Updated on 2023/12/19

写真a

 
ITO Atsushi
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Associate Professor
Position
Associate Professor
External link

Degree

  • 数理科学 ( 2012.3   東京大学 )

Research Interests

  • 直線束の正値性

  • 代数多様体

Research Areas

  • Natural Science / Algebra  / 代数幾何学

Education

  • The University of Tokyo   大学院数理科学研究科 博士課程  

    2009.4 - 2012.3

      More details

  • The University of Tokyo   大学院数理科学研究科 修士課程  

    2007.4 - 2009.3

      More details

  • The University of Tokyo   理学部 数学科  

    2003.4 - 2007.3

      More details

Research History

  • Okayama University   環境生命自然科学学域   Associate Professor

    2023.4

      More details

  • Okayama University   自然科学学域   Associate Professor

    2021.4 - 2023.3

      More details

  • Nagoya University   Graduate School of Mathematics   Assistant Professor

    2017.4 - 2021.3

      More details

  • Japan Society for Promotion of Science

    2014.4 - 2017.3

      More details

  • The University of Tokyo   大学院数理科学研究科

    2013.1 - 2014.3

      More details

  • The University of Tokyo   大学院数理科学研究科

    2012.4 - 2012.12

      More details

▼display all

Professional Memberships

 

Papers

  • The movable cone of Calabi–Yau threefolds in ruled Fano manifolds Reviewed

    Atsushi Ito, Ching-Jui Lai, Sz-Sheng Wang

    Journal of Geometry and Physics   195   105053 - 105053   2024.1

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.geomphys.2023.105053

    researchmap

  • Projective normality and basepoint‐freeness thresholds of general polarized abelian varieties Reviewed

    Atsushi Ito

    Bulletin of the London Mathematical Society   55 ( 6 )   2793 - 2816   2023.12

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    For a polarized abelian variety , Z. Jiang and G. Pareschi introduce an invariant , called the basepoint‐freeness threshold. Using this invariant, we show that a general polarized abelian variety of dimension is projectively normal if and the type of is not . This bound is sharp since it is known that any polarized abelian variety of type is not projectively normal. We also give an application of to the infinitesimal Torelli theorem for .

    DOI: 10.1112/blms.12895

    Web of Science

    researchmap

  • Higher syzygies on general polarized Abelian varieties of type (1,⋯,1,d) Reviewed

    Atsushi Ito

    Mathematische Nachrichten   296 ( 8 )   3395 - 3410   2023.8

     More details

    Authorship:Lead author   Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    Abstract

    In this paper, we show that a general polarized abelian variety of type and dimension g satisfies property if . In particular, the case affirmatively solves a conjecture by Fuentes García on projective normality.

    DOI: 10.1002/mana.202100113

    Web of Science

    researchmap

  • Corrigendum to “Successive minima of line bundles” Reviewed

    Florin Ambro, Atsushi Ito

    ADVANCES IN MATHEMATICS   420   2023.5

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    The proof of Theorem 0.4 in "Successive minima of line bundles" contains an error. We give a modified statement of Theorem 0.4, which is weaker than the original one. Since Theorem 0.1in the paper is a special case of Theorem 0.4, we give a new proof of Theorem 0.1. This proof improves a lower bound in Theorem 0.1. (c) 2023 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2023.108966

    Web of Science

    researchmap

  • Basepoint-freeness thresholds and higher syzygies on abelian threefolds Reviewed International journal

    Atsushi Ito

    Algebraic Geometry   9 ( 6 )   762 - 787   2022.11

     More details

    Publishing type:Research paper (scientific journal)  

    For a polarized abelian variety, Z. Jiang and G. Pareschi introduced an invariant and showed that the polarization is basepoint-free or projectively normal if the invariant is small. Their result was generalized to higher syzygies by F. Caucci; that is, the polarization satisfies property (Np) if the invariant is small. In this paper, we study a relation between the invariant and degrees of abelian subvarieties with respect to the polarization. For abelian threefolds, we give an upper bound of the invariant using degrees of abelian subvarieties. In particular, we armatively answer some questions on abelian varieties asked by the author, V. Lozovanu and F. Caucci in the three-dimensional case.

    DOI: 10.14231/AG-2022-023

    Scopus

    researchmap

  • M-REGULARITY OF Q-TWISTED SHEAVES AND ITS APPLICATION TO LINEAR SYSTEMS ON ABELIAN VARIETIES Reviewed International coauthorship International journal

    Atsushi Ito

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   2022.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    G. Pareschi and M. Popa [J. Amer.Math. Soc. 16 (2003), pp. 285-302] give criterions for global generation and surjectivity of multiplication maps of global sections of coherent sheaves on abelian varieties in the theory of M-regularity. In this paper, we refine some of their criterions via the M-regularity of Q-twisted sheaves introduced by Z. Jiang and G. Pareschi [Ann. Sci. Ec. Norm. Super. (4) 53 (2020), pp. 815-846]. As an application, we show that the M-regularity of a suitable Q-twisted sheaf implies property (N-p) and jet-ampleness for ample line bundles on abelian varieties.

    DOI: 10.1090/tran/8725

    Web of Science

    researchmap

  • Examples on Loewy filtrations and K-stability of Fano varieties with non-reductive automorphism groups Reviewed

    Atsushi Ito

    Annales de l'Institut Fourier   71 ( 2 )   515 - 537   2021.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Cellule MathDoc/CEDRAM  

    It is known that the automorphism group of a K-polystable Fano manifold is reductive. Codogni and Dervan constructed a canonical filtration of the section ring, called Loewy filtration, and conjectured that the filtration destabilizes any Fano variety with non-reductive automorphism group. In this note, we give a counterexample to their conjecture.

    DOI: 10.5802/aif.3395

    Web of Science

    researchmap

  • A combinatorial description of dual defects of toric varieties Reviewed

    Katsuhisa Furukawa, Atsushi Ito

    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS   23 ( 1 )   2021.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WORLD SCIENTIFIC PUBL CO PTE LTD  

    From a finite set in a lattice, we can define a toric variety embedded in a projective space. In this paper, we give a combinatorial description of the dual defect of the toric variety using the structure of the finite set as a Cayley sum with suitable conditions. We also interpret the description geometrically.

    DOI: 10.1142/S0219199720500017

    Web of Science

    researchmap

  • Projective Reconstruction in Algebraic Vision Reviewed

    Atsushi Ito, Makoto Miura, Kazushi Ueda

    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES   63 ( 3 )   592 - 609   2020.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CAMBRIDGE UNIV PRESS  

    We discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give an algebro-geometric variant of the projective reconstruction theorem by Hartley and Schaffalitzky.

    DOI: 10.4153/S0008439519000687

    Web of Science

    researchmap

  • Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties Reviewed

    Atsushi Ito, Makoto Miura, Shinnosuke Okawa, Kazushi Ueda

    SELECTA MATHEMATICA-NEW SERIES   26 ( 3 )   2020.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER INTERNATIONAL PUBLISHING AG  

    In this paper, we discuss the problem of whether the difference [ X]-[Y] of the classes of a Fourier-Mukai pair (X, Y) of smooth projective varieties in the Grothendieck ring of varieties is annihilated by some power of the class L = [A(1)] of the affine line. We give an affirmative answer for Fourier-Mukai pairs of very general K3 surfaces of degree 12. On the other hand, we prove that in each dimension greater than one, there exists an abelian variety such that the difference with its dual is not annihilated by any power of L, thereby giving a negative answer to the problem. We also discuss variations of the problem.

    DOI: 10.1007/s00029-020-00561-x

    Web of Science

    researchmap

  • Successive minima of line bundles Reviewed

    Florin Ambro, Atsushi Ito

    ADVANCES IN MATHEMATICS   365   2020.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    We introduce and study the successive minima of line bundles on proper algebraic varieties. The first (resp. last) minima are the width (resp. Seshadri constant) of the line bundle at very general points. The volume of the line bundle is equivalent to the product of the successive minima. For line bundles on tonic varieties, the successive minima are equivalent to the (reciprocal of) usual successive minima of the difference of the moment polytope. (C) 2020 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2020.107045

    Web of Science

    researchmap

  • Complete intersection Calabi-Yau manifolds with respect to homogeneous vector bundles on Grassmannians Reviewed

    Daisuke Inoue, Atsushi Ito, Makoto Miura

    MATHEMATISCHE ZEITSCHRIFT   292 ( 1-2 )   677 - 703   2019.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    Based on the method by Kuchle (Math Z 218(4), 563-575, 1995), we give a procedure to list up all complete intersection Calabi-Yau manifolds with respect to direct sums of irreducible homogeneous vector bundles on Grassmannians for each dimension. In particular, we give a classification of such Calabi-Yau 3-folds and determine their topological invariants. We also give alternative descriptions for some of them.

    DOI: 10.1007/s00209-018-2163-5

    Web of Science

    researchmap

  • On Separable Higher Gauss Maps Reviewed

    Katsuhisa Furukawa, Atsushi Ito

    MICHIGAN MATHEMATICAL JOURNAL   68 ( 3 )   483 - 503   2019

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:MICHIGAN MATHEMATICAL JOURNAL  

    We study the mth Gauss map in the sense of F. L. Zak of a projective variety X subset of P-N over an algebraically closed field in any characteristic. For all integers m with n := dim(X) <= m < N, we show that the contact locus on X of a general tangent m-plane is a linear variety if the mth Gauss map is separable. We also show that for smooth X with n < N - 2, the (n + 1)th Gauss map is birational if it is separable, unless X is the Segre embedding P-1 x P-n subset of P2n-1.This is related to Ein's classification of varieties with small dual varieties in characteristic zero.

    DOI: 10.1307/mmj/1555574416

    Web of Science

    researchmap

  • THE CLASS OF THE AFFINE LINE IS A ZERO DIVISOR IN THE GROTHENDIECK RING: VIA G(2)-GRASSMANNIANS Reviewed

    Atsushi Ito, Makoto Miura, Shinnosuke Okawa, Kazushi Ueda

    JOURNAL OF ALGEBRAIC GEOMETRY   28 ( 2 )   245 - 250   2019

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:UNIV PRESS INC  

    Motivated by [J. Algebraic Geom. 27 (2018), pp. 203-209] and [C. R. Math. Acad. Sci. Paris 354 (2016), pp. 936-939], we show the equality ([X] - [Y]) . [A( l) ] = 0 in the Grothendieck ring of varieties, where (X, Y) is a pair of Calabi-Yau 3-folds cut out from the pair of Grassmannians of type G(2).

    DOI: 10.1090/jag/731

    Web of Science

    researchmap

  • A remark on higher syzygies on abelian surfaces Reviewed

    Atsushi Ito

    COMMUNICATIONS IN ALGEBRA   46 ( 12 )   5342 - 5347   2018.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TAYLOR & FRANCIS INC  

    In this note, we give a slight improvement of a result of A. Kuronya and V. Lozovanu about higher syzygies on abelian surfaces.

    DOI: 10.1080/00927872.2018.1464172

    Web of Science

    researchmap

  • ON BIRATIONAL GEOMETRY OF THE SPACE OF PARAMETRIZED RATIONAL CURVES IN GRASSMANNIANS Reviewed

    Atsushi Ito

    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY   369 ( 9 )   6279 - 6301   2017.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER MATHEMATICAL SOC  

    In this paper, we study the birational geometry of the Quot schemes of trivial bundles on P-1 by constructing small Q-factorial modifications of the Quot schemes as suitable moduli spaces. We determine all the models which appear in the minimal model program on the Quot schemes. As a corollary, we show that the Quot schemes are Mori dream spaces and log Fano.

    DOI: 10.1090/tran/6840

    Web of Science

    researchmap

  • I-functions of Calabi Yau 3-folds in Grassmannians Reviewed

    Daisuke Inoue, Atsushi Ito, Makoto Miura

    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS   11 ( 2 )   273 - 309   2017.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:INT PRESS BOSTON, INC  

    We study I-functions of Calabi-Yau 3-folds with Picard number one which are zero loci of general sections of direct sums of globally generated irreducible homogeneous vector bundles on Grassmannians.

    DOI: 10.4310/CNTP.2017.v11.n2.a2

    Web of Science

    researchmap

  • On Gauss Maps in Positive Characteristic in View of Images, Fibers, and Field Extensions Reviewed

    Katsuhisa Furukawa, Atsushi Ito

    INTERNATIONAL MATHEMATICS RESEARCH NOTICES   2017 ( 8 )   2337 - 2366   2017.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:OXFORD UNIV PRESS  

    The Gauss map of a projective variety X. PN is a rational map from X to a Grassmann variety. In positive characteristic, we show the following results. (1) For given projective varieties F and Y, we construct a projective variety X whose Gauss map has F as its general fiber and has Y as its image. More generally, we give such construction for families of varieties over Y instead of fixed F. (2) At least in the case when the characteristic is not equal to 2, any inseparable field extension appears as the extension induced from the Gauss map of some X.

    DOI: 10.1093/imrn/rnw080

    Web of Science

    researchmap

  • GAUSSMAPS OF TORIC VARIETIES Reviewed

    Katsuhisa Furukawa, Atsushi Ito

    TOHOKU MATHEMATICAL JOURNAL   69 ( 3 )   431 - 454   2017

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:TOHOKU UNIVERSITY  

    We investigate Gauss maps of (not necessarily normal) projective toric varieties over an algebraically closed field of arbitrary characteristic. The main results are as follows: (1) The structure of the Gauss map of a toric variety is described in terms of combinatorics in any characteristic. (2) We give a developability criterion in the toric case. In particular, we show that any toric variety whose Gauss map is degenerate must be the join of some toric varieties in characteristic zero. (3) As applications, we provide two constructions of toric varieties whose Gauss maps have some given data (e.g., fibers, images) in positive characteristic.

    Web of Science

    researchmap

  • Algebro-geometric characterization of Cayley polytopes Reviewed

    Atsushi Ito

    ADVANCES IN MATHEMATICS   270   598 - 608   2015.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    In this paper, we give an algebro-geometric characterization of Cayley polytopes. As a special case, we also characterize lattice polytopes with lattice width one by using Seshadri constants. (C) 2014 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2014.11.010

    Web of Science

    researchmap

  • CURVES IN QUADRIC AND CUBIC SURFACES WHOSE COMPLEMENTS ARE KOBAYASHI HYPERBOLICALLY IMBEDDED Reviewed

    Atsushi Ito, Yusaku Tiba

    ANNALES DE L INSTITUT FOURIER   65 ( 5 )   2057 - 2068   2015

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ANNALES INST FOURIER  

    We construct smooth irreducible curves of the lowest possible degrees in quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbedded into those surfaces. Moreover we characterize line bundles on quadric and cubic surfaces such that the complete linear systems of the line bundles have a smooth irreducible curve whose complement is Kobayashi hyperbolically imbedded into those surfaces.

    DOI: 10.5802/aif.2982

    Web of Science

    researchmap

  • Examples of Mori dream spaces with Picard number two Reviewed

    Atsushi Ito

    MANUSCRIPTA MATHEMATICA   145 ( 3-4 )   243 - 254   2014.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    In this note, we give a sufficient condition such that a projective variety with Picard number two is a Mori dream space. Using this condition, we obtain examples of Mori dream spaces with Picard number two.

    DOI: 10.1007/s00229-014-0673-y

    Web of Science

    researchmap

  • Seshadri constants via toric degenerations Reviewed

    Atsushi Ito

    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK   695   151 - 174   2014.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WALTER DE GRUYTER GMBH  

    We give a method to estimate Seshadri constants on toric varieties at any point. By using the estimations and toric degenerations, we can obtain some new computations or estimations of Seshadri constants on non-toric varieties. In particular, we investigate Seshadri constants on hypersurfaces in projective spaces and Fano 3-folds with Picard number 1 in detail.

    DOI: 10.1515/crelle-2012-0116

    Web of Science

    researchmap

  • Seshadri constants and degrees of defining polynomials Reviewed

    Atsushi Ito, Makoto Miura

    MATHEMATISCHE ANNALEN   358 ( 1-2 )   465 - 476   2014.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:SPRINGER HEIDELBERG  

    In this paper, we study a relation between Seshadri constants and degrees of defining polynomials. In particular, we compute the Seshadri constants on Fano varieties obtained as complete intersections in rational homogeneous spaces of Picard number one.

    DOI: 10.1007/s00208-013-0969-3

    Web of Science

    researchmap

  • Okounkov bodies and Seshadri constants Reviewed

    Atsushi Ito

    ADVANCES IN MATHEMATICS   241   246 - 262   2013.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ACADEMIC PRESS INC ELSEVIER SCIENCE  

    Okounkov bodies, which are closed convex sets defined for big line bundles, have rich information on the line bundles. On the other hand, Seshadri constants are invariants which measure the positivity of line bundles. In this paper, we prove that Okounkov bodies give lower bounds of Seshadri constants. (C) 2013 Elsevier Inc. All rights reserved.

    DOI: 10.1016/j.aim.2013.04.005

    Web of Science

    researchmap

▼display all

MISC

  • Projective normality of general polarized abelian varieties Invited

    87 - 95   2023.1

     More details

    Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • On syzygies of projective bundles on abelian varieties

    Atsushi Ito

    2022.8

     More details

    Publishing type:Internal/External technical report, pre-print, etc.  

    appendix to a paper "Positivity of zero-regular bundles, continuous CM-regularity, and generic vanishing" by Debaditya Raychaudhury

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2208.13096v1

  • Linear systems on general polarized abelian varieties of type (1,...,1,d) Invited

    伊藤 敦

    都の西北 代数幾何シンポジウム 2021 報告集   2022.1

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • Linear systems on abelian varieties via M-regularity of Q-twisted sheaves Invited

    伊藤 敦

    第66回 代数学シンポジウム報告集   42 - 53   2021.12

     More details

    Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

  • Calabi--Yau complete intersections in exceptional Grassmannians

    Atsushi Ito, Makoto Miura, Shinnosuke Okawa, Kazushi Ueda

    2016.6

     More details

    We classify completely reducible equivariant vector bundles on Grassmannians
    of exceptional Lie groups which give Calabi--Yau 3-folds as complete
    intersections. In particular, we find a new family of Calabi--Yau 3-folds in an
    $E_6$-Grassmannian.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/1606.04076v3

  • On Gauss maps in positive characteristics Invited

    Ito Atsushi

    2014   99 - 106   2014

     More details

    Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    CiNii Article

    CiNii Books

    researchmap

  • セシャドリ定数と定義多項式の次数について Invited

    伊藤 敦

    代数幾何学シンポジウム記録   2012   98 - 107   2013.2

     More details

    Publishing type:Article, review, commentary, editorial, etc. (scientific journal)  

    researchmap

▼display all

Research Projects

  • 代数多様体上の直線束の正値性に関する研究

    Grant number:21K03201  2021.04 - 2026.03

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    伊藤 敦

      More details

    Grant amount:\3250000 ( Direct expense: \2500000 、 Indirect expense:\750000 )

    researchmap

  • トーリック多様体の双対欠損の組合せ論的記述に関する研究

    Grant number:17K14162  2017.04 - 2021.03

    日本学術振興会  科学研究費助成事業 若手研究(B)  若手研究(B)

    伊藤 敦

      More details

    Grant amount:\3250000 ( Direct expense: \2500000 、 Indirect expense:\750000 )

    当該年度は主に以下の2つの研究を行った.
    <BR>
    (1) 前年度はFlorin Ambro氏との共同研究で,多面体の逐次最小という不変量の類似として一般の代数多様体上の直線束に対しi番目のセシャドリ定数という不変量を定義しその性質を調べた.多面体の逐次最小は多面体の整数点の存在と直接関わっているため,その類似を通してトーリック多様体の双対欠損(特に多面体の内部整数点との関連)とi番目のセシャドリ定数に何らかの関係がないかを調べたが,残念ながら特に具体的な関連性を見つけることはできなかった.
    <BR>
    (2) アーベル多様体上の高次シジジーについて研究した. Pareschi-Jiang氏は偏極アーベル多様体に対しbasepoint-freeness thresholdという不変量を導入し,その値が小さいならば偏極を与える直線束が固定点自由,もしくは射影的正規であることを示した. Caucci氏はその一般化として,その不変量が小さいならば偏極を与える直線束の高次のシジジーが消える((N_p)と呼ばれる性質が成り立つ)ことを示した.
    当該年度は,Caucci氏の結果を用いてLazarsfeld-Pareschi-Popa氏による(N_p)が成り立つ十分条件を改良することができた.具体的には,「乗数イデアルが一点の極大イデアルに一致するような適当な有効Q因子の存在すればよい」という条件を,「定数イデアルがある開集合上に制限すると一点の極大イデアルに一致する」と仮定を弱めてよいということがわかった.一見小さな違いであるが,仮定をそのように弱めることでそのようなQ有効因子を構成することが容易になった.

    researchmap

  • フロベニウス-セシャドリ定数の研究

    Grant number:14J01881  2014.04 - 2017.03

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    伊藤 敦

      More details

    Grant amount:\4030000 ( Direct expense: \3100000 、 Indirect expense:\930000 )

    当該年度はフロベニウス-セシャドリ定数の数値的な定義や具体的に計算,評価する方法について研究を行った.しかしながら思うような進展が得られず,残念ながら論文にまとめられるような結果を得ることができなかった.その一方,そこから派生した研究として以下のような成果が得られた.
    古川勝久氏との共同研究:まず前年度のうちにある程度完成していた,トーリック多様体の双対多様体の次元に関する組合せ的記述をプレプリントにまとめた.また通常のガウス写像の一般化である高次ガウス写像についても研究した.分離的な場合の一般ファイバーの線形性などを証明し,プレプリントにまとめた.
    井上大輔氏,三浦真人氏との共同研究:グラスマン多様体上の同変ベクトル束の零点として得られる 3 次元カラビ-ヤウ多様体について,その同型類やトーリック退化などをミラー対称性の観点などから調べた.そのようにして得られる3次元カラビ-ヤウ多様体を分類し,また得られた多様体の I 関数を計算しプレプリントにまとめた.
    三浦真人氏,大川新之介氏,植田一石氏との共同研究:G_2型の等質空間上の同変ベクトル束の零点 として得られるカラビ-ヤウ多様体を分類した.その分類で現れた2種類の3次元カラビ-ヤウ多様体が,グロタンディーク環の中で興味深い関係にあることを示した.また次数 12 の K3 曲面についても同様の関係が成り立つことを示した.これらの結果もプレプリントにまとめた.

    researchmap

  • 森夢空間の具体例について

    Grant number:25887010  2013.08 - 2015.03

    日本学術振興会  科学研究費助成事業 研究活動スタート支援  研究活動スタート支援

    伊藤 敦

      More details

    Grant amount:\2600000 ( Direct expense: \2000000 、 Indirect expense:\600000 )

    森夢空間とは,極小モデル理論の視点から見て「非常によい性質を持つ」代数多様体である.森夢空間について近年様々な研究がなされており,どのような代数多様体が森夢空間であるかは非常に興味深い問題となっている.本年度はその問題について,具体例を通して以下の様な研究を行った.
    (1) 森夢空間であるための(確認しやすい)条件について:ピカール数が2の場合には,森夢空間であるためのある十分条件がこれまでの研究で得られていたが,それが必要条件であるかどうかはわかっていなかった.適当なグラスマン多様体の1点をブローアップして得られる代数多様体の双有理幾何を具体的に記述することで,その代数多様体が森夢空間ではあるが前述の十分条件を満たさないことを示し,従って必要条件ではない事がわかった.また,森夢空間はCox環の有限生成性によっても定義されるので,前述の十分条件をシンボリックRees環の観点からも考察した.
    (2) モジュライ空間について:射影直線上の自明な直線束の商スキームについて研究した.その商スキームについてネフ錐や有効錐,movable錘は既に知られていたが,その商スキームと余次元1で同型であるQ分解的正規射影代数多様体(small Q-factorial modificationと呼ばれる)を適当なモジュライ空間として構成し,それらのネフ錐や収縮射などを調べた.特にその商スキームが森夢空間であることを証明した.

    researchmap

  • 偏曲代数多様体におけるセシャドリ定数の研究

    Grant number:11J56182  2011 - 2012

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    伊藤 敦

      More details

    Grant amount:\700000 ( Direct expense: \700000 )

    本年度得られた研究結果は主に以下の3つである。
    1.偏曲トーリック多様体のセシセドリ定数は常に1以上であることはよく知られている。従っていつセシャドリ定数が1になるかを考えることは非常に自然である。本研究では、まずケーリー多面体と呼ばれるある性質を持った多面体の代数幾何的な特徴づけを与えた。その特徴付けを用いることで偏曲トーリック多様体のセシャドリ定数が1である必要十分条件を、対応する多面体の言葉で簡単な記述することができた。この結果は組合せ論の視点から見ても有用と思われる。
    2.偏曲代数多様体から定まるオコンコフ体は、偏曲多様体の体積などの情報を含んでいることが知られているが、本研究ではオコンコフ体がセシャドリ定数の下界を与えることを示した。一般にセシャドリ定数を下から評価することは非常に困難である。この結果は、セシャドリ定数の下界に関する予想などを示すのに役立つことが期待される。
    3.射影空間内の超曲面(より一般に完全交差)やピカール数が1である滑らかな3次元ファノ多様体に対し、トーリック退化を用いることでセシャドリ定数を具体的に評価、計算した。これまで高次元(3次元以上)におけるセシャドリ定数の具体的な計算例は極めて少なく、この結果は非常に興味深いと言える。また同様の手法を他の多様体におけるセシャドリ定数の計算に適用することも期待できる。
    これらの結果はそれぞれ論文にまとめ、現在投稿中である。

    researchmap

 

Class subject in charge

  • Algebra (2023academic year) 1st and 2nd semester  - 金5~6

  • Algebra a (2023academic year) 1st semester  - 金5~6

  • Algebra b (2023academic year) Second semester  - 金5~6

  • Basic Algebra B (2023academic year) 3rd and 4th semester  - 月3~4

  • Basic Algebra Ba (2023academic year) Third semester  - 月3~4

  • Basic Algebra Bb (2023academic year) Fourth semester  - 月3~4

  • Seminar in Algebra (2023academic year) Year-round  - その他

  • Seminar in Algebra (2023academic year) Year-round  - その他

  • Algebraic Geometry (2023academic year) Late  - その他

  • Algebraic Geometry (2023academic year) Late  - その他

  • Advanced Practice in Algebraic Geometry 1 (2023academic year) Prophase  - その他

  • Advanced Practice in Algebraic Geometry 2 (2023academic year) Late  - その他

  • Topics in Algebraic Geometry (2023academic year) Late  - 金7~8

  • Advanced Topics in Algebraic Geometry (2023academic year) Late  - 金7~8

  • Calculus I (2023academic year) 1st and 2nd semester  - 火5~6

  • Calculus I (2023academic year) 1st and 2nd semester  - 火5~6

  • Calculus Ia (2023academic year) 1st semester  - 火5~6

  • Calculus Ib (2023academic year) Second semester  - 火5~6

  • Linear Algebra II (2023academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra II (2023academic year) 3rd and 4th semester  - 金5~6

  • Linear Algebra IIa (2023academic year) Third semester  - 金5~6

  • Linear Algebra IIb (2023academic year) Fourth semester  - 金5~6

  • Algebra a (2022academic year) 1st semester  - 金5~6

  • Algebra b (2022academic year) Second semester  - 金5~6

  • Seminar in Algebra (2022academic year) Year-round  - その他

  • Algebraic Geometry (2022academic year) Late  - その他

  • Topics in Algebraic Geometry (2022academic year) Late  - 金5~6

  • Calculus I (2022academic year) 1st and 2nd semester  - 火5~6

  • Calculus I (2022academic year) 1st and 2nd semester  - 火5~6

  • Calculus Ia (2022academic year) 1st semester  - 火5~6

  • Calculus Ib (2022academic year) Second semester  - 火5~6

  • Calculus II (2022academic year) 3rd and 4th semester  - 火5~6

  • Calculus II (2022academic year) 3rd and 4th semester  - 火5~6

  • Calculus IIa (2022academic year) Third semester  - 火5~6

  • Calculus IIb (2022academic year) Fourth semester  - 火5~6

  • Introduction to Mathematics III (2022academic year) 1st and 2nd semester  - 月7~8

  • Introduction to Mathematics IIIa (2022academic year) 1st semester  - 月7~8

  • Introduction to Mathematics IIIb (2022academic year) Second semester  - 月7~8

  • Seminar in Algebra (2021academic year) Year-round  - その他

  • Algebraic Geometry (2021academic year) Late  - その他

  • Topics in Algebraic Geometry (2021academic year) Prophase  - 金3,金4

  • A Basic Course in Calculus II (2021academic year) 3rd and 4th semester  - 水1,水2

  • Basic Course in Calculus II (2021academic year) 3rd and 4th semester  - 水1~2

  • Basic Course in Calculus IIa (2021academic year) Third semester  - 水1,水2

  • Basic Course in Calculus IIb (2021academic year) Fourth semester  - 水1,水2

  • Calculus II (2021academic year) 3rd and 4th semester  - 火5,火6

  • Calculus II (2021academic year) 3rd and 4th semester  - 火5~6

  • Calculus IIa (2021academic year) Third semester  - 火5,火6

  • Calculus IIb (2021academic year) Fourth semester  - 火5,火6

  • Glance at Mathematical Science B (2021academic year) Third semester  - 金5~6

  • Introduction to Mathematics IIIa (2021academic year) 1st semester  - 月7,月8

  • Introduction to Mathematics IIIb (2021academic year) Second semester  - 月7,月8

▼display all