Updated on 2025/08/21

写真a

 
HUANG Yong
 
Organization
Scheduled update Assistant Professor
Position
Assistant Professor
External link

Degree

  • 博士(医学) ( 2009.3   岡山大学 )

  • medical doctor ( 2008.3   Okayama University )

Research Interests

  • FHIR

 

Papers

  • Differentiation of Small (≤ 4 cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learning. International journal

    Takashi Tanaka, Yong Huang, Yohei Marukawa, Yuka Tsuboi, Yoshihisa Masaoka, Katsuhide Kojima, Toshihiro Iguchi, Takao Hiraki, Hideo Gobara, Hiroyuki Yanai, Yasutomo Nasu, Susumu Kanazawa

    AJR. American journal of roentgenology   214 ( 3 )   605 - 612   2020.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    OBJECTIVE. This study evaluated the utility of a deep learning method for determining whether a small (≤ 4 cm) solid renal mass was benign or malignant on multiphase contrast-enhanced CT. MATERIALS AND METHODS. This retrospective study included 1807 image sets from 168 pathologically diagnosed small (≤ 4 cm) solid renal masses with four CT phases (unenhanced, corticomedullary, nephrogenic, and excretory) in 159 patients between 2012 and 2016. Masses were classified as malignant (n = 136) or benign (n = 32). The dataset was randomly divided into five subsets: four were used for augmentation and supervised training (48,832 images), and one was used for testing (281 images). The Inception-v3 architecture convolutional neural network (CNN) model was used. The AUC for malignancy and accuracy at optimal cutoff values of output data were evaluated in six different CNN models. Multivariate logistic regression analysis was also performed. RESULTS. Malignant and benign lesions showed no significant difference of size. The AUC value of corticomedullary phase was higher than that of other phases (corticomedullary vs excretory, p = 0.022). The highest accuracy (88%) was achieved in corticomedullary phase images. Multivariate analysis revealed that the CNN model of corticomedullary phase was a significant predictor for malignancy compared with other CNN models, age, sex, and lesion size. CONCLUSION. A deep learning method with a CNN allowed acceptable differentiation of small (≤ 4 cm) solid renal masses in dynamic CT images, especially in the corticomedullary image model.

    DOI: 10.2214/AJR.19.22074

    PubMed

    researchmap

MISC

  • 電子カルテ情報から「腎代替療法を受けている患者」を同定するアルゴリズムの開発 リアルワールドエビデンスを創出する臨床研究中核病院ネットワークの取り組み

    今泉 貴広, 横田 卓, 安田 和史, 服部 晶子, 郷原 英夫, 宮原 冬佳, 諸橋 朱美, 山下 暁士, 鍬塚 八千代, 日下部 龍巳, 遠藤 晃, 森永 裕士, 黄 勇, 井上 隆輔, 東方 紗瑛子, 高田 敦史, 影山 祐子, 丸山 達也, 安藤 昌彦, 丸山 彰一, 白鳥 義宗

    医療情報学連合大会論文集   42回   939 - 943   2022.11

     More details

    Language:Japanese   Publisher:(一社)日本医療情報学会  

    researchmap

  • 慢性腎臓病患者における降圧薬と電解質異常 リアルワールドエビデンスを創出する臨床研究中核病院ネットワークの取り組み

    今泉 貴広, 横田 卓, 郷原 英夫, 船越 公太, 諸橋 朱美, 山下 暁士, 鍬塚 八千代, 日下部 龍巳, 遠藤 晃, 森永 裕士, 黄 勇, 井上 隆輔, 東方 紗瑛子, 高田 敦史, 影山 祐子, 丸山 達也, 安藤 昌彦, 丸山 彰一, 白鳥 義宗

    日本医療情報学会春季学術大会プログラム・抄録集   26回   56 - 57   2022.6

     More details

    Language:Japanese   Publisher:(一社)日本医療情報学会  

    researchmap

  • 凍結治療単独および塞栓術を先行した凍結治療の原価と収支(The balances of payment of cryoablation for the treatment of renal cell carcinoma)

    郷原 英夫, 黄 勇, 森永 裕士, 宇賀 麻由, 冨田 晃司, 松井 裕輔, 櫻井 淳, 生口 俊浩, 平木 隆夫, 金澤 右

    日本インターベンショナルラジオロジー学会雑誌   35 ( Suppl. )   251 - 251   2020.8

     More details

    Language:English   Publisher:(一社)日本インターベンショナルラジオロジー学会  

    researchmap

  • 全国がん登録オンラインシステムに関するアンケートの実施と集計結果

    宇野 彩穂, 古新 千桂, 郷原 英夫, 黄 勇

    JACR Monograph   ( 24 )   20 - 20   2019.3

     More details

    Language:Japanese   Publisher:(NPO)日本がん登録協議会  

    researchmap