対する基底変換行列の構成法

    2007年 暗号と情報セキュリティシンポジウム  2007年 

     詳細を見る

  • p>mを満たす素体Fp 上のm次既約多項式の組織的な生成法

    2007年 暗号と情報セキュリティシンポジウム  2007年 

     詳細を見る

  • Type <k, m> および <k, m> Gauss Period Normal Bases が同じ正規基底となるための必要条件

    第30回情報理論とその応用シンポジウム(SITA2007)  2007年 

     詳細を見る

  • Gauss Period Normal Basisを用いた拡大体上乗算に関する一考察

    コンピュータセキュリティシンポジウム  2007年 

     詳細を見る

  • Ateペアリングに適したBarreto-Naehrig曲線のパラメータ設定

    コンピュータセキュリティシンポジウム2007  2007年 

     詳細を見る

  • Barreto-Naehrig曲線を用いたAteペアリングにおけるMillerアルゴリズムの改良

    コンピュータセキュリティシンポジウム2007  2007年 

     詳細を見る

  • ペアリングに適した拡大体の高速実装

    第30回情報理論とその応用学会(SITA2007)  2007年 

     詳細を見る

  • 奇標数の偶数次拡大体におけるトレース計算に適した正規基底に関する一考察

    情報理論研究会,電子情報通信学会技術研究報告書  2007年 

     詳細を見る

  • 署名者の負担を軽減した失効方式をもつペアリングを用いたグループ署名方式の実装

    IEICE ISEC研  2007年 

     詳細を見る

  • 奇数次拡大体におけるSelf-Dual正規基底の構成法

    IEICE IT研  2007年 

     詳細を見る

  • 奇標数の偶数次拡大体におけるトレース計算に適した正規基底に関する一考察

    IEICE IT研  2007年 

     詳細を見る

  • Optimal Normal Basis を経由する同型な拡大体間の基底変換行列の構成法

    ISEC,CSEC,SITE合同研究会,信学技報  2006年 

     詳細を見る

  • TypeII ONBに類似の正規基底を用いた有限体の表現と乗法演算

    第29回情報理論とその応用シンポジウム  2006年 

     詳細を見る

  • 次数および標数の変化に柔軟に対応できる拡大体の構成法

    第29回情報理論とその応用シンポジウム(SITA2006)  2006年 

     詳細を見る

  • ペアリング計算の実装に適した拡大体構成法

    第29回情報理論とその応用シンポジウム  2006年 

     詳細を見る

  • TypeII AOPFにおける逆元回路導出回路のFPGA実装

    第8回IEEE広島支部学生シンポジウム  2006年 

     詳細を見る

  • 任意の標数および拡大次数に対する拡大体の構成法

    Computer Security Symposium 2006 (CSS2006)  2006年 

     詳細を見る

  • ツイストを用いた効果的なペアリングの実装法

    コンピュータセキュリティシンポジウム 2006  2006年 

     詳細を見る

  • Optimal Normal Basis を経由する同型な拡大体間の基底変換行列の構成法

    第57回中国支部連合大会  2006年 

     詳細を見る

  • TypeII AOPF上での乗算およびTypeII OEF上での乗算のFPGA実装

    第57回中国支部連合大会  2006年 

     詳細を見る

  • Type-II All One Polynomial Field上での平方根導出アルゴリズムの高速実装

    電子情報通信学会技術研究報告  2006年 

     詳細を見る

  • All One Polynomial Field を用いたMNT曲線に対するPairing 計算の実装

    情報セキュリティ研究会,信学技報  2006年 

     詳細を見る

  • Type-II AOPFを用いた高速な既約多項式生成法

    第57回中国支部連合大会 講演論文集  2006年 

     詳細を見る

  • ツイストを用いてペアリング計算の高速化手法

    第4回シャノン理論ワークショップ  2006年 

     詳細を見る

  • An Improvement of Inverse Self Reciprocal Transform Algorithm for Self Reciprocal Polynomial over F2

    Computer Security Symposium, CD-ROM  2005年 

     詳細を見る

  • An Implementation of the Multiplication in All-One Polynomial Field on FPGA

    IEEE 7th Hiroshima Student Symposium, from 365 to 368  2005年 

     詳細を見る

  • A Study on the Group Structure of Non-SuperSingular Elliptic Curves

    The 7th IEEE Hiroshima Student Symposium, from 253 to 256  2005年 

     詳細を見る

  • A Consideration on the Order of Genus 2 Hyperelliptic Curve

    28th Symposium on Information Theory and Its Application, II of II, from 889 to 892  2005年 

     詳細を見る

  • A Consideration on Cyclic Vector Multiplication Algorithm

    The 28th Symposium on Information Theory and Its Applications, vol.I/II, from 295 to 298  2005年 

     詳細を見る

  • A Consideration on the Order of Hyperelliptic Curve

    Computer Security Symposium 2005 (CSS2005), Vol.2005/No.13, from 457 to 462  2005年 

     詳細を見る

  • Performance of Prime Order Elliptic Curve Generation based on y-twist

    TECHNICAL REPORT OF IEICE, vol.105/no.193, from 59 to 66  2005年 

     詳細を見る

  • A Relation between CM method and Third Power Residue, Non-Residue

    Symposium on Cryptography and Information Security 2005, vol.3/4, from 769 to 774  2005年 

     詳細を見る

  • (#E-1)/2の偶奇の一判定法

    IEEE 広島支部 学生シンポジウム  2004年 

     詳細を見る

  • 加法的自己回帰既約多項式集合とその一応用

    シャノン理論ワークショップ  2004年 

     詳細を見る

  • TypeII AOPFにおける乗算の並列処理実装

    IEEE 広島支部 学生シンポジウム  2004年 

     詳細を見る

  • 符号と暗号の代数的数理

    符号と暗号の代数的数理  2004年 

     詳細を見る

  • 3乗剰余および非剰余に基づくツイスト手法

    情報セキュリティ研究会 vol.104/ISEC2004-78  2004年 

     詳細を見る

  • スクランブル放送型動画電子透かし

    第55回中国支部連合大会  2004年 

     詳細を見る

  • TYPE-II All-One Polynomial Field

    暗号と情報セキュリティシンポジウム(SCIS2004)  2004年 

     詳細を見る

  • 楕円曲線暗号への利用を目的とした拡大体F^{2^m}の高速実装

    2003年 暗号と情報セキュリティシンポジウム  2004年 

     詳細を見る

  • 有限体の上の開平演算

    信学技報 vol.104/ISEC2004-14  2004年 

     詳細を見る

  • (#E-1)/2の偶奇の一判定法

    信学技報 vol.104/ISEC2004-13  2004年 

     詳細を見る

  • F_{p^{2^i3^j } } を定義体とする素数位数楕円曲線の生成

    第27回情報理論とその応用シンポジウム (SITA2004)  2004年 

     詳細を見る

  • Quantization Index Modulation法に疑似乱数系列によるDCT係数の周波数拡散を用いて埋め込み情報量を増加した画像電子透かし法(電子情報通信学会賞受賞)

    第54回電気・情報関連学会中国支部連合大会  2003年 

     詳細を見る

  • プログラミング実験の実験形態について〜ネットワークプログラミングを通して〜

    第54回電気・情報関連学会中国支部連合大会  2003年 

     詳細を見る

  • y^2=x^2+a, a\in F_pの解の総数と3次既約多項式の関係

    信学技法  2003年 

     詳細を見る

  • XTRへの応用を目的とした拡大体F_{p^{6m } }の高速実装

    信学技法  2003年 

     詳細を見る

  • 標数が2の拡大体を定義体とする楕円曲線に関する一考察

    2003年 暗号と情報セキュリティシンポジウム  2003年 

     詳細を見る

  • TYPE-II All One Polynomial Field

    Comupter Security Symposium 2003  2003年 

     詳細を見る

  • 楕円曲線暗号への利用を目的とした3次既約多項式の組織的生成法

    信学技報 IT2002-35 pp.49-54  2002年 

     詳細を見る

  • F_p^8上で定義される楕円加算の16ビットマイコンへの高速実装

    信学技報 IT2002-34 pp.43-48  2002年 

     詳細を見る

  • フロベニアス写像が高速となる2次逐次拡大法

    信学技報 IT2002-33 pp.37-42  2002年 

     詳細を見る

  • Finite Extesion Field with Modulus of All-One Polynomial and Expression of Its Elements for Fast Arithmetic Operations

    The International Conference on Fudamentals of Electronics,Communications and Computer Sciences( ICFS2002 )  2002年 

     詳細を見る

  • 逐次拡大体における演算コスト

    2002年 暗号と情報セキュリティシンポジウム予稿集 ( SCIS2002 )  2002年 

     詳細を見る

  • 楕円曲線暗号への応用を考慮した有限体上の3次既約多項式の高速生成法

    電気・情報関連学会 中国支部 第53回 連合大会 講演論文集 pp.360-361  2002年 

     詳細を見る

  • 逐次拡大体における演算コスト

    2002年 暗号と情報セキュリティシンポジウム予稿集 ( SCIS2002 ) vol.2/2 pp.693-698  2002年 

     詳細を見る

  • 高速演算を目的とした(x^{m+1}-1)/(x-1)を法多項式とする拡大体

    電子情報通信学会,情報セキュリティ研究会  2001年 

     詳細を見る

  • 多重解像度近似にPN拡散と1次元フーリエ変換を用いた画像電子透かし埋め込み法

    電子情報通信学会,通信方式研究会  2001年 

     詳細を見る

  • 拡張AOPFにおける楕円曲線暗号の実装

    第24回 情報理論とその応用シンポジウム ( SITA2001 )  2001年 

     詳細を見る

  • F{p^{2^m}上でtwistされた楕円曲線が階数1となる標数とトレースの条件

    第24回 情報理論とその応用シンポジウム ( SITA2001 )  2001年 

     詳細を見る

  • ウェーブレット係数の視覚的複雑さを用いた画像深層暗号化法

    電子情報通信学会,情報セキュリティ研究会  2001年 

     詳細を見る

  • 多重解像度近似の1次元フーリエ変換位相を用いる画像電子透かし埋め込み法

    第24回 情報理論とその応用シンポジウム ( SITA2001 )  2001年 

     詳細を見る

  • 3次既約多項式を用いた楕円曲線暗号に関する一考察

    電子情報通信学会,情報理論研究会  2001年 

     詳細を見る

  • (x^{m+1}-1)/(x-1)を法多項式とする拡大体における平方根導出の高速化

    電子情報通信学会,情報理論研究会  2001年 

     詳細を見る

  • Fp上の3次既約多項式f(x)を用いた楕円曲線y^2=f(x)の有理点数に関する一考察

    第23回 情報理論とその応用シンポジウム ( SITA2000 )  2000年 

     詳細を見る

  • GF(P^P)における自己双対正規基底に関する一考察

    第23回 情報理論とその応用シンポジウム ( SITA2000 )  2000年 

     詳細を見る

  • OEFにおける正規基底の一構成法

    第23回 情報理論とその応用シンポジウム ( SITA2000 )  2000年 

     詳細を見る

  • GF(P)上の3次多項式の既約判定

    電子情報通信学会,情報理論研究会  2000年 

     詳細を見る

  • 変数変換x:=x^p-x+sおよびx:=x^kの繰り返しによる無限個の既約多項式の導出

    電子情報通信学会,情報理論研究会  2000年 

     詳細を見る

  • (P^{p^i+1}-1)/(P^{p^i}-1)が素数となる場合の原始多項式の導出

    電子情報通信学会,情報理論研究会  2000年 

     詳細を見る

  • 暗号に適した楕円曲線と定義体の標数について(奨励賞受賞)

    電気・情報関連学会 中国支部 第51回 連合大会  2000年 

     詳細を見る

  • 超特異でない楕円曲線の選択法

    電気・情報関連学会 中国支部 第51回 連合大会  2000年 

     詳細を見る

  • (P^m-1)/(P-1)が素数となる場合のGF(P)上のm次原始多項式の導出

    第22回 情報理論とその応用シンポジウム ( SITA1999 )  1999年 

     詳細を見る

  • GF(P)上のf(x^P-x)の形で与えられる既約多項式の零点のk乗剰余性に関する一考察

    電気・情報関連学会 中国支部 第50回 連合大会  1999年 

     詳細を見る

  • GF(P)上の既約多項式に基づくアノマラス楕円曲線の検査

    第22回 情報理論とその応用シンポジウム ( SITA1999 )  1999年 

     詳細を見る

▼全件表示

Works(作品等)

  • イノベーションジャパン2014出展

    2014年

     詳細を見る

  • Innovation Japan Presentation

    2014年

     詳細を見る

  • イノベーションジャパン2013出展

    2013年

     詳細を見る

  • Innovation Japan Presentation

    2013年

     詳細を見る

  • 匿名認証技術を高度に実現する代数計算ライブラリ(イノベーションジャパン2009)

    2009年

     詳細を見る

  • Innovation Japan Presentation

    2009年

     詳細を見る

▼全件表示

受賞

  • IEICE ESS 貢献賞

    2013年  

     詳細を見る

    受賞国:日本国

    researchmap

  • IEICE:奨励賞

    2008年  

     詳細を見る

    受賞国:日本国

    researchmap

  • IPSJ:優秀論文発表賞

    2008年  

     詳細を見る

    受賞国:日本国

    researchmap

 

担当授業科目

  • システムセキュリティ最適化論 (2021年度) 前期  - 月5,月6

  • セキュリティ実装演習A (2021年度) 夏季集中  - その他

  • セキュリティ実装演習B (2021年度) 第4学期  - その他

  • セキュリティ概論 (2021年度) 3・4学期  - 水7,水8

  • 分散データ管理演習 (2021年度) 夏季集中  - その他

  • 専門英語B1 (2021年度) 第3学期  - 月3,月4

  • 専門英語B1 (2021年度) 第3学期  - 金3,金4

  • 専門英語B2 (2021年度) 第4学期  - 月3,月4

  • 専門英語B2 (2021年度) 第4学期  - 金3,金4

  • 専門英語Ⅱ (2021年度) 3・4学期  - 月3,月4

  • 専門英語Ⅱ (2021年度) 3・4学期  - 金3,金4

  • 情報セキュリティ工学演習 (2021年度) 通年  - その他

  • 数理暗号論 (2021年度) 前期  - 木1,木2

  • 暗号構成論 (2021年度) 前期  - その他

  • 確率統計論 (2021年度) 1・2学期  - [第1学期]水1,水2, [第2学期]木1,木2

  • 論理回路 (2021年度) 第2学期  - 月1,月2,木5,木6

  • 電子情報システム工学特別研究 (2021年度) 通年  - その他

  • 電気通信系入門 (2021年度) 夏季集中  - その他

  • クロスサイトスクリプティング対策演習 (2020年度) 夏季集中  - その他

  • グローバルスタディズ2 (2020年度) 1~4学期  - その他

  • システムセキュリティ最適化論 (2020年度) 前期  - 月5,月6

  • セキュリティ総論E (2020年度) 3・4学期  - 水7,水8

  • 安全性評価のための衝突型暗号攻撃演習 (2020年度) 夏季集中  - その他

  • 専門英語B1 (2020年度) 第3学期  - 月3,月4

  • 専門英語B1 (2020年度) 第3学期  - 金3,金4

  • 専門英語B2 (2020年度) 第4学期  - 月3,月4

  • 専門英語B2 (2020年度) 第4学期  - 金3,金4

  • 専門英語Ⅱ (2020年度) 3・4学期  - 月3,月4

  • 専門英語Ⅱ (2020年度) 3・4学期  - 金3,金4

  • 情報セキュリティ工学演習 (2020年度) 通年  - その他

  • 数理暗号論 (2020年度) 前期  - 木1,木2

  • 暗号ハードウェアセキュリティ演習 (2020年度) 第4学期  - その他

  • 暗号構成論 (2020年度) 前期  - その他

  • 確率統計論 (2020年度) 第2学期  - 火7,火8,金7,金8

  • 論理回路 (2020年度) 第2学期  - 月1,月2,木5,木6

  • 電子情報システム工学特別研究 (2020年度) 通年  - その他

  • 電気通信系入門 (2020年度) 第4学期  - 火7,火8

▼全件表示