2022/04/29 更新

写真a

タグチ ダイ
田口 大
TAGUCHI Dai
所属
異分野基礎科学研究所 准教授
職名
准教授
外部リンク

学位

  • 博士 ( 理学 )

研究分野

  • 自然科学一般 / 応用数学、統計数学

所属学協会

  • 日本数学会

    2013年 - 現在

      詳細を見る

  • 日本金融・証券計量・工学学会

      詳細を見る

 

論文

  • $L^{q}$-error estimates for approximation of irregular functionals of random vectors 査読

    Dai Taguchi, Akihiro Tanaka, Tomooki Yuasa

    IMA Journal of Numerical Analysis   42 ( 1 )   2022年1月

     詳細を見る

  • Newton-Kantorovitch method for decoupled forward-backward stochastic differential equations 査読

    Dai Taguchi, Takahiro Tsuchiya

    Electronic Journal of Differential Equations   2021 ( 98 )   1 - 16   2021年12月

     詳細を見る

  • Probability density function of SDEs with unbounded and path-dependent drift coefficient 査読

    Dai Taguchi, Akihiro Tanaka

    STOCHASTIC PROCESSES AND THEIR APPLICATIONS   130 ( 9 )   5243 - 5289   2020年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER  

    In this paper, we first prove that the existence of a solution of SDEs under the assumptions that the drift coefficient is of linear growth and path-dependent, and diffusion coefficient is bounded, uniformly elliptic and Holder continuous. We apply Gaussian upper bound for a probability density function of a solution of SDE without drift coefficient and local Novikov condition, in order to use Maruyama-Girsanov transformation. The aim of this paper is to prove the existence with explicit representations (under linear/super-linear growth condition), Gaussian two-sided bound and Holder continuity (under sub-linear growth condition) of a probability density function of a solution of SDEs with path-dependent drift coefficient. As an application of explicit representation, we provide the rate of convergence for an Euler-Maruyama (type) approximation, and an unbiased simulation scheme. (C) 2020 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.spa.2020.03.006

    Web of Science

    researchmap

  • SEMI-IMPLICIT EULER-MARUYAMA APPROXIMATION FOR NONCOLLIDING PARTICLE SYSTEMS 査読

    Hoang-Long Ngo, Dai Taguchi

    ANNALS OF APPLIED PROBABILITY   30 ( 2 )   673 - 705   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:INST MATHEMATICAL STATISTICS  

    We introduce a semi-implicit Euler-Maruyama approximation which preserves the noncolliding property for some class of noncolliding particle systems such as Dyson-Brownian motions, Dyson-Ornstein-Uhlenbeck processes and Brownian particle systems with nearest neighbor repulsion, and study its rates of convergence in both L-p-norm and pathwise sense.

    DOI: 10.1214/19-AAP1512

    Web of Science

    researchmap

  • Malliavin calculus for non-colliding particle systems 査読

    Nobuaki Naganuma, Dai Taguchi

    STOCHASTIC PROCESSES AND THEIR APPLICATIONS   130 ( 4 )   2384 - 2406   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER  

    In this paper, we use Malliavin calculus to show the existence and continuity of density functions of d-dimensional non-colliding particle systems such as hyperbolic particle systems and Dyson Brownian motion with smooth drift. For this purpose, we apply results proved by Florit and Nualart (1995) and Naganuma (2013) on locally non-degenerate Wiener functionals. (C) 2019 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.spa.2019.07.005

    Web of Science

    researchmap

  • On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case 査読

    Libo Li, Dai Taguchi

    BIT NUMERICAL MATHEMATICS   59 ( 3 )   747 - 774   2019年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER  

    We propose a positivity preserving implicit Euler-Maruyama scheme for a jump-extended Cox-Ingersoll-Ross (CIR) process where the jumps are governed by a compensated spectrally positive. Different to the existing positivity preserving numerical schemes for jump-extended CIR or constant elasticity variance process, the model considered here has infinite activity jumps. We calculate, in this specific model, the strong rate of convergence and give some numerical illustrations. Jump extended models of this type were initially studied in the context of branching processes and was recently introduced to the financial mathematics literature to model sovereign interest rates, power and energy markets.

    DOI: 10.1007/s10543-019-00753-8

    Web of Science

    researchmap

  • On the Euler–Maruyama scheme for SDEs with bounded variation and Hölder continuous coefficients" 査読

    Hoang-Long Ngo, Dai Taguchi

    Mathematics and Computers in Simulation,   161   102 - 112   2019年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    researchmap

  • On the Euler-Maruyama scheme for spectrally one-sided Levy driven SDEs with Holder continuous coefficients 査読

    Libo Li, Dai Taguchi

    STATISTICS & PROBABILITY LETTERS   146   15 - 26   2019年3月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    We study in this article the strong rate of convergence of the Euler-Maruyama scheme and associated with the jump-type equation introduced in Li and Mytnik (2011). We obtain the strong rate of convergence under similar assumptions for strong existence and pathwise uniqueness. Models of this type can be considered as a generalization of the CIR (Cox-Ingersoll-Ross) process with jumps. (C) 2018 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.spl.2018.10.017

    Web of Science

    researchmap

  • Convergence Implications via Dual Flow Method 査読

    Takafumi Amaba, Dai Taguchi, Go Yuki

    MARKOV PROCESSES AND RELATED FIELDS   25 ( 3 )   533 - 568   2019年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:POLYMAT  

    Given a one-dimensional stochastic differential equation, one can associate to this equation a stochastic flow on [0, +infinity), which has an absorbing barrier at zero. Then one can define its dual stochastic flow. In [2], Akahori and Watanabe showed that its one-point motion solves a corresponding stochastic differential equation of Skorokhod-type. In this paper, we consider a discretetime stochastic-flow which approximates the original stochastic flow. We show that under some assumptions, one-point motions of its dual flow also approximates the corresponding reflecting diffusion. We prove and use relations between a stochastic flow and its dual in order to obtain weak and strong approximation results related to stochastic differential equations of Skorokhod-type.

    Web of Science

    researchmap

  • On the Euler-Maruyama Scheme for Degenerate Stochastic Differential Equations with Non-sticky Condition 査読

    Dai Taguchi, Akihiro Tanaka

    SEMINAIRE DE PROBABILITES L   2252   165 - 185   2019年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER INTERNATIONAL PUBLISHING AG  

    The aim of this paper is to study weak and strong convergence of the Euler-Maruyama scheme for a solution of one-dimensional degenerate stochastic differential equation dX(t) = sigma(X-t)dW(t) with non-sticky condition. For proving this, we first prove that the Euler-Maruyama scheme also satisfies non-sticky condition. As an example, we consider stochastic differential equation dX(t) = vertical bar X-t vertical bar(alpha)dW(t), alpha is an element of (0, 1/2) with non-sticky boundary condition and we give some remarks on CEV models in mathematical finance.

    DOI: 10.1007/978-3-030-28535-7_9

    Web of Science

    researchmap

  • Approximation for non-smooth functionals of stochastic differential equations with irregular drift 査読

    Hoang-Long Ngo, Dai Taguchi

    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS   457 ( 1 )   361 - 388   2018年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    This paper aims at developing a systematic study for the weak rate of convergence of the Euler-Maruyama scheme for stochastic differential equations with very irregular drift and constant diffusion coefficients. We apply our method to obtain the rates of approximation for the expectation of various non-smooth functionals of both stochastic differential equations and killed diffusion. We also apply our method to the study of the weak approximation of reflected stochastic differential equations whose drift is Holder continuous. (c) 2017 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.jmaa.2017.08.006

    Web of Science

    researchmap

  • On the Euler-Maruyama approximation for one-dimensional stochastic differential equations with irregular coefficients 査読

    Hoang-Long Ngo, Dai Taguchi

    IMA JOURNAL OF NUMERICAL ANALYSIS   37 ( 4 )   1864 - 1883   2017年10月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:OXFORD UNIV PRESS  

    We study the strong rates of the Euler-Maruyama approximation for one-dimensional stochastic differential equations whose drift coefficient may be neither continuous nor one-sided Lipschitz and whose diffusion coefficient is Holder continuous. In particular, we show that the strong rate of the Euler-Maruyama approximation is 1/2 for a large class of equations whose drift is not continuous. We also provide the strong rate for equations whose drift is Holder continuous and diffusion is nonconstant.

    DOI: 10.1093/imanum/drw058

    Web of Science

    researchmap

  • Strong rate of convergence for the Euler-Maruyama approximation of SDEs with Holder continuous drift coefficient 査読

    Olivier Menoukeu Pamen, Dai Taguchi

    STOCHASTIC PROCESSES AND THEIR APPLICATIONS   127 ( 8 )   2542 - 2559   2017年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    In this paper, we consider a numerical approximation of the stochastic differential equation (SDE)
    X-t = x(0) +integral(t)(0) b(s, X-s)ds + L-t, x(0) is an element of R-d., t is an element of [0, T],
    where the drift coefficient b : [0, T] x R-d -> R-d is Holder continuous in both time and space variables and the noise L =(L-t)(0 <= t <= T) is a d-dimensional Levy process. We provide the rate of convergence for the Euler-Maruyama approximation when L is a Wiener process or a truncated symmetric a -stable process with alpha is an element of (1, 2). Our technique is based on the regularity of the solution to the associated Kolmogorov equation. Crown Copyright (C) 2016 Published by Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.spa.2016.11.008

    Web of Science

    researchmap

  • Strong convergence for the Euler-Maruyama approximation of stochastic differential equations with discontinuous coefficients 査読

    Hoang-Long Ngo, Dai Taguchi

    STATISTICS & PROBABILITY LETTERS   125   55 - 63   2017年6月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:ELSEVIER SCIENCE BV  

    In this paper we study the strong convergence for the Euler-Maruyama approximation of a class of stochastic differential equations whose both drift and diffusion coefficients are possibly discontinuous. (C) 2017 Elsevier B.V. All rights reserved.

    DOI: 10.1016/j.spl.2017.01.027

    Web of Science

    researchmap

  • The Parametrix Method for Skew Diffusions 査読

    Arturo Kohatsu-Higa, Dai Taguchi, Jie Zhong

    POTENTIAL ANALYSIS   45 ( 2 )   299 - 329   2016年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER  

    In this article, we apply the parametrix method in order to obtain the existence and the regularity properties of the density of a skew diffusion and provide a Gaussian upper bound. This expansion leads to a probabilistic representation.

    DOI: 10.1007/s11118-016-9547-0

    Web of Science

    researchmap

  • STRONG RATE OF CONVERGENCE FOR THE EULER-MARUYAMA APPROXIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH IRREGULAR COEFFICIENTS 査読

    Hoang-Long Ngo, Dai Taguchi

    MATHEMATICS OF COMPUTATION   85 ( 300 )   1793 - 1819   2016年7月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:AMER MATHEMATICAL SOC  

    We consider the Euler-Maruyama approximation for multi-dimensional stochastic differential equations with irregular coefficients. We provide the rate of strong convergence where the possibly discontinuous drift coefficient satisfies a one-sided Lipschitz condition and the diffusion coefficient is Holder continuous and uniformly elliptic.

    DOI: 10.1090/mcom3042

    Web of Science

    researchmap

  • Stability Problem for One-Dimensional Stochastic Differential Equations with Discontinuous Drift 査読

    Dai Taguchi

    SEMINAIRE DE PROBABILITES XLVIII   2168   97 - 121   2016年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER INT PUBLISHING AG  

    We consider one-dimensional stochastic differential equations (SDEs) with irregular coefficients. The goal of this paper is to estimate the L-p(Omega)-difference between two SDEs using a norm associated to the difference of coefficients. In our setting, the (possibly) discontinuous drift coefficient satisfies a one-sided Lipschitz condition and the diffusion coefficient is bounded, uniformly elliptic and Holder continuous. As an application of this result, we consider the stability problem for this class of SDEs.

    DOI: 10.1007/978-3-319-44465-9_4

    Web of Science

    researchmap

▼全件表示

講演・口頭発表等

  • Numerical schemes for radial Dunkl processes

    田口大

    確率解析とその周辺  2021年11月4日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Numerical schemes for radial Dunkl processes 招待

    Dai Taguchi

    AIMS Ghana's Online Research Seminar Series  2021年10月14日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Backward and truncated Euler--Maruyama schemes for radial Dunkl processes 招待

    Dai Taguchi

    International Conference on Monte Carlo Methods and Applications  2021年8月18日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • 確率微分方程式の数値解析, Euler–Maruyama 近似の近年の話題 招待

    田口大

    日本数学会2021年度年会  2021年3月15日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Multi-dimensional Avikainen's estimates

    田口大

    確率解析とその周辺  2020年11月24日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Multi-dimensional Avikainen's estimates 招待

    Dai Taguchi

    14th International Conference on Monte Carlo and Quasi-Monte Carlo  2020年8月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Multi-dimensional Avikainen's estimates

    田口大

    大阪大学確率論セミナー  2020年7月28日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Multi-dimensional Avikainen's estimates 招待

    Dai Taguchi

    Monash Probability and Statistics Seminar  2020年7月14日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Multi-dimensional Avikainen's estimates 招待

    Dai Taguchi

    Probability Seminar of Toulouse  2020年5月5日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Multi-dimensional Avikainen's estimates 招待

    田口大

    立命館大学ファイナンスセミナー  2020年4月23日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • A generalized Avikainen’s estimate and its applications

    田口大

    確率論シンポジウム  2019年12月 

     詳細を見る

  • A generalized Avikainen’s estimate and its applications 招待

    田口大

    第七回数理ファイナンス合宿型セミナー  2019年11月 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Implicit Euler-Maruyama scheme for radial Dunkl processes

    田口大

    確率解析とその周辺  2019年11月 

     詳細を見る

  • Implicit Euler--Maruyama scheme for radial Dunkl processes

    田口大

    確率論ヤングサマーセミナー 2019  2019年8月 

     詳細を見る

  • Implicit Euler--Maruyama scheme for radial Dunkl processes

    田口大

    九州確率論セミナー  2019年7月26日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Probability density function of SDEs with unbounded and path--dependent drift coefficient 招待

    Dai Taguchi

    ICIAM Congress (the international Congress of Industrial and Applied Mathematics  2019年7月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • On the Euler-Maruyama scheme for degenerate SDEs with non-sticky boundary condition 招待

    Dai Taguchi

    Stochastic processes and related topics  2019年7月 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Probability density function of SDEs with unbounded and path--dependent drift coefficient 招待

    田口大

    関西大学 確率論セミナー,  2019年5月 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Jump型CIR過程の離散近似について 招待

    田口大

    金融工学・数理計量ファイナンスの諸問題 2018  2018年11月29日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Probability density function of SDEs with unbounded and path--dependent drift coefficient

    田口大

    確率解析とその周辺  2018年11月 

     詳細を見る

  • On a positivity preserving scheme for the alpha-CIR process" 招待

    Dai Taguchi

    Ritsumeikan Workshop on Probability Theory and its Applications to Insurance and Finance,  2018年10月18日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Semi-implicit Euler-Maruyama scheme for non-colliding particle systems 招待

    Dai Taguchi

    The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications  2018年7月9日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Semi-implicit Euler-Maruyama scheme for non-colliding particle systems 招待

    Dai Taguchi

    13th International Conference in Monte Carlo & Quasi-Monte Carlo Methods in Scientific Computing,  2018年7月3日 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • Gaussian bound for the density of SDEs with unbounded and path-dependent drift 招待

    田口大

    福岡大学確率論セミナー  2018年6月 

     詳細を見る

  • Newton's method for BSDEs

    田口大

    大阪大学確率論セミナー  2018年5月 

     詳細を見る

  • Implicit Euler-Maruyama scheme for non-colliding particle systems 招待

    Dai Taguchi

    Workshop on "Mathematical finance and related issues", Osaka University Nakanoshima Center  2018年3月16日 

     詳細を見る

  • Discrete approximations for non-colliding SDEs",

    田口大

    確率解析シンポジウム  2017年10月 

     詳細を見る

  • 確率微分方程式の解の一意性について 招待

    田口大

    確率論ヤングサマーセミナー  2017年8月 

     詳細を見る

    会議種別:口頭発表(招待・特別)  

    researchmap

  • On the Euler-Maruyama scheme for SDEs with discontinuous diffusion coefficient" 招待

    Dai Taguchi

    International Conference on Monte Carlo Methods and Applications  2017年7月 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Semi-implicit Euler-Maruyama scheme for non-colliding particle systems

    田口大

    九州確率論セミナー  2017年6月 

     詳細を見る

  • On the Euler-Poisson scheme for SDEs with positive jumps and Holder continuous coecient

    田口大

    日本数学会  2017年3月 

     詳細を見る

  • Semi-implicit Euler-Maruyama scheme for non-colliding particle systems 招待

    Dai Taguchi

    Osaka-UCL Workshop on Stochastics, Numerics and Risk  2017年3月 

     詳細を見る

  • On the Euler-Maruyama scheme for SDEs with irregular coefficients

    田口大

    確率論早春セミナー  2017年3月 

     詳細を見る

  • On the Euler-Maruyama scheme for SDEs with discontinuous diffusion coefficient

    田口大

    岡山確率論セミナー  2017年1月 

     詳細を見る

  • On the Euler-Maruyama scheme for SDEs with discontinuous diffusion coefficien

    田口大

    確率解析とその周辺  2016年11月 

     詳細を見る

  • Euler Maruyama scheme for SDEs with discontinuous diffusion coefficient

    田口大

    日本数学会  2016年9月 

     詳細を見る

  • Euler-Maruyama approximation for SDEs with irregular coefficients

    Dai Taguchi

    Statistics Seminar, UNSW  2016年8月 

     詳細を見る

  • Euler-Maruyama scheme for SDEs with dis-continuous diffusion coefficient

    田口大

    確率論ヤングサマーセミナー  2016年8月 

     詳細を見る

  • Euler-Maruyama scheme for SDEs with fractional differential drift

    Dai Taguchi

    Workshop: Stochastic processes - numerical methods and related topics, Hanoi  2016年8月 

     詳細を見る

  • Euler-Maruyama approximation for SDEs with bounded p-variation drift

    田口

    大阪大学確率論セミナー  2016年2月 

     詳細を見る

  • On the Euler-Maruyama scheme for SDEs with irregular coefficients

    Dai Taguchi

    The Fourth Asian Quantitative Finance Conference  2016年2月 

     詳細を見る

  • On the Euler-Maruyama approximation for one-dimensional SDEs with irregular coefficients

    田口大

    確率論シンポジウム  2015年12月 

     詳細を見る

  • Weak and Strong rate for the Euler-Maruyama scheme for SDEs with irregular coefficients

    田口大

    数理ファイナンス合宿型セミナー  2015年11月 

     詳細を見る

  • Parametrix method for skew diffusions

    田口大

    確率解析とその周辺  2015年10月 

     詳細を見る

  • The rate of convergence for the Euler scheme for stochastic differential equation with irregular drift"

    Dai Taguchi

    Workshop on Quantum Information Theory and related Topics, Hanoi  2015年9月 

     詳細を見る

  • Approximation for non-smooth functionals of SDEs with irregular drift

    田口大

    日本数学会  2015年9月 

     詳細を見る

  • Parametrix method for skew diffusions

    Dai Taguchi

    Probability and Applied Mathematics Seminar, Hanoi  2015年9月 

     詳細を見る

  • Numerical Results for Stochastic Differential Equations via Parametrix Method

    田口大

    The Japanese Association of Financial Econometrics and Engineering  2015年8月 

     詳細を見る

  • Weak approximation for non-smooth functionals of SDEs with irregular drift

    Dai Taguchi

    5th-Ritsumeikan-Monash Symposium on Probability and Related Fields  2015年3月 

     詳細を見る

  • Parametrix method for skew diffusions

    田口大

    日本数学会  2015年3月 

     詳細を見る

  • Weak approximation for non-smooth functionals of SDEs with irregular drift

    田口大

    確率論早春セミナー  2015年3月 

     詳細を見る

  • Strong Rate of Convergence for the Euler-Maruyama Approximation of Stochastic Differential Equations with Irregular Coefficients

    Dai Taguchi

    The Quantitative Methods in Finance 2014 Conference  2014年12月 

     詳細を見る

  • Stability problem for SDEs with discontinuous drift

    田口大

    確率論ヤングサマーセミナー  2014年8月 

     詳細を見る

  • Strong Rate of Euler-Maruyama Approximation for Stochastic Differential Equations with Irregular Coefficients

    田口大

    日本数学会  2014年3月 

     詳細を見る

  • Strong Rate of Euler-Maruyama Approximation for Stochastic Differential Equations with Irregular Coefficients"

    田口大

    数理ファイナンス合宿型セミナー  2014年1月 

     詳細を見る

  • Strong Rate of Euler-Maruyama Approximation for Stochastic Differential Equations with Irregular Drift

    Dai Taguchi

    The 45th ISCIE International Symposium on Stochastic Systems Theory and Its Applications  2013年11月 

     詳細を見る

  • Strong Rate of Euler-Maruyama Approximation for Stochastic Differential Equations with Irregular Drift

    田口大

    日本応用数理学会  2013年9月 

     詳細を見る

  • Strong Rate of Euler-Maruyama Approximation for Stochastic Differential Equations with Irregular Drift

    田口大

    確率論ヤングサマーセミナー  2013年8月 

     詳細を見る

  • Euler-Maruyama Approximation for Stochastic Differential Equations with discontinuous drift

    田口大

    確率論早春セミナー,  2013年3月 

     詳細を見る

▼全件表示

 

担当授業科目

  • 数理科学特別講義B (2021年度) 集中  - その他

  • 数理解析学演習 (2021年度) 通年  - その他

  • 現代数学要論IVa (2021年度) 第3学期  - 木5,木6

  • 現代数学要論IVb (2021年度) 第4学期  - 木5,木6

  • 確率・統計 (2021年度) 3・4学期  - 金5,金6

  • 確率・統計a (2021年度) 第3学期  - 金5,金6

  • 確率・統計b (2021年度) 第4学期  - 金5,金6

  • 確率微分方程式特論 (2021年度) 後期  - その他

  • 解析学演習 (2021年度) 1・2学期  - 火3,火4

  • 解析学I (2021年度) 1・2学期  - 火1,火2

  • 解析学Ia (2021年度) 第1学期  - 火1,火2

  • 解析学Ib (2021年度) 第2学期  - 火1,火2

  • 関数解析学特論 (2021年度) 後期  - 金3,金4

  • 学際基礎科学概論1 (2020年度) 前期  - 水1,水2

  • 数理解析学演習 (2020年度) 通年  - その他

  • 確率・統計 (2020年度) 3・4学期  - 金5,金6

  • 確率・統計a (2020年度) 第3学期  - 金5,金6

  • 確率・統計b (2020年度) 第4学期  - 金5,金6

  • 確率微分方程式特論 (2020年度) 特別  - その他

  • 解析学演習 (2020年度) 1・2学期  - 火3,火4

  • 解析学I (2020年度) 1・2学期  - 火1,火2

  • 解析学Ia (2020年度) 第1学期  - 火1,火2

  • 解析学Ib (2020年度) 第2学期  - 火1,火2

  • 関数解析学特論 (2020年度) 後期  - 金3,金4

  • 離散数学II (2020年度) 3・4学期  - 月3,月4

  • 離散数学IIa (2020年度) 第3学期  - 月3,月4

  • 離散数学IIb (2020年度) 第4学期  - 月3,月4

▼全件表示