2024/02/07 更新

写真a

スティーヴァー サマンサ リン
STEVER SAMANTHA LYNN
STEVER SAMANTHA LYNN
所属
環境生命自然科学学域 助教
職名
助教

学位

  • 博士

  • 修士

研究分野

  • 自然科学一般 / 天文学  / 宇宙論

学歴

  • Université Paris-Saclay    

    2015年11月 - 2019年1月

      詳細を見る

    国名: フランス共和国

    researchmap

  • Cardiff University   Department of Physics and Astronomy  

    2010年9月 - 2015年6月

      詳細を見る

経歴

  • Université Paris-Saclay   Chaire de Jean d'Alembert

    2022年8月 - 2024年1月

      詳細を見る

    国名:フランス共和国

    researchmap

  • 岡山大学   理学部   助教授

    2020年4月 - 現在

      詳細を見る

    国名:日本国

    researchmap

  • Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo

    2020年4月 - 現在

      詳細を見る

    国名:日本国

    researchmap

  • 東京大学   カブリ数物連携宇宙研究機構   研究员

    2019年2月 - 2020年4月

      詳細を見る

    国名:日本国

    researchmap

 

論文

  • Tensor-to-scalar ratio forecasts for extended LiteBIRD frequency configurations

    U. Fuskeland, J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, H. K. Eriksen, J. Errard, R. T. Genova-Santos, T. Hasebe, J. Hubmayr, H. Imada, N. Krachmalnicoff, L. Lamagna, G. Pisano, D. Poletti, M. Remazeilles, K. L. Thompson, L. Vacher, I. K. Wehus, S. Azzoni, M. Ballardini, R. B. Barreiro, N. Bartolo, A. Basyrov, D. Beck, M. Bersanelli, M. Bortolami, M. Brilenkov, E. Calabrese, A. Carones, F. J. Casas, K. Cheung, J. Chluba, S. E. Clark, L. Clermont, F. Columbro, A. Coppolecchia, G. D'Alessandro, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, F. Finelli, C. Franceschet, G. Galloni, M. Galloway, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerlow, A. Gruppuso, P. Hargrave, M. Hattori, M. Hazumi, L. T. Hergt, D. Herman, D. Herranz, E. Hivon, T. D. Hoang, K. Kohri, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, A. I. Lonappan, G. Luzzi, B. Maffei, E. Martinez-Gonzalez, S. Masi, S. Matarrese, T. Matsumura, M. Migliaccio, L. Montier, G. Morgante, B. Mot, L. Mousset, R. Nagata, T. Namikawa, F. Nati, P. Natoli, S. Nerval, A. Novelli, L. Pagano, A. Paiella, D. Paoletti, G. Pascual-Cisneros, G. Patanchon, V. Pelgrims, F. Piacentini, G. Piccirilli, G. Polenta, G. Puglisi, N. Raffuzzi, A. Ritacco, J. A. Rubino-Martin, G. Savini, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, S. L. Stever, N. Stutzer, R. M. Sullivan, H. Takakura, L. Terenzi, H. Thommesen, M. Tristram, M. Tsuji, P. Vielva, J. Weller, B. Westbrook, G. Weymann-Despres, E. J. Wollack, M. Zannoni

    ASTRONOMY & ASTROPHYSICS   676   2023年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:EDP SCIENCES S A  

    LiteBIRD is a planned JAXA-led cosmic microwave background (CMB) B-mode satellite experiment aiming for launch in the late 2020s, with a primary goal of detecting the imprint of primordial inflationary gravitational waves. Its current baseline focal-plane configuration includes 15 frequency bands between 40 and 402 GHz, fulfilling the mission requirements to detect the amplitude of gravitational waves with the total uncertainty on the tensor-to-scalar ratio, dr, down to dr < 0.001. A key aspect of this performance is accurate astrophysical component separation, and the ability to remove polarized thermal dust emission is particularly important. In this paper we note that the CMB frequency spectrum falls off nearly exponentially above 300 GHz relative to the thermal dust spectral energy distribution, and a relatively minor high frequency extension can therefore result in even lower uncertainties and better model reconstructions. Specifically, we compared the baseline design with five extended configurations, while varying the underlying dust modeling, in each of which the High-Frequency Telescope (HFT) frequency range was shifted logarithmically toward higher frequencies, with an upper cutoff ranging between 400 and 600 GHz. In each case, we measured the tensor-to-scalar ratio r uncertainty and bias using both parametric and minimum-variance component-separation algorithms. When the thermal dust sky model includes a spatially varying spectral index and temperature, we find that the statistical uncertainty on r after foreground cleaning may be reduced by as much as 30-50% by extending the upper limit of the frequency range from 400 to 600 GHz, with most of the improvement already gained at 500 GHz. We also note that a broader frequency range leads to higher residuals when fitting an incorrect dust model, but also it is easier to discriminate between models through higher X-2 sensitivity. Even in the case in which the fitting procedure does not correspond to the underlying dust model in the sky, and when the highest frequency data cannot be modeled with sufficient fidelity and must be excluded from the analysis, the uncertainty on r increases by only about 5% for a 500 GHz configuration compared to the baseline.

    DOI: 10.1051/0004-6361/202346155

    Web of Science

    researchmap

  • Performance of the polarization leakage correction in the PILOT data

    Jean Philippe Bernard, Adam Bernard, Hélène Roussel, Ilyes Choubani, Dana Alina, Jonathan Aumont, Annie Hughes, Isabelle Ristorcelli, Samantha Stever, Tomotake Matsumura, Shinya Sugiyama, Kunimoto Komatsu, Giancarlo de Gasperis, Katia Ferrière, Vincent Guillet, Nathalie Ysard, Peter Ade, Paolo de Bernardis, Nicolas Bray, Bruno Crane, Jean Pierre Dubois, Matt Griffin, Peter Hargrave, Yuying Longval, Stephane Louvel, Bruno Maffei, Silvia Masi, Baptiste Mot, Johan Montel, François Pajot, Etienne Pérot, Nicolas Ponthieu, Louis Rodriguez, Valentin Sauvage, Giorgio Savini, Carole Tucker, François Vacher

    Experimental Astronomy   56 ( 1 )   197 - 222   2023年8月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240µm (1.2 THz). The PILOT experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in [1]. In this paper, we present data processing steps that were not presented in [1] and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of PILOT, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all PILOT data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with PILOT, are accurate to better than 0.4% as measured on Jupiter during flight#3.

    DOI: 10.1007/s10686-022-09882-5

    Scopus

    researchmap

  • Sensitivity Modeling for LiteBIRD

    T. Hasebe, P. A.R. Ade, A. Adler, E. Allys, D. Alonso, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, S. Basak, E. Battistelli, L. Bautista, J. Beall, D. Beck, S. Beckman, K. Benabed, J. Bermejo-Ballesteros, M. Bersanelli, J. Bonis, J. Borrill, F. Bouchet, F. Boulanger, S. Bounissou, M. Brilenkov, M. L. Brown, M. Bucher, E. Calabrese, M. Calvo, P. Campeti, A. Carones, F. J. Casas, A. Catalano, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. Cliche, F. Columbro, W. Coulton, J. Cubas, A. Cukierman, D. Curtis, G. D’Alessandro, K. Dachlythra, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, D. Douillet, L. Duband, A. Ducout, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, S. Galli, M. Galloway, K. Ganga, J. R. Gao, R. T. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerløw, M. L. Gradziel, J. Grain, L. Grandsire, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, J. Hamilton, P. Hargrave, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versillé, L. T. Hergt, D. Herman, D. Herranz

    Journal of Low Temperature Physics   211 ( 5-6 )   384 - 397   2023年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    LiteBIRD is a future satellite mission designed to observe the polarization of the cosmic microwave background radiation in order to probe the inflationary universe. LiteBIRD is set to observe the sky using three telescopes with transition-edge sensor bolometers. In this work we estimated the LiteBIRD instrumental sensitivity using its current design. We estimated the detector noise due to the optical loadings using physical optics and ray-tracing simulations. The noise terms associated with thermal carrier and readout noise were modeled in the detector noise calculation. We calculated the observational sensitivities over fifteen bands designed for the LiteBIRD telescopes using assumed observation time efficiency.

    DOI: 10.1007/s10909-022-02921-7

    Scopus

    researchmap

  • Impact of beam far side-lobe knowledge in the presence of foregrounds for LiteBIRD

    Samantha Stever

    ArXiv   2023年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    researchmap

  • LiteBIRD Science Goals and Forecasts: A full-sky measurement of gravitational lensing of the CMB

    Samantha Stever

    ArXiv   2023年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    researchmap

  • LiteBIRD Science Goals and Forecasts: Improving Sensitivity to Inflationary Gravitational Waves with Multitracer Delensing

    Samantha Stever

    ArXiv   2023年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    researchmap

  • Development of the Low Frequency Telescope Focal Plane Detector Modules for LiteBIRD

    Benjamin Westbrook, Christopher Raum, Shawn Beckman, Adrian T. Lee, Nicole Farias, Andrew Bogdan, Amber Hornsby, Aritoki Suzuki, Kaja Rotermund, Tucker Elleflot, Jason E. Austermann, James A. Beall, Shannon M. Duff, Johannes Hubmayr, Michael R. Vissers, Michael J. Link, Greg Jaehnig, Nils Halverson, Tomasso Ghigna, Masashi Hazumi, Samantha Stever, Yuto Minami, Keith L. Thompson, Megan Russell, Kam Arnold, Maximiliano Silva-Feaver

    Proceedings of SPIE - The International Society for Optical Engineering   12190   2022年9月

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    LiteBIRD is a JAXA-led strategic large-class satellite mission designed to
    measure the polarization of the cosmic microwave background and Galactic
    foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s.
    The scientific payload includes three telescopes which are called the low-,
    mid-, and high-frequency telescopes each with their own receiver that covers a
    portion of the mission's frequency range. The low frequency telescope will map
    synchrotron radiation from the Galactic foreground and the cosmic microwave
    background. We discuss the design, fabrication, and characterization of the
    low-frequency focal plane modules for low-frequency telescope, which has a
    total bandwidth ranging from 34 to 161 GHz. There will be a total of 4
    different pixel types with 8 overlapping bands to cover the full frequency
    range. These modules are housed in a single low-frequency focal plane unit
    which provides thermal isolation, mechanical support, and radiative baffling
    for the detectors. The module design implements multi-chroic lenslet-coupled
    sinuous antenna arrays coupled to transition edge sensor bolometers read out
    with frequency-domain mulitplexing. While this technology has strong heritage
    in ground-based cosmic microwave background experiments, the broad frequency
    coverage, low optical loading conditions, and the high cosmic ray background of
    the space environment require further development of this technology to be
    suitable for LiteBIRD. In these proceedings, we discuss the optical and
    bolometeric characterization of a triplexing prototype pixel with bands
    centered on 78, 100, and 140 GHz.

    DOI: 10.1117/12.2630574

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2209.09864v1

  • Simulation of the Cosmic Ray Impact on the TES Detectors of SPICA/SAFARI

    T. A. Stockmans, A. Almasi, S. L. Stever, P. Khosropanah

    JOURNAL OF LOW TEMPERATURE PHYSICS   209 ( 3-4 )   482 - 492   2022年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    The data from the Planck and Herschel space observatories revealed that the cosmic rays at L2 orbit can have a significant impact on the performance of scientific instruments. In this paper, we present our simulation results of such impacts on SAFARI/SPICA, a far-infrared spectrometer equipped with transition-edge sensors (TESs). These TESs are fabricated on SiN membranes and suspended by long and thin SiN legs that thermally isolate them from the surrounding silicon structure (wafer). Cosmic rays that pass through this surrounding structure deposit a portion of their energy, leading to temperature fluctuations in the wafer. These temperature fluctuations are sensed by the TES detectors as an effective bath temperature and result in additional noise. To simulate the impact, we generate a 2D model of the wafer and the suspended TESs in COMSOL 5.4. This 2D model is bombarded with 128 randomly generated cosmic rays according to the observed energy distributions at L2. Subsequently, the temperature fluctuations at different points on the wafer are estimated. Our results show that these thermal fluctuations, as well as the calculated additional TES noise caused by them, depend strongly on the heat-sink design of the wafer. We study the impact of the different heat sink designs on the noise profile of the system. Later, these results are compared to the SAFARI instrument noise requirements.

    DOI: 10.1007/s10909-022-02815-8

    Web of Science

    Scopus

    researchmap

  • Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD

    Samantha Stever

    Journal of Low Temperature Physics   209 ( 3-4 )   396 - 408   2022年

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    Feedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64- 0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiNx/Nb microstrip at 100 mK and over the frequency range 200–350 GHz, which is comparable to values previously reported in the literature.

    DOI: 10.1007/S10909-022-02808-7

    Web of Science

    Scopus

    researchmap

  • Assessment of the cosmic-ray impacts for LiteBIRD using Geant4 simulation

    Mayu Tominaga, Masahiro Tsujimoto, Hirokazu Ishino, Samantha L. Stever, Serika Tsukatsune

    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE   12180   2022年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:SPIE-INT SOC OPTICAL ENGINEERING  

    LiteBIRD is a space-borne experiment dedicated to detecting large-scale B-mode anisotropies of the linear polarization of the cosmic microwave background (CMB) predicted by the theory of inflation. It is planned to be launched in the late 2020s to the second Lagrangean point of the Sun-Earth system and map the sky in 15 frequency bands using thousands of transition edge sensor bolometers. LiteBIRD will be exposed to the cosmic-ray radiation throughout its lifetime, which may lead to the degradation of the scientific performance. Energy deposition by cosmic rays upon the focal plane bolometer detectors is considered a serious source of systematic effects. For a quantitative assessment of the effect, we present the result of Geant4 simulations to estimate the energy deposited by cosmic rays into the focal plane. We simulated different cosmic-ray components using CAD-based spacecraft models. We derive the spatial and energy distribution of the particles in the focal plane.

    DOI: 10.1117/12.2629759

    Web of Science

    Scopus

    researchmap

  • BISOU: A balloon project for spectral observations of the early universe

    Bruno Maffei, Nabila Aghanim, Jonathan Aumont, Elia Battistelli, Jens Chluba, Xavier Coulon, Paolo De Bernardis, Marian Douspis, Julien Grain, J. C. Hill, Alan Kogut, Joseph Kuruvilla, Guilaine Lagache, Juan Macias-Perez, Silvia Masi, Tomotake Matsumura, Lorenzo Mele, Alessandro Monfardini, Creidhe O'Sullivan, Luca Pagano, Giampaolo Pisano, Nicolas Ponthieu, Mathieu Remazeilles, Alessia Ritacco, Aditya Rotti, Giorgio Savini, Valentin Sauvage, Alexey Shitvov, Samantha L. Stever, Andrea Tartari, Leander Thiele, Neal Trappe, Jean François Aubrun, Andre Laurens, Dominique Pheav, François Vacher

    Proceedings of SPIE - The International Society for Optical Engineering   12190   2022年

     詳細を見る

    掲載種別:研究論文(国際会議プロシーディングス)  

    The BISOU (Balloon Interferometer for Spectral Observations of the Universe) project studies the viability and prospects of a balloon-borne spectrometer, pathfinder of a future space mission dedicated to the measurements of the CMB spectral distortions, while consolidating the instrumental concept and improving the readiness of some of its key sub-systems. A balloon concept based on a Fourier Transform Spectrometer, covering a spectral range from about 90 GHz to 2 THz, adapted from previous mission proposals such as PIXIE and FOSSIL, is being studied and modelled. Taking into account the requirements and conditions of balloon flights (i.e. residual atmosphere, observation strategy for instance), we present here the instrument concept together with the results of the CNES phase 0 study, evaluating the sensitivity to some of its potential observables. For instance, we forecast a detection of the CMB Compton y-distortion monopole with a signal-To-noise ratio of at least 5.

    DOI: 10.1117/12.2630136

    Scopus

    researchmap

  • Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB B-modes

    S. L. Stever, T. Ghigna, M. Tominaga, G. Puglisi, M. Tsujimoto, M. Zeccoli Marazzini, M. Baratto, M. Tomasi, Y. Minami, S. Sugiyama, A. Kato, T. Matsumura, H. Ishino, G. Patanchon, M. Hazumi

    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS   2021 ( 9 )   2021年9月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:IOP Publishing Ltd  

    Systematic effects arising from cosmic rays have been shown to be a significant threat to space telescopes using high-sensitivity bolometers. The LiteBIRD space mission aims to measure the polarised Cosmic Microwave Background with unprecedented sensitivity, but its positioning in space will also render it susceptible to cosmic ray effects. We present an end-to-end simulator for evaluating the expected scale of cosmic ray effects on the LiteBIRD space mission, which we demonstrate on a subset of detectors on the 166 GHz band of the Low Frequency Telescope. The simulator couples the expected proton flux at L2 with a model of the thermal response of the LFT focal plane and the electrothermal response of its superconducting detectors, producing time-ordered data which is projected into simulated sky maps and subsequent angular power spectra.

    DOI: 10.1088/1475-7516/2021/09/013

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2107.00473v1

  • LiteBIRD satellite: JAXA's new strategic L-class mission for all-sky surveys of cosmic microwave background polarization

    Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerlw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versille, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clement Leloup, Francois Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Creidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouve, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca

    SPACE TELESCOPES AND INSTRUMENTATION 2020: OPTICAL, INFRARED, AND MILLIMETER WAVE   11443   2021年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:SPIE-INT SOC OPTICAL ENGINEERING  

    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 mu K-arcmin with a typical angular resolution of 0.5 degrees at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.

    DOI: 10.1117/12.2563050

    Web of Science

    researchmap

  • Design of a Testbed for the Study of System Interference in Space CMB Polarimetry

    T. Ghigna, T. Matsumura, M. Hazumi, S. L. Stever, Y. Sakurai, N. Katayama, A. Suzuki, B. Westbrook, A. T. Lee

    JOURNAL OF LOW TEMPERATURE PHYSICS   199 ( 3-4 )   622 - 630   2020年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    LiteBIRD is a proposed JAXA satellite mission to measure the CMB B-mode polarization with unprecedented sensitivity ( r 0.001). To achieve this goal, 4676 stateof-the-art TES bolometers will observe the whole sky for 3 years from L2. These detectors, as well as the SQUID readout, are extremely susceptible to EMI and other instrumental disturbances, e.g., static magnetic field and vibration. As a result, careful analysis of the interference between the detector system and the rest of the telescope instruments is essential. This study is particularly important during the early phase of the project, in order to address potential problems before the final assembly of the whole instrument. We report our plan for the preparation of a cryogenic testbed to study the interaction between the detectors and other subsystems, especially a polarization modulator unit consisting of a magnetically rotating half-wave plate. We also present the requirements, current status and preliminary results.

    DOI: 10.1007/s10909-020-02359-9

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/1911.11902v1

  • Updated Design of the CMB Polarization Experiment Satellite LiteBIRD

    H. Sugai, P. A. R. Ade, Y. Akiba, D. Alonso, K. Arnold, J. Aumont, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, S. Beckman, M. Bersanelli, J. Borrill, F. Boulanger, M. L. Brown, M. Bucher, A. Buzzelli, E. Calabrese, F. J. Casas, A. Challinor, V. Chan, Y. Chinone, J. -F. Cliche, F. Columbro, A. Cukierman, D. Curtis, P. Danto, P. de Bernardis, T. de Haan, M. De Petris, C. Dickinson, M. Dobbs, T. Dotani, L. Duband, A. Ducout, S. Duff, A. Duivenvoorden, J. -M. Duval, K. Ebisawa, T. Elleflot, H. Enokida, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, K. Ganga, J. -R. Gao, R. Genova-Santos, T. Ghigna, A. Gomez, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versille, D. Herranz, C. Hill, G. Hilton, Y. Hirota, E. Hivon, R. Hlozek, D. -T. Hoang, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. C. Jaehnig, M. Jones, T. Kaga, S. Kashima, Y. Kataoka, N. Katayama, T. Kawasaki, R. Keskitalo, A. Kibayashi, T. Kikuchi, K. Kimura, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, C. L. Kuo, N. Kurinsky, A. Kushino, M. Kuwata-Gonokami, L. Lamagna, M. Lattanzi, A. T. Lee, E. Linder, B. Maffei, D. Maino, M. Maki, A. Mangilli, E. Martinez-Gonzalez, S. Masi, R. Mathon, T. Matsumura, A. Mennella, M. Migliaccio, Y. Minami, K. Mistuda, D. Molinari, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, R. Nagata, S. Nakamura, T. Namikawa, P. Natoli, S. Nerval, T. Nishibori, H. Nishino, Y. Nomura, F. Noviello, C. O'Sullivan, H. Ochi, H. Ogawa, H. Ogawa, H. Ohsaki, I. Ohta, N. Okada, N. Okada, L. Pagano, A. Paiella, D. Paoletti, G. Patanchon, F. Piacentini, G. Pisano, G. Polenta, D. Poletti, T. Prouve, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Remazeilles, G. Roudil, J. A. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, G. Savini, D. Scott, Y. Sekimoto, B. D. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, P. Spizzi, S. L. Stever, R. Stompor, S. Sugiyama, A. Suzuki, J. Suzuki, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takeda, A. Taylor, E. Taylor, Y. Terao, K. L. Thompson, B. Thorne, M. Tomasi, H. Tomida, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, J. Ullom, S. Uozumi, S. Utsunomiya, J. Van Lanen, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, F. Voisin, I. Walker, N. Watanabe, I. Wehus, J. Weller, B. Westbrook, B. Winter, E. Wollack, R. Yamamoto, N. Y. Yamasaki, M. Yanagisawa, T. Yoshida, J. Yumoto, M. Zannoni, A. Zonca

    JOURNAL OF LOW TEMPERATURE PHYSICS   199 ( 3-4 )   1107 - 1117   2020年5月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    Recent developments of transition-edge sensors (TESs), based on extensive experience in ground-based experiments, have been making the sensor techniques mature enough for their application on future satellite cosmic microwave background (CMB) polarization experiments. LiteBIRD is in the most advanced phase among such future satellites, targeting its launch in Japanese Fiscal Year 2027 (2027FY) with JAXA's H3 rocket. It will accommodate more than 4000 TESs in focal planes of reflective low-frequency and refractive medium-and-high-frequency telescopes in order to detect a signature imprinted on the CMB by the primordial gravitational waves predicted in cosmic inflation. The total wide frequency coverage between 34 and 448 GHz enables us to extract such weak spiral polarization patterns through the precise subtraction of our Galaxy's foreground emission by using spectral differences among CMB and foreground signals. Telescopes are cooled down to 5 K for suppressing thermal noise and contain polarization modulators with transmissive half-wave plates at individual apertures for separating sky polarization signals from artificial polarization and for mitigating from instrumental 1/f noise. Passive cooling by using V-grooves supports active cooling with mechanical coolers as well as adiabatic demagnetization refrigerators. Sky observations from the second Sun-Earth Lagrangian point, L2, are planned for 3 years. An international collaboration between Japan, the USA, Canada, and Europe is sharing various roles. In May 2019, the Institute of Space and Astronautical Science, JAXA, selected LiteBIRD as the strategic large mission No. 2.

    DOI: 10.1007/s10909-019-02329-w

    Web of Science

    Scopus

    researchmap

  • Benefits of Bolometer Joule Stepping and Joule Pulsing

    S. L. Stever, F. Couchot, V. Sauvage, N. Coron

    JOURNAL OF LOW TEMPERATURE PHYSICS   199 ( 1-2 )   110 - 117   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    We introduce the 'Joule stepping' technique, whereupon a constantly biased bolometer has its bias voltage modified by a small additional step. We demonstrate this technique using a composite NTD semiconductor bolometer and a pulsing device that sends an extra step in voltage. We demonstrate the results of the technique over a range of bias voltages at 100, 200 and 300 mK. Joule stepping allows us to directly measure long thermal tails with low amplitudes in the response of the global thermal architecture of bolometers and could be a useful tool to quickly and easily calibrate the thermal time response of individual bolometric detectors or channels. We also show that the derivative of the Joule step is equivalent to the bolometer response to a delta-pulse (or Joule pulse), which allows for greater understanding of transient behaviour with a better signal-to-noise ratio than pulsing alone can provide. Finally, we compare Joule step pulses with pulses produced by alpha particles, finding a good agreement between their fast decay constants, but a discrepancy between their thermal decay constants.

    DOI: 10.1007/s10909-019-02302-7

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/1912.04276v1

  • Thermal Simulations of Temperature Excursions on the Athena X-IFU Detector Wafer from Impacts by Cosmic Rays

    S. L. Stever, P. Peille, M. P. Bruijn, A. Roussafi, S. Lotti, C. Macculi, R. M. J. Janssen, R. den Hartog

    JOURNAL OF LOW TEMPERATURE PHYSICS   199 ( 1-2 )   264 - 274   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    We present the design and implementation of a thermal model, developed in COMSOL, aiming to probe the wafer-scale thermal response arising from realistic rates and energies of cosmic rays at L2 impacting the detector wafer of Athena X-IFU. The wafer thermal model is a four-layer 2D model, where two layers represent the constituent materials (Si bulk and Si3N4 membrane) and two layers represent the Au metallization layer's phonon and electron temperatures. We base the simulation geometry on the current specifications for the X-IFU detector wafer and simulate cosmic ray impacts using a simple power injection into the Si bulk. We measure the temperature at the point of the instrument's most central TES detector. By probing the response of the system and pulse characteristics as a function of the thermal input energy and location, we reconstruct cosmic ray pulses in Python. By utilizing this code, along with the results of the GEANT4 simulations produced for X-IFU, we produce realistic time-ordered data (TOD) of the temperature seen by the central TES, which we use to simulate the degradation of the energy resolution of the instrument in space-like conditions on this wafer. We find a degradation to the energy resolution of 7 keV X-rays of approximate to 0.04 eV. By modifying wafer parameters and comparing the simulated TOD, this study is a valuable tool for probing design changes on the thermal background seen by the detectors.

    DOI: 10.1007/s10909-020-02380-y

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2001.11646v1

  • Irradiation Tests of Superconducting Detectors and Comparison with Simulations

    Y. Minami, Y. Akiba, S. Beckman, M. Hazumil, C. Kuo, N. A. Kurinsky, H. Kutsuma, A. T. Lee, S. Mima, C. R. Raum, T. Sasse, S. L. Stever, A. Suzuki, B. Westbrook

    JOURNAL OF LOW TEMPERATURE PHYSICS   199 ( 1-2 )   118 - 129   2020年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    For the future satellite mission at the second sun-earth Lagrangian point (L2), we need to mitigate phonon propagation created by cosmic rays to superconducting detectors. We simulate phonon propagation in silicon substrate and show that putting a metal layer on the substrate or making hole in the substrate reduces the propagation. We also show a function which shows the response of a TES bolometer on a substrate. To validate these theoretical expectations, we make irradiation tests using two types of superconducting detectors: transition edge sensor bolometers and kinetic inductance detectors. From the tests, we show that putting metal can reduce correlations between detectors and number of hit events from charged particles.

    DOI: 10.1007/s10909-020-02393-7

    Web of Science

    Scopus

    researchmap

  • Quantifying the Effect of Cosmic Ray Showers on the X-IFU Energy Resolution

    P. Peille, R. den Hartog, A. Miniussi, S. Stever, S. Bandler, C. Kirsch, M. Lorenz, T. Dauser, J. Wilms, S. Lotti, F. Gatti, C. Macculi, B. Jackson, F. Pajot

    Journal of Low Temperature Physics   199 ( 1-2 )   240 - 249   2020年4月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The X-ray Integral Field Unit (X-IFU) will operate an array of more than 3000 Transition Edge Sensor pixels at 90 mK with an unprecedented energy resolution of 2.5 eV at 7 keV. In space, primary cosmic rays and secondary particles produced in the instrument structure will continuously deposit energy on the detector wafer and induce fluctuations on the pixels’ thermal bath. We have investigated through simulations of the X-IFU readout chain how these fluctuations eventually influence the energy measurement of X-ray photons. Realistic timelines of thermal bath fluctuations at different positions in the array are generated as a function of a thermal model and the expected distribution of the deposited energy of the charged particles. These are then used to model the TES response to these thermal perturbations and their influence on the onboard energy reconstruction process. Overall, we show that with adequate heatsinking, the main energy resolution degradation effect remains minimal and within the associated resolution allocation of 0.2 eV. We further study how a dedicated triggering algorithm could be put in place to flag the rarer large thermal events.

    DOI: 10.1007/s10909-019-02330-3

    Scopus

    researchmap

  • Inflight performance of the PILOT balloon-borne experiment

    A. Mangilli, G. Foënard, J. Aumont, A. Hughes, B. Mot, J. Ph Bernard, A. Lacourt, I. Ristorcelli, L. Montier, Y. Longval, P. Ade, Y. André, L. Bautista, P. deBernardis, O. Boulade, F. Bousqet, M. Bouzit, N. Bray, V. Buttice, M. Charra, M. Chaigneau, B. Crane, E. Doumayrou, J. P. Dubois, X. Dupac, C. Engel, P. Etcheto, Ph Gelot, M. Griffin, S. Grabarnik, P. Hargrave, Y. Lepennec, R. Laureijs, B. Leriche, S. Maestre, B. Maffei, J. Martignac, C. Marty, W. Marty, S. Masi, F. Mirc, R. Misawa, J. M. Nicot, J. Montel, J. Narbonne, F. Pajot, E. Pérot, G. Parot, J. Pimentao, G. Pisano, N. Ponthieu, L. Rodriguez, G. Roudil, H. Roussel, M. Salatino, G. Savini, O. Simonella, M. Saccoccio, S. Stever, P. Tapie, J. Tauber, C. Tibbs, C. Tucker

    Experimental Astronomy   48 ( 2-3 )   265 - 295   2019年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240 µm (1.2 THz). A first PILOT flight of the experiment took place from Timmins, Ontario, Canada, in September 2015 and a second flight took place from Alice Springs, Australia in April 2017. In this paper, we present the inflight performance of the instrument. Here we concentrate on the instrument performance as measured during the second flight, but refer to the performance observed during the first flight, if it was significantly different. We present a short description of the instrument and the flights. We measure the time constants of the detectors using the decay of the observed signal during flight following high energy particle impacts (glitches) and switching off the instrument’s internal calibration source. We use these time constants to deconvolve the timelines and analyze the optical quality of the instrument as measured on planets. We then analyze the structure and polarization of the instrumental background. We measure the detector response flat field and its time variations using the signal from the residual atmosphere and from the internal calibration source. Finally, we analyze the spectral and temporal properties of the detector noise. The inflight performance is found to be satisfactory and globally in line with expectations from ground calibrations. We conclude by assessing the expected inflight sensitivity of the instrument in light of the measured inflight performance.

    DOI: 10.1007/s10686-019-09648-6

    Scopus

    researchmap

  • Characterisation and modelling of the interaction between sub-Kelvin bolometric detectors and cosmic rays

    Samantha Lynn Stever

    2019年1月

     詳細を見る

    記述言語:英語   掲載種別:学位論文(博士)  

    We have studied the effect of cosmic rays in detectors using a composite NTD germanium bolometer at low temperatures and an alpha particle source as a generic source of pulses. We have characterised this bolometer, finding that its pulse shape is due to a combination of its impulse response function (the sum of two double exponentials), and position-dependent effects arising from thermalisation of ballistic phonons into thermal phonons in its absorber. We have derived a scheme for describing the pulse shape in this bolometer, comparing a generic mathematical pulse shape with a second description based on thermal physics. We find that ballistic phonon thermalisation, followed by thermal diffusion, play a significant role in the pulse shape, along with electro-thermal coupling and temperature-dependent electrical effects. We have modelled the pulses, finding that their behaviour can be reproduced accounting for ballistic phonon reflection off the absorber border, with a strong thermal coupling to the bolometer’s central sensor. With these findings, we also investigate the effects of cosmic rays on the Athena X-Ray Integral Field Unit (X-IFU), producing simulated timelines and testing the average RMS temperature increase on the detector wafer, showing that the expected cosmic ray thermal flux is within the same order of magnitudeas the maximum allowed ΔTRMS, posing a threat to the instrument’s energy resolution budget.

    researchmap

  • Towards a physical model for energy deposition via cosmic rays into sub-K bolometric detectors

    S. L. Stever, F. Couchot, N. Coron, B. Maffei

    JOURNAL OF INSTRUMENTATION   14   2019年1月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:IOP PUBLISHING LTD  

    Cosmology space missions have been known to be particularly sensitive to systematic effects arising from the interaction between cosmic rays and highly sensitive detectors below 200 mK. To remove this signal, one must first understand the deposition and dissipation of energy into these detectors. Using a well-known NTD germanium composite bolometer, we simulate the effect of cosmic rays using a radioactive source in the laboratory. Through analysis of experimental data, we find that the glitch signal shape is a function of incoming particle position, as well as the incoming particle energy. We report also on nonlinear effects in the fit, in order to lay the groundwork towards a new physical model for this energy propagation in the bolometer.

    DOI: 10.1088/1748-0221/14/01/P01012

    Web of Science

    researchmap

  • A new pulse shape description for alpha particle pulses in a highly-sensitive sub-Kelvin bolometer

    S. L. Stever, F. Couchot, N. Coron, R. M. J. Janssen, B. Maffei

    SPACE TELESCOPES AND INSTRUMENTATION 2018: OPTICAL, INFRARED, AND MILLIMETER WAVE   10698   2018年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:SPIE-INT SOC OPTICAL ENGINEERING  

    The next generation of cosmology space missions will be sensitive to parasitic signals arising from cosmic rays. Using a composite bolometer, we have investigated pulses produced by alpha particles in order to understand the movement of energy produced by ionising radiation. Using a series of measurements at 100 mK, we have compared the typical fitting algorithm (a mathematical model) with a second method of pulse interpretation by convolving the detector's thermal response function with a starting profile of thermalised athermal phonons, taking into account the effects of heat propagation. Using this new fitting method, we have eliminated the need for a non-physical quadratic nonlinearity factor produced using more common methods, and we find a pulse form in good agreement with known aspects of thermal physics. This work is carried forward in the effort to produce a physical model for energy deposition in this detector. The modelling is motivated by the reproduction of statistical features in the experimental dataset, and the new interpretation of alpha pulse shapes represents an improvement in the current understanding of the energy propagation mechanisms in this detector.

    DOI: 10.1117/12.2313968

    Web of Science

    researchmap

  • Commissioning of a common-user test facility to evaluate the effects of high-energy particles on next-generation cryogenic detectors

    Reinier M. J. Janssen, Samantha L. Stever, Valentin Sauvage, Gerard Rouille, Noel Coron, Medhi Bouzit, Bruno Maffei

    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VIII   10709   2018年

     詳細を見る

    記述言語:英語   掲載種別:研究論文(国際会議プロシーディングス)   出版者・発行元:SPIE-INT SOC OPTICAL ENGINEERING  

    Cosmic rays affect the performance of any detector in space through the creation of spurious signal and/or slow build-up of radiation damage. To mitigate the effects of these high-energy particles on the observations of next-generation space missions, the interaction between state-of-the-art detectors will have to be understood through simulation and experimental verification. We present the first measurement results of a new cryogenic system designed to become a common-user test facility to evaluate the effects of high-energy particles on arrays of these high-sensitivity detectors. The system is based on pulse-tube precooled dilution refrigerator with a large experimental volume (phi = 29 cm, H = 30 cm). At 100 mK the system provides 650 mu W of cooling power and an out-of-the box thermal stability of 76 mu K rms. A first experiment with a semiconducting bolometer from the DIABOLO experiment shows a responsivity and noise level consistent with previous measurement in different cryogenic systems. However, the pulse-tube induced vibrations show as clear features in the noise. To irradiate the detectors a particle beam, such as the 25 MeV proton beam of the nearby ALTO facility, can be coupled to one of four ports. Simulations show that the aluminum-coated Mylar windows do not significantly affect the 25 MeV proton beam of TANDEM. First experiments at the ALTO facility for system verification are expected early 2019. Until that time, the thermal stability, vibration damping and EMI shielding will be improved and a flexible wiring will be developed, to accommodate multiple detector types.

    DOI: 10.1117/12.2311686

    Web of Science

    researchmap

  • The PILOT optical alignment for its first flight

    B. Mot, Y. Longval, J. Ph Bernard, P. Ade, Y. André, J. Aumont, L. Bautista, N. Bray, P. deBernardis, O. Boulade, F. Bousquet, M. Bouzit, V. Buttice, A. Caillat, M. Chaigneau, C. Coudournac, B. Crane, F. Douchin, E. Doumayrou, J. P. Dubois, C. Engel, P. Etcheto, P. Gélot, M. Griffin, G. Foenard, S. Grabarnik, P. Hargrave, A. Hughes, R. Laureijs, Y. Lepennec, B. Leriche, S. Maestre, B. Maffei, A. Mangilli, J. Martignac, C. Marty, W. Marty, S. Masi, F. Mirc, R. Misawa, J. Montel, L. Montier, J. Narbonne, J. M. Nicot, F. Pajot, G. Parot, E. Pérot, J. Pimentao, G. Pisano, N. Ponthieu, I. Ristorcelli, L. Rodriguez, G. Roudil, M. Saccoccio, M. Salatino, G. Savini, S. Stever, O. Simonella, P. Tapie, J. Tauber, C. Tibbs, J. P. Torre, C. Tucker

    CEAS Space Journal   9 ( 4 )   459 - 471   2017年12月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 and 550 µm with an angular resolution of about two arc-min. PILOT optics is composed of an off-axis Gregorian telescope and a refractive re-imager system. All these optical elements, except the primary mirror, are in a cryostat cooled to 3K. We used optical and 3D measurements combined with thermo-elastic modeling to perform the optical alignment. This paper describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

    DOI: 10.1007/s12567-017-0159-3

    Scopus

    researchmap

▼全件表示

MISC

  • Modelling signal oscillations arising from electro-thermal coupling and stray capacitance in semiconducting bolometer impulse response

    Samantha Lynn Stever, François Couchot

    JOURNAL OF LOW TEMPERATURE PHYSICS   209 ( 3-4 )   598 - 605   2022年8月

     詳細を見る

    記述言語:英語   出版者・発行元:SPRINGER/PLENUM PUBLISHERS  

    Electro-thermal coupling in semiconductor bolometers is known to create
    nonlinearities in transient detector response, particularly when such detectors
    are biased outside of their ideal regions (i.e. past the turnover point in
    their IV curves). This effect is further compounded in the case where a stray
    capacitance in the bias circuit is present, for example in long cryogenic
    cabling. We present a physical model of the influence of such electro-thermal
    coupling and stray capacitance in a composite NTD germanium bolometer, in which
    previous experimental data at high $V_{\rm bias}$ resulted in oscillations of
    the impulse response of the detector to irradiation by alpha particles. The
    model reproduces the transient oscillations seen in the experimental data,
    depending both on electro-thermal coupling and stray capacitance. This is
    intended as an experimental and simulated example of such oscillations,
    demonstrated for the specific case of this bolometric detector.

    DOI: 10.1007/s10909-022-02827-4

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2208.01334v1

  • Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey

    LiteBIRD Collaboration, E. Allys, K. Arnold, J. Aumont, R. Aurlien, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, L. Bautista, D. Beck, S. Beckman, M. Bersanelli, F. Boulanger, M. Brilenkov, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Catalano, V. Chan, K. Cheung, Y. Chinone, S. E. Clark, F. Columbro, G. D'Alessandro, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, T. Dotani, J. M. Duval, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, M. Gerbino, M. Gervasi, R. T. Génova-Santos, T. Ghigna, S. Giardiello, E. Gjerløw, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hazumi, S. Henrot-Versillé, B. Hensley, L. T. Hergt, D. Herman, E. Hivon, R. A. Hlozek, A. L. Hornsby, Y. Hoshino, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, H. Ishino, G. Jaehnig, N. Katayama, A. Kato, R. Keskitalo, T. Kisner, Y. Kobayashi, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, C. L. Kuo, L. Lamagna, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, G. Luzzi, J. Macias-Perez, B. Maffei, D. Maino, S. Mandelli, E. Martínez-González, S. Masi, M. Massa, S. Matarrese, F. T. Matsuda, T. Matsumura, L. Mele, M. Migliaccio, Y. Minami, A. Moggi, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Nagano, T. Nagasaki, R. Nagata, R. Nakano, T. Namikawa, F. Nati, P. Natoli, S. Nerval, F. Noviello, K. Odagiri, S. Oguri, H. Ohsaki, L. Pagano, A. Paiella, D. Paoletti, A. Passerini, G. Patanchon, F. Piacentini, M. Piat, G. Polenta, D. Poletti, T. Prouvé, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, M. Remazeilles, A. Ritacco, G. Roudil, J. A. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sasaki, D. Scott, Y. Sekimoto, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, F. Spinella, S. Stever, R. Stompor, S. Sugiyama, R. M. Sullivan, A. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, Y. Takase, A. Tartari, Y. Terao, J. Thermeau, H. Thommesen, K. L. Thompson, M. Tomasi, M. Tominaga, M. Tristram, M. Tsuji, M. Tsujimoto, L. Vacher, P. Vielva, N. Vittorio, W. Wang, K. Watanuki, I. K. Wehus, J. Weller, B. Westbrook, J. Wilms, E. J. Wollack, J. Yumoto, M. Zannoni

    Progress of Theoretical and Experimental Physics   2023 ( 4 )   2022年2月

     詳細を見る

    出版者・発行元:Oxford University Press (OUP)  

    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and
    Inflation from cosmic background Radiation Detection, is a space mission for
    primordial cosmology and fundamental physics. The Japan Aerospace Exploration
    Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class
    (L-class) mission, with an expected launch in the late 2020s using JAXA's H3
    rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where
    it will map the cosmic microwave background (CMB) polarization over the entire
    sky for three years, with three telescopes in 15 frequency bands between 34 and
    448 GHz, to achieve an unprecedented total sensitivity of 2.2$\mu$K-arcmin,
    with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary
    scientific objective of LiteBIRD is to search for the signal from cosmic
    inflation, either making a discovery or ruling out well-motivated inflationary
    models. The measurements of LiteBIRD will also provide us with insight into the
    quantum nature of gravity and other new physics beyond the standard models of
    particle physics and cosmology. We provide an overview of the LiteBIRD project,
    including scientific objectives, mission and system requirements, operation
    concept, spacecraft and payload module design, expected scientific outcomes,
    potential design extensions and synergies with other projects.

    DOI: 10.1093/ptep/ptac150

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2202.02773v1

  • In-flight polarization angle calibration for LiteBIRD: blind challenge and cosmological implications

    Samantha Stever

    Journal of Cosmology and Astroparticle Physics   2022 ( 1 )   2022年

     詳細を見る

    We present a demonstration of the in-flight polarization angle calibration
    for the JAXA/ISAS second strategic large class mission, LiteBIRD, and estimate
    its impact on the measurement of the tensor-to-scalar ratio parameter, r, using
    simulated data. We generate a set of simulated sky maps with CMB and polarized
    foreground emission, and inject instrumental noise and polarization angle
    offsets to the 22 (partially overlapping) LiteBIRD frequency channels. Our
    in-flight angle calibration relies on nulling the EB cross correlation of the
    polarized signal in each channel. This calibration step has been carried out by
    two independent groups with a blind analysis, allowing an accuracy of the order
    of a few arc-minutes to be reached on the estimate of the angle offsets. Both
    the corrected and uncorrected multi-frequency maps are propagated through the
    foreground cleaning step, with the goal of computing clean CMB maps. We employ
    two component separation algorithms, the Bayesian-Separation of Components and
    Residuals Estimate Tool (B-SeCRET), and the Needlet Internal Linear Combination
    (NILC). We find that the recovered CMB maps obtained with algorithms that do
    not make any assumptions about the foreground properties, such as NILC, are
    only mildly affected by the angle miscalibration. However, polarization angle
    offsets strongly bias results obtained with the parametric fitting method. Once
    the miscalibration angles are corrected by EB nulling prior to the component
    separation, both component separation algorithms result in an unbiased
    estimation of the r parameter. While this work is motivated by the conceptual
    design study for LiteBIRD, its framework can be broadly applied to any CMB
    polarization experiment. In particular, the combination of simulation plus
    blind analysis provides a robust forecast by taking into account not only
    detector sensitivity but also systematic effects.

    DOI: 10.1088/1475-7516/2022/01/039

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2111.09140v1

  • Overview of the Medium and High Frequency Telescopes of the LiteBIRD satellite mission

    L. Montier, B. Mot, P. de Bernardis, B. Maffei, G. Pisano, F. Columbro, J. E. Gudmundsson, S. Henrot-Versillé, L. Lamagna, J. Montgomery, T. Prouvé, M. Russell, G. Savini, S. Stever, K. L. Thompson, M. Tsujimoto, C. Tucker, B. Westbrook, P. A. R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. F. Cliche, L. Colombo, J. Cubas, A. Cukierman, D. Curtis, G. D'Alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, T. de Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, D. Herman, D. Herranz, C. A. Hill, G. Hilton, Y. Hirota, E. Hivon, R. A. Hlozek, Y. Hoshino, E. de la Hoz, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, J. V. Lanen, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, T. Louis, G. Luzzi, T. Maciaszek, D. Maino, M. Maki, S. Mandelli, E. Martinez-Gonzalez, S. Masi, T. Matsumura, A. Mennella, M. Migliaccio, Y. Minami, K. Mitsuda, G. Morgante, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, T. Namikawa, P. Natoli, S. Nerval, T. Nishibori, H. Nishino, C. O'Sullivan, H. Ogawa, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, N. Okada, L. Pagano, A. Paiella, D. Paoletti, G. Patanchon, J. Peloton, F. Piacentini, G. Polenta, D. Poletti, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, M. Remazeilles, A. Ritacco, G. Roudil, J. A. Rubino-Martin, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, R. Stompor, H. Sugai, S. Sugiyama, A. Suzuki, J. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, E. Taylor, Y. Terao, H. Thommesen, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, J. Ullom, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, I. Wehus, J. Weller, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, M. Zannoni, A. Zonca

    Proceedings of SPIE - The International Society for Optical Engineering   11443   2021年2月

     詳細を見る

    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for
    the existence of the primordial gravitational waves produced during the
    inflationary phase of the Universe, through the measurements of their imprint
    onto the polarization of the cosmic microwave background (CMB). These
    measurements, requiring unprecedented sensitivity, will be performed over the
    full sky, at large angular scales, and over 15 frequency bands from 34GHz to
    448GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-,
    Medium- and High-Frequency Telescope (respectively LFT, MFT and HFT). We
    present in this paper an overview of the design of the Medium-Frequency
    Telescope (89-224GHz) and the High-Frequency Telescope (166-448GHz), the
    so-called MHFT, under European responsibility, which are two cryogenic
    refractive telescopes cooled down to 5K. They include a continuous rotating
    half-wave plate as the first optical element, two high-density polyethylene
    (HDPE) lenses and more than three thousand transition-edge sensor (TES)
    detectors cooled to 100mK. We provide an overview of the concept design and the
    remaining specific challenges that we have to face in order to achieve the
    scientific goals of LiteBIRD.

    DOI: 10.1117/12.2562243

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2102.00809v1

  • Simulation of the cosmic ray effects for the LiteBIRD satellite observing the CMB B-mode polarization

    Mayu Tominaga, Masahiro Tsujimoto, Samantha Lynn Stever, Tommaso Ghigna, Hirokazu Ishino, Ken Ebisawa

    Proceedings of SPIE - The International Society for Optical Engineering   11453   2021年1月

     詳細を見る

    The LiteBIRD satellite is planned to be launched by JAXA in the late 2020s.
    Its main purpose is to observe the large-scale B-mode polarization in the
    Cosmic Microwave Background (CMB) anticipated from the Inflation theory.
    LiteBIRD will observe the sky for three years at the second Lagrangian point
    (L2) of the Sun-Earth system. Planck was the predecessor for observing the CMB
    at L2, and the onboard High Frequency Instrument (HFI) suffered contamination
    by glitches caused by the cosmic-ray (CR) hits. We consider the CR hits can
    also be a serious source of the systematic uncertainty for LiteBIRD. Thus, we
    have started a comprehensive end-to-end simulation study to assess impact of
    the CR hits for the LiteBIRD detectors. Here, we describe procedures to make
    maps and power spectra from the simulated time-ordered data, and present
    initial results. Our initial estimate is that $C_l^{BB}$ by CR is $\sim 2
    \times 10^{-6}~\mu$K$_{\mathrm{CMB } }^{2}$ in a one-year observation with 12
    detectors assuming that the noise is 1~aW/$\sqrt{\mathrm{Hz } }$ for the
    differential mode of two detectors constituting a polarization pair.

    DOI: 10.1117/12.2576127

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2101.08410v1

  • Concept Design of Low Frequency Telescope for CMB B-mode Polarization satellite LiteBIRD

    Y. Sekimoto, P. A. R. Ade, A. Adler, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. de Bernardis, M. Bersanelli, J. Bonis, J. Borrill, F. Boulanger, S. Bounissou, M. Brilenkov, M. Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. J. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. F. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, D. Curtis, G. D'Alessandro, N. Dachlythra, M. De Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, J. R. Gao, R. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, E. Gjerløw, M. L. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. E. Gudmundsson, T. de Haan, N. W. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versillé, D. Herman, D. Herranz, C. A. Hill, G. Hilton, Y. Hirota, E. Hivon, R. A. Hlozek, Y. Hoshino, E. de la Hoz, J. Hubmayr, K. Ichiki, T. iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, L. Lamagna, J. V. Lanen, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, T. Louis, G. Luzzi, T. Maciaszek, B. Maffei, D. Maino, M. Maki, S. Mandelli, E. Martinez-Gonzalez, S. Masi, T. Matsumura, A. Mennella, M. Migliaccio, Y. Minanmi, K. Mitsuda, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, T. Namikawa, P. Natoli, S. Nerval, T. Nishibori, H. Nishino, C. O'Sullivan, H. Ogawa, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, N. Okada, L. Pagano, A. Paiella, D. Paoletti, G. Patanchon, J. Peloton, F. Piacentini, G. Pisano, G. Polenta, D. Poletti, T. Prouvé, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, M. Remazeilles, A. Ritacco, G. Roudil, J. A. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, S. Stever, R. Stompor, H. Sugai, S. Sugiyama, A. Suzuki, J. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, E. Taylor, Y. Terao, H. Thommesen, K. L. Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, J. Ullom, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, I. Wehus, J. Weller, B. Westbrook, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, M. Zannoni, A. Zonca

    Proceedings of SPIE - The International Society for Optical Engineering   11453   2021年1月

     詳細を見る

    LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to
    observe the cosmic microwave background (CMB) $B$-mode polarization over the
    full sky at large angular scales. The challenges of LiteBIRD are the wide
    field-of-view (FoV) and broadband capabilities of millimeter-wave polarization
    measurements, which are derived from the system requirements. The possible
    paths of stray light increase with a wider FoV and the far sidelobe knowledge
    of $-56$ dB is a challenging optical requirement. A crossed-Dragone
    configuration was chosen for the low frequency telescope (LFT : 34--161 GHz),
    one of LiteBIRD's onboard telescopes. It has a wide field-of-view ($18^\circ
    \times 9^\circ$) with an aperture of 400 mm in diameter, corresponding to an
    angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0
    and the crossing angle of the optical axes of 90$^\circ$ are chosen after an
    extensive study of the stray light. The primary and secondary reflectors have
    rectangular shapes with serrations to reduce the diffraction pattern from the
    edges of the mirrors. The reflectors and structure are made of aluminum to
    proportionally contract from warm down to the operating temperature at $5\,$K.
    A 1/4 scaled model of the LFT has been developed to validate the wide
    field-of-view design and to demonstrate the reduced far sidelobes. A
    polarization modulation unit (PMU), realized with a half-wave plate (HWP) is
    placed in front of the aperture stop, the entrance pupil of this system. A
    large focal plane with approximately 1000 AlMn TES detectors and frequency
    multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous
    antennas have broadband capability. Performance specifications of the LFT and
    an outline of the proposed verification plan are presented.

    DOI: 10.1117/12.2561841

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2101.06342v1

  • Detector fabrication development for the LiteBIRD satellite mission

    Benjamin Westbrook, Christopher Raum, Shawn Beckman, Adrian T. Lee, Nicole Farias, Trevor Sasse, Aritoki Suzuki, Elijah Kane, Jason E. Austermann, James A Beall, Shannon M. Duff, Johannes Hubmayr, Gene C. Hilton, Jeff Van Lanen, Michael R. Vissers, Michael R. Link, Greg Jaehnig, Nils Halverson, Tommaso Ghinga, Samantha Stever, Yuto Minami, Keith L. Thompson, Megan Russell, Kam Arnold, Joseph Siebert, Maximiliano Silva-Feaver, the LiteBIRD Joint Study Group

    Proceedings of SPIE - The International Society for Optical Engineering   11443   2021年1月

     詳細を見る

    LiteBIRD is a JAXA-led strategic Large-Class satellite mission designed to
    measure the polarization of the cosmic microwave background and cosmic
    foregrounds from 34 to 448 GHz across the entire sky from L2 in the late
    2020's. The primary focus of the mission is to measure primordially generated
    B-mode polarization at large angular scales. Beyond its primary scientific
    objective LiteBIRD will generate a data-set capable of probing a number of
    scientific inquiries including the sum of neutrino masses. The primary
    responsibility of United States will be to fabricate the three flight model
    focal plane units for the mission. The design and fabrication of these focal
    plane units is driven by heritage from ground based experiments and will
    include both lenslet-coupled sinuous antenna pixels and horn-coupled orthomode
    transducer pixels. The experiment will have three optical telescopes called the
    low frequency telescope, mid frequency telescope, and high frequency telescope
    each of which covers a portion of the mission's frequency range. JAXA is
    responsible for the construction of the low frequency telescope and the
    European Consortium is responsible for the mid- and high- frequency telescopes.
    The broad frequency coverage and low optical loading conditions, made possible
    by the space environment, require development and adaptation of detector
    technology recently deployed by other cosmic microwave background experiments.
    This design, fabrication, and characterization will take place at UC Berkeley,
    NIST, Stanford, and Colorado University, Boulder. We present the current status
    of the US deliverables to the LiteBIRD mission.

    DOI: 10.1117/12.2562978

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2101.05306v1

  • Simulations of athermal phonon propagation in a cryogenic semiconducting bolometer

    Samantha Lynn Stever, François Couchot, Bruno Maffei

    Proceedings of SPIE - The International Society for Optical Engineering   11453   2021年1月

     詳細を見る

    記述言語:英語   出版者・発行元:SPIE-INT SOC OPTICAL ENGINEERING  

    We present three Monte Carlo models for the propagation of athermal phonons
    in the diamond absorber of a composite semiconducting bolometer `Bolo 184'.
    Previous measurements of the response of this bolometer to impacts by $\alpha$
    particles show a strong dependence on the location of particle incidence, and
    the shape of the response function is determined by the propagation and
    thermalisation of athermal phonons. The specific mechanisms of athermal phonon
    propagation at this time were undetermined, and hence we have developed three
    models for probing this behaviour by attempting to reproduce the statistical
    features seen in the experimental data. The first two models assume a phonon
    thermalisation length determined by a mean free path $\lambda$, where the first
    model assumes that phonons thermalise at the borders of the disc (with a small
    $\lambda$) and the second assumes that they reflect (with a $\lambda$ larger
    than the size of the disc). The third model allows athermal photons to
    propagate along their geometrical line of sight (similar to ray optics),
    gradually losing energy. We find that both the reflective model and the
    geometrical model reproduce the features seen in experimental data, whilst the
    model assuming phonon thermalisation at the disc border produces unrealistic
    results. There is no significant dependence on directionality of energy
    absorption in the geometrical model, and in the schema of this thin crystalline
    diamond, a reflective absorber law and a geometrical law both produce
    consistent results.

    DOI: 10.1117/12.2561969

    Web of Science

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/2101.03318v1

  • The geometry of the magnetic field in the Central Molecular Zone measured by PILOT

    A. Mangilli, J. Aumont, J. -Ph. Bernard, A. Buzzelli, G. de Gasperis, J. B. Durrive, K. Ferrière, G. Foënard, A. Hughes, A. Lacourt, R. Misawa, L. Montier, B. Mot, I. Ristorcelli, H. Roussel, P. Ade, D. Alina, P. de Bernardis, E. de Gouveia Dal Pino, J. P. Dubois, C. Engel, P. Hargrave, R. Laureijs, Y. Longval, B. Maffei, A. M. Magalhães, C. Marty, S. Masi, J. Montel, F. Pajot, L. Rodriguez, M. Salatino, M. Saccoccio, S. Stever, J. Tauber, C. Tibbs, C. Tucker

    Astronomy and Astrophysics   630   2019年1月

     詳細を見る

    We present the first far infrared (FIR) dust emission polarization map
    covering the full extent Milky Way's Central molecular zone (CMZ). The data,
    obtained with the PILOT balloon-borne experiment, covers the Galactic Center
    region $-2\,^\circ<l<2\,^\circ$, $-4\,^\circ<b<3\,^\circ$ at a wavelength of
    240 $\mu$m and an angular resolution $2.2\,'$. From our measured dust
    polarization angles, we infer a magnetic field orientation projected onto the
    plane of the sky that is remarkably ordered over the full extent of the CMZ,
    with an average tilt angle of $\simeq 22\,^\circ$ clockwise with respect to the
    Galactic plane. Our results confirm previous claims that the field traced by
    dust polarized emission is oriented nearly orthogonal to the field traced by
    GHz radio synchrotron emission in the Galactic Center region. The observed
    field structure is globally compatible with the latest Planck polarization data
    at 353 GHz and 217 GHz. Upon subtraction of the extended emission in our data,
    the mean field orientation that we obtain shows good agreement with the mean
    field orientation measured at higher angular resolution by the JCMT within the
    20 km/s and 50 km/s molecular clouds. We find no evidence that the magnetic
    field orientation is related to the 100 pc twisted ring structure within the
    CMZ. We propose that the low polarization fraction in the Galactic Center
    region and the highly ordered projected field orientation can be reconciled if
    the field is strong, with a 3D geometry that is is mostly oriented $\simeq
    15\,^\circ$ with respect to the line-of-sight towards the Galactic center.
    Assuming equipartition between the magnetic pressure and ram pressure, we
    obtain magnetic field strengths estimates as high as a few mG for several CMZ
    molecular clouds.

    DOI: 10.1051/0004-6361/201935072

    Scopus

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/1901.06196v1

  • PILOT balloon-borne experiment in-flight performance

    Mangilli, A., Foënard, G., Aumont, J., Hughes, A., Mot, B., Bernard, J-Ph., Lacourt, A., Ristorcelli, I., Longval, Y., Ade, P., André, Y., Bautista, L., deBernardis, P., Boulade, O., Bousqet, F., Bouzit, M., Buttice, V., Charra, M., Crane, B., Doumayrou, E., Dubois, J. P., Engel, C., Griffin, M., Grabarnik, S., Hargrave, P., Laureijs, R., Leriche, B., Maestre, S., Maffei, B., Marty, C., Marty, W., Masi, S., Misawa, R., Montel, J., Montier, L., Narbonne, J., Pajot, F., Pérot, E., Pimentao, J., Pisano, G., Ponthieu, N., Rodriguez, L., Roudil, G., Salatino, M., Savini, G., Simonella, O., Saccoccio, M., Stever, S., Tauber, J., Tibbs, C., Tucker, C.

    2018年4月

     詳細を見る

    出版者・発行元:arXiv e-prints  

    The Polarized Instrument for Long-wavelength Observation of the Tenuous
    interstellar medium (PILOT) is a balloon-borne experiment aiming at measuring
    the polarized emission of thermal dust at a wavelength of 240 mm (1.2 THz). A
    first PILOT flight (flight#1) of the experiment took place from Timmins,
    Ontario, Canada, in September 2015 and a second flight (flight#2) took place
    from Alice Springs, Australia in april 2017. In this paper, we present the
    inflight performance of the instrument during these two flights. We concentrate
    on performances during flight#2, but allude to flight#1 performances if
    significantly different. We first present a short description of the instrument
    and the flights. We determine the time constants of our detectors combining
    inflight information from the signal decay following high energy particle
    impacts (glitches) and of our internal calibration source. We use these time
    constants to deconvolve the data timelines and analyse the optical quality of
    the instrument as measured on planets. We then analyse the structure and
    polarization of the instrumental background. We measure the detector response
    flat field and its time variations using the signal from the residual
    atmosphere and of our internal calibration source. Finally, we analyze the
    detector noise spectral and temporal properties. The in-flight performances are
    found to be satisfactory and globally in line with expectations from ground
    calibrations. We conclude by assessing the expected in-flight sensitivity of
    the instrument in light of the above in-flight performances.

    arXiv

    researchmap

    その他リンク: http://arxiv.org/pdf/1804.05645v2

▼全件表示

講演・口頭発表等

  • Fredagskollokvium: Dr. Strangedata or: How I learned to start worrying and hate cosmic rays 招待

    S. L. Steve

    Fredagskollokvium  2023年8月25日 

     詳細を見る

    記述言語:英語  

    researchmap

  • Dr. Strangedata or: How I learned to start worrying and hate cosmic rays 招待

    S. L. Steve

    From the Galaxy to the Big Bang  2023年6月16日 

     詳細を見る

    会議種別:口頭発表(一般)  

    researchmap

  • Cosmic rays, primordial B-modes, and DRACULA 招待

    S. L. Steve

    cosmology seminar  2023年5月24日 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB $B$-modes 招待

    S. Stever

    Cosmology seminar, Institut d'Astrophysique Spatiale  2021年3月25日 

     詳細を見る

    記述言語:英語   会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    researchmap

  • Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB $B$-modes 招待

    S. Stever

    Great Western Seminar Series  2021年3月25日 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Measuring the polarised dust emission in the Galactic centre with the PILOT balloon-borne telescope 招待

    S. Stever

    Core-to-Core CMB seminar  2020年9月23日 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Characterisation and modelling of the interaction between sub-Kelvin bolometric detectors and cosmic rays 招待

    S. Stever

    Seminar at Japan Aerospace Exploration Agency (JAXA) Institute of Space and Astronautical Science (ISAS)  2019年4月25日 

     詳細を見る

    記述言語:英語   会議種別:口頭発表(招待・特別)  

    researchmap

  • Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB $B$-modes 招待

    Samantha Stever

    Michigan State University seminar 

     詳細を見る

    記述言語:英語   会議種別:公開講演,セミナー,チュートリアル,講習,講義等  

    researchmap

  • Updated forecasts of cosmic ray systematic effects and a new filtering method for the LiteBIRD space mission

    S. L. Steve

    Low Temperature Detectors 20 

     詳細を見る

    会議種別:ポスター発表  

    researchmap

▼全件表示

共同研究・競争的資金等の研究

  • Development of radiation-resistant superconducting detector arrays for satellite missions in the millimetre waveband

    研究課題/領域番号:22K14060  2022年04月 - 2027年03月

    日本学術振興会  科学研究費助成事業  若手研究

    Stever Samantha

      詳細を見る

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    researchmap

 

担当授業科目

  • 基礎先端物理学1 (2023年度) 第3学期  - 火5

  • 基礎先端物理学2 (2023年度) 第4学期  - 火5

  • 物理英語1 (2023年度) 3・4学期  - 火5

  • 基礎先端物理学1 (2022年度) 第3学期  - 火4

  • 基礎先端物理学2 (2022年度) 第4学期  - 火4

  • 宇宙物理学 (2022年度) 後期  - 月1~2

  • 宇宙物理学 (2020年度) 後期  - 月1,月2

▼全件表示

 

メディア報道

  • Cosmic Developments インターネットメディア

    Cardiff University  Pythagorean Astronomy  2021年7月

     詳細を見る

    執筆者:本人以外 

    researchmap