Updated on 2024/03/24

写真a

 
ISHIKAWA Teruhiko
 
Organization
Faculty of Education Professor
Position
Professor
External link

Research Interests

  • 環境化学

  • 抗菌剤

  • 医薬品化学

  • 天然物化学

  • 有機化学

  • 吸着剤

  • 抗真菌剤

  • 酵素阻害剤

Research Areas

  • Nanotechnology/Materials / Functional solid state chemistry  / 環境化学

  • Nanotechnology/Materials / Synthetic organic chemistry  / 有機化学

Education

  • Okayama University   大学院自然科学研究科 博士後期課程   博士後期課程

    1991.4 - 1994.3

      More details

Research History

  • Okayama University   Graduate School of Education   Professor

    2017.4

      More details

  • Okayama University   Graduate School of Education   Associate Professor

    2008.4 - 2017.3

      More details

  • Okayama University   Faculty of Education   Associate Professor (as old post name)

    2002.4 - 2008.3

      More details

  • Okayama University   Faculty of Engineering   Research Assistant

    1994.4 - 2002.3

      More details

 

Papers

  • Development of a novel AAK1 inhibitor via Kinobeads-based screening. International journal

    Akari Yoshida, Satomi Ohtsuka, Fumiya Matsumoto, Tomoyuki Miyagawa, Rei Okino, Yumeya Ikeda, Natsume Tada, Akira Gotoh, Masaki Magari, Naoya Hatano, Ryo Morishita, Ayano Satoh, Yukinari Sunatsuki, Ulf J Nilsson, Teruhiko Ishikawa, Hiroshi Tokumitsu

    Scientific reports   14 ( 1 )   6723 - 6723   2024.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    A chemical proteomics approach using Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor-immobilized sepharose (TIM-063-Kinobeads) identified main targets such as CaMKKα/1 and β/2, and potential off-target kinases, including AP2-associated protein kinase 1 (AAK1), as TIM-063 interactants. Because TIM-063 interacted with the AAK1 catalytic domain and inhibited its enzymatic activity moderately (IC50 = 8.51 µM), we attempted to identify potential AAK1 inhibitors from TIM-063-derivatives and found a novel AAK1 inhibitor, TIM-098a (11-amino-2-hydroxy-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) which is more potent (IC50 = 0.24 µM) than TIM-063 without any inhibitory activity against CaMKK isoforms and a relative AAK1-selectivity among the Numb-associated kinases family. TIM-098a could inhibit AAK1 activity in transfected cultured cells (IC50 = 0.87 µM), indicating cell-membrane permeability of the compound. Overexpression of AAK1 in HeLa cells significantly reduced the number of early endosomes, which was blocked by treatment with 10 µM TIM-098a. These results indicate TIM-063-Kinobeads-based chemical proteomics is efficient for identifying off-target kinases and re-evaluating the kinase inhibitor (TIM-063), leading to the successful development of a novel inhibitory compound (TIM-098a) for AAK1, which could be a molecular probe for AAK1. TIM-098a may be a promising lead compound for a more potent, selective and therapeutically useful AAK1 inhibitor.

    DOI: 10.1038/s41598-024-57051-9

    PubMed

    researchmap

MISC

  • CaMKK阻害剤(TIM-063)を用いた阻害剤プロテオミクス解析

    大塚里美, 波多野直哉, 奥村太晟, 澤直樹, 田邊史子, 傳田美和子, 金山直樹, 曲正樹, 森下了, 石川彰彦, 徳光浩

    日本生化学会大会(Web)   94th   [P - 561]   2021

     More details

    Language:Japanese   Publisher:(公社)日本生化学会  

    J-GLOBAL

    researchmap

Research Projects

  • 分子設計AIを活用した有機合成による機能性物質探索技術の効率化

    2023.10 - 2025.03

    科学技術振興機構  大学発新産業創出基金事業  JST-Astep 可能性検証

    石川彰彦, 江口陽子, 五十嵐雅之, 岡島俊英, 内海龍太郎

      More details

    Authorship:Principal investigator 

    researchmap

  • CaMKKシグナル伝達の制御機構解明とそれに基づく分子標的薬創製

    Grant number:21H02429  2021.04 - 2024.03

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    徳光 浩, 石川 彰彦, 渡辺 泰男, 曲 正樹

      More details

    Grant amount:\16380000 ( Direct expense: \12600000 、 Indirect expense:\3780000 )

    本研究では、細胞内Ca2+を二次伝達因子とする細胞内シグナル伝達機構において、神経発生、遺伝子発現制御から代謝応答まで多岐に渡る生体機能調節を担う制御酵素として見出されたタンパク質リン酸化酵素であるCaMKKの分子制御機構の解明とその分子基盤に立脚したCaMKK阻害薬の創製を研究目的としている。本年度の研究実績として、消化管平滑筋におけるカルシウム脱感作反応においてCaMKKを介したリン酸化カスケード反応の関与が、新たに開発したCaMKK阻害剤TIM-063を用いることで明らかとなった(Kitazawa et al. Am J Physiol Cell Physiol 2021)。さらにCaMKKと阻害剤TIM-063の物理的相互作用について、TIM-063誘導体(TIM-127)を架橋したセファロース担体を用いることにより詳細に解析した。その結果、CaMKKと阻害剤TIM-063の相互作用は、酵素のカルシウム/calmodulin結合に依存しており、不活性型のコンフォメーションをとるCaMKKは阻害剤に結合しないこと、さらにはCaMKK/阻害剤結合はCaMKKの活性化状態に依存して可逆的であることを証明することに成功した(Ohtsuka et al. Biochemsitry 2022)。これまでCaMKKはその分子構造が単量体と考えられていたが、本研究において培養細胞に遺伝子導入したCaMKKアイソフォームは、多量体を形成することを細胞膜透過性架橋剤を用いることで明らかにした。さらに、この遺伝子導入細胞より単離した多量体CaMKKは、リン酸化酵素として酵素活性を有することも併せて証明することができた(Fukumoto et al. Biochem Biophys Res Commun 2022)。

    researchmap

  • Development of Resource Recovery and Environmental Clean-up System By Highly Active Iron-Oxidizing Bacteria

    Grant number:18K11696  2018.04 - 2023.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    竹内 文章, 石川 彰彦

      More details

    Grant amount:\4290000 ( Direct expense: \3300000 、 Indirect expense:\990000 )

    鉄酸化細菌は,バクテリアリーチング及びバイオレメディエーション等に活用できる応用微生物学的にも非常に重要な細菌である。これまで自然界から単離している菌株で,銅の溶出活性,水銀気化活性が高い株についての関連酵素等の生化学的諸性質を明確にしてきた。さらに鉄酸化細菌は,増殖速度が著しく遅いという問題点があるために,高度活性菌を独自に開発した電気培養法によって高濃度培養が可能な装置を開発した。今後,銅,ニッケル,モリブデン,亜鉛,コバルト,クロム,マンガン等の金属資源の枯渇,非鉄金属の価格の高騰は,避けられなく,低品位の鉱石,都市鉱山等から金属を高効率回収すること,また,環境改善の観点から特に水銀については,火山活動等の自然活動,水銀含有燃料・製品等の使用による排出や途上国による金採掘における水銀使用等の対策が切望されている。我々が取り組んでいる高活性鉄酸化細菌は,排水,地下水,土壌の浄化及びバクテリアリーチングの高効率化が可能であり,総合システムの確立を目指している。
    鉄酸化細菌を用いた環境負荷低減型資源回収及び環境浄化システムを構築するうえで,処理後に発生する副産物の利用,処理後の土壌管理における菌体の残留性やpH管理等を含む検討が必要である。ここでは,鉄酸化細菌を利用した処理において生成される水酸化鉄硫酸塩のシュベルトマナイトにも注目して,陰イオン吸着,金属イオン吸着,脱臭等の機能,土壌改良,水質浄化として利用するための固定化及びハンドリング技術,また,芸術・工芸品等の資材としての利用方法を検討した。

    researchmap

  • A novel bioassay system for antimitotic agents using unicellular organisms

    Grant number:25560416  2013.04 - 2015.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Exploratory Research

    ANDO Motonori, ISHIKAWA Teruhiko

      More details

    Grant amount:\3770000 ( Direct expense: \2900000 、 Indirect expense:\870000 )

    The present study provides a novel bioassay system for antimitotic agents using unicellular organisms. Heliozoon cells have many stiff and radiating axopodia, each containing a bundle of axonemal microtubules as a cytoskeleton. A flow-through type chamber was developed in this study. Heliozoon cells were more adherent to the glass coverslip then the plastic one, indicating that the substrate material influences sensitivity of this bioassay system. The axonemal microtubules were more sensitive to epothilones, a new class of microtubule-stabilizing agents with a paclitaxel-like mechanism of action. In addition, the axonemal microtubules labeled with the fluorescent paclitaxel were detected in viable heliozoon cells. These results indicate that heliozoon cells can be used as an effective in-vivo tool to screen novel microtubule-affecting agents with anti-tumor activity.

    researchmap

  • 新反応プロセス開発による機能性物質合成の効率化

    Grant number:15750092  2003 - 2004

    日本学術振興会  科学研究費助成事業  若手研究(B)

    石川 彰彦

      More details

    Grant amount:\3400000 ( Direct expense: \3400000 )

    機能性物質、医薬品の創出等、有機合成技術の社会への貢献が重要視されている。中でも、製造プロセスにおける省資源、環境保全、経済性の追求などを含めた、プロセス化学の水準の向上は最も重要な課題の一つである。本研究の目的は、効率的な連続反応系を開発し、それらを高度に活用することにより、複雑な分子構造へのアプローチを容易に、プロセス化学の発展と体系化へ貢献することにある。本年度成果を以下に挙げる。
    (1)立体選択的共役エンイン合成を応用することにより新規抗癌剤Epothilone Cの全合成、及び関連誘導体の合成を達成した。この合成ルートは、単純な結合形成反応、及び極低温を必要としない反応条件(全行程が0℃〜室温)に特長があるが、今後更なる効率化についても検討する。
    (2)連続的求核反応を用いた置換シクロヘキサンジオン合成生理活性物質合成等への展開例として抗アルツハイマー薬Galanthamineの基本骨格構築へ応用を検討した結果、その全合成に成功した。またこの反応系を応用し、生理活性アルカロイドMesembrine, Aspidospermineの全合成を達成した。
    (3)ニトロネートの新規発生法の開発とその炭素-炭素結合生成反応等、幾つかの効率的な合成プロセスを開発した。また、これらの方法論を応用することにより、抗HIV剤Cyclophellitol、血小板凝集抑制剤Isocarbacyclinの全合成を達成した。

    researchmap

  • Novel Domino Cross-aldol/Tishchenko Reaction Promoted by NaH

    Grant number:13450373  2001 - 2003

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    SAITO Seiki, ISHIKAWA Teruhiko

      More details

    Grant amount:\14800000 ( Direct expense: \14800000 )

    We have found that when an aldehyde (2 eq) was added to a mixture of a ketone and NaH (1.1 eq) in THF at 0℃, domino aldol-Tishchenko reaction took place to afford a 1,3-diol with C(2)-substituent as a single diastereoisomer. It should be noted that no evolution of hydrogen gas was observed when the mixture of the ketone and NaH in THF was stirred at that temperature, and the dropwise addition of the aldehyde triggered the evolution of hydrogen gas which interestingly synchronized to the addition of aldehyde. The aldol-Tishchenko product was proven to have unexceptionally anti-aldol and anti-Tishchenko stereochemical outcome. Furthermore, when the aldehyde (2 eq) was replaced with two different aldehydes A (1 eq) and B (1 eq), Sterically less demanding or, if demanding nature of A and B was similar, more reactive one was incorporated into the aldol process, remaining aldehyde being used as a hydride donor in the Tishchenko process. Also chlorotrimethylsilane didn't affect the reaction by any means. All these findings might indicate that the four component involving the ketone, two of aldehydes, and NaH assemble together through weak interaction among them by keeping delicate balance of the assembly : no distinct enolate intermediate could not intervened.
    Being strongly inspired by such chemistry, we paid attention to other traditional bases such as potassium tert-butoxide and found hidden aspects of thermodynamically-controlled enolate generated from simple ketone which plays an important role in domino Michael-Claisen reaction leading to cyclohexane-1,3-dione. We have also found that alkynes can lead to the corresponding acetylide anions on treatment with ammonium hydroxide base in DMSO. This chemistry gave strong incentive to be concerned with alkynes as two directional chain extension tool, and developed several synthetic organic reactions using propargyl-allyl hybrid cation which can be prepared from 1-allylpropargyl ssitrimethylsilyl ether by the action of Lewis acid.

    researchmap

  • Novel aromatization reaction of enamines employing Pd (II) complex

    Grant number:10450342  1998 - 2000

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B).

    SAITO Seiki, ISHIKAWA Teruhiko

      More details

    Grant amount:\13500000 ( Direct expense: \13500000 )

    Enamines prepared from cyclohexanones, cyclohexane-1, 3-diones or tetralones led to aryl amines in one pot when treated with stoichiometric amount of palladium salts [PdCl_2 (MeCN)_2] in acetonitrile in the presence of triethylamine at rt or at elevated temperature in some cases for 5 min-2 h. Initial electrophilic attack of palladium chloride on the β-carbon of the enamines led to a σ-palladium species which triggered a series of reactions destined for aromatization to give aryl amines in good yields. The intervention of such a σ-palladium species has been attested by a trapping experiment. On the basis of this reaction mechanism, we have developed another new process capable of transforming acyclic compounds having 6-en-2-one frameworks to aryl amines when their enamines were treated under the similar conditions as above, featuring again the formation of σ-palladium species as the initial key intermediate.

    researchmap

  • Development of practical methods for the synthesis of taxane diterpenoids

    Grant number:09555286  1997 - 1999

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    SAITO Seiki, ISHIKAWA Teruhiko

      More details

    Grant amount:\13400000 ( Direct expense: \13400000 )

    We have revisited the traditional consecutive Michael-Claisen [3 + 3] process (MC-[3+3]) promising for the synthesis of a cyclohexane-1, 3-dione derivatives from non-activated simple ketones and enoates, and evaluated its potential in modern organic synthesis. The reaction conditions employing the ketones (1.2 equiv), enoate (1.0 equiv), and t-BuOK (1.2 equiv) in THF as a solvent at temperature range of 0℃ to 40℃ have been established. Twenty to thirty examples were demonstrated to be effective under such conditions including the synthesis of a taxol A, C-ring synthons available in multi-gram quantities. The reactions exhibited remarkable regioselectivity that the Michael addition proceeded through nucleophilic attack by more hindered site of the ketones without exceptions, which, in turn, means that Claisen condensation resulted in the formation of carbon-carbon bonds between less hindered site of the ketones and acyl carbon of the enoates. In addition, taking advantages of the MC- [3+3] process, a few useful methods for the synthesis of six membered carbocyclic compounds have also been developed. A number of control experiments have been conducted to provide strong supporting information for the mechanism of this MC-[3+3] process.

    researchmap

  • Development of The Highly Effective System of Intramolecular Diels-Alder Reaction

    Grant number:09650963  1997 - 1998

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    ISHIKAWA Teruhiko, SAITO Seiki

      More details

    Grant amount:\3300000 ( Direct expense: \3300000 )

    In our efforts to explore intramolecular Diels-Alder systems which fulfill the four criteria, (1) easy connection between diene and dienophile parts (2) high reactivity, (3) homogeneous stereochemical consequences, and (4) high conventionality of the tethering group transformation, we have found that the above criteria can be established by utilizing hydroxamate-tethered systems.
    In this system the diene and dienophile parts are close proximity, which is caused from lone-pair repulsion between two oxygen atoms and steric constraint around the N-O bond. Thus, the Intra-DA should be much more entropically favored.
    These irreplaceable characteristics together with the extremely selective and predictable stereochemical consequences and the versatile latent functionality of the tethering group itself, make "temporary hydroxamate connection" attractive and promising. Application of this strategy to complex natural product synthesis is currently in progress.

    researchmap

  • Development of novel carbon-nitrogen bond forming reactions by means of [2,3] sigmatropic rearrangement

    Grant number:08455430  1996 - 1997

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    SAITO Seiki, ISHIKAWA Teruhiko

      More details

    Grant amount:\7200000 ( Direct expense: \7200000 )

    This research has disclosed for the first time that N-alkyl-O-allylic-hydroxylamines (1) rearrange to furnish allylic amines when treated with base such as butyllithium (THF, 0゚C, 5min), or thermally without base (DMF, 60゚C) depending on the structure of 1. This is unprecedented [2,3]-Wittig type rearrangement in which a migration terminus is a negatively charged nitrogen atom. Taking advantage of hydroxylamine as an N,O-bifunctional nucleophile, we can prepare 1 through a series of routine reactions involving Mitsunobu reaction of allylic alcohols with N-hydroxyphthalimide (Phth-N-OH), generation of O-allylic hydroxylamine with hydrazine, and N-benzylation with benzyl bromide. Hence we have been studying the scope and limitations of this novel [2,3]sigmatropic rearrangement to find that it highly merits organic synthesis as a method for the preparation of stereo-defined allylic amines which are biologically important class of compounds. It also turned out that the reaction was able to be applied to the synthesis of chiral amino polyols relying on substrate-controlled 1,2- and 1,3-asymmetric induction to result in achieving >90%de. Another synthetic potential of this method has been also demonstrated which gives opportunities for the preparation of optically active allylic amines when the reaction is carried out in the presence of chiral diaza-ligand such as bisoxazolines, featuring the first example of reagent-controlled enantioselective [2,3]sigmatropic rearrangement.

    researchmap

  • N-アセチルノイラミン酸骨格合成法の新展開

    Grant number:08245236  1996

    日本学術振興会  科学研究費助成事業  重点領域研究

    斎藤 清機, 石川 彰彦

      More details

    Grant amount:\2600000 ( Direct expense: \2600000 )

    入手容易なキラル源であるD-マンニトールを出発原料とするシアル酸誘導体の合成法の確立を目的とする。特に,水酸基とアミノ基のマスクコントロールが可能となる合成法を追及する。本合成法は,必要な水酸基を有するアリルアミン,即ち3-アミノ-1-ヘプテン-4,5,6,7-テトラオール体(A)を鍵中間体とし,末端二重結合に対するニトリルオキシドの双極子付加反応により9炭素鎖を構築するものである。
    本年度は第一に,この基本計画が可能であることを,別途合成したジアステレオマ-混合物のAとシアノギ酸エチル-N-オキシドとの反応により確認した。
    第二にC(3)-アミノ基の立体選択的導入法の開発を検討した。アミノ基導入と同時にC(1)-オレフィンの構築が達成されれば理想的なので,[2,3]-シグマトロピィを検討した。即ち,4,5-O-ベンジリデン-6,7-O-ジベンジル-2-ヘプテン-1,4,5,6,7-ペンタオール体のC(1)-水酸基を,光延反応によってベンジルアミノオキシ基に変換し(R-CH=CH-CH_2O-NHBn),ブチルリチウムを作用させると,期待した[2,3]-シグマトロピィ転移反応が進行して3-アミノ-1-ヘプテン-4,5,6,7-テトラオール体[R-CH(NBnOH)-CH=CH_2]が得られた。C(3)-アミノ基の絶対構造は天然のシアル酸とは逆であった(90%de)。一方,R-基中の4,5-O-ベンジリデン部分を4,5-O-ビス(TBDMS)とし,R-CH=CH-CO_2EtにBnNHOHをマイケル付加させると,天然のシアル酸と同一の絶対構造を有するR-CH(NBnOH)-CH_2-CO_2Et体が得られた(>99%de)。現在,-CH_2-CO_2Et基の末端ビニル基への変換を検討中である。C(3)-アミノ基の立体選択的導入法の第三法として,ニトロンのビニルシランに対する分子内双極子付加反応が有効であることも見出した。

    researchmap

  • 保護した隣接ジオールによる不斉空間構築と不斉合成への活用

    Grant number:07214221  1995

    日本学術振興会  科学研究費助成事業  重点領域研究

    斉藤 清機, 石川 彰彦

      More details

    Grant amount:\2000000 ( Direct expense: \2000000 )

    (1)α,β-不飽和エステルのアルコール由来基に,酒石酸,マンデル酸,パントラクトン等のヒドロキシカルボン酸エステルを導入すれば,アキラルなヒドロキシルアミンとのマイケル付加反応において生成する付加成績体が引き続き分子内エステル交換反応をおこして,オキサゾリジノン体が一挙に生成することを見出した。また,本反応は,キラルなヒドロキシルアミン(R^*HNOH)を用いれば,重複不斉誘導によって高ジアステレオ選択的に進行することも見出した。オキサゾリジノン体のN-O結合は容易に開裂可能であり,その過程を含んでオキサゾリジノンがβ-アミノ酸の等価体であり,従って本反応がβ-アミノ酸の不斉合成法としても有用であることを明らかにした。
    (2)ベンジルヒドロキシルアミンをキラルなルイス酸,例えば(S,S)-2,3-O-Benzylidene-1,1,4,4,-tetraphenylbutanetetraolとトリメチルアルミニウムから調製したメチルビスアルコキシアルミニウム体,と反応させればルイス酸点を併せ持ったヒドロキシルアミン・アルミニウム複合反応剤が生成することを見い出した。この反応剤は非常に活性な窒素求核反応剤として機能し,-65℃でもα,β-不飽和エステルに対してマイケル付加反応を行うことが可能であることを明らかにした。またこの際エナンチオ面区別も可能であり(現在最高60%ee),キラル補助基の検索を現在進行中である。

    researchmap

  • Studies on the development of new, practical synthetic methods for the synthesis of physiologically active compounds related to vitamin D

    Grant number:06555281  1994 - 1996

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    SAITO Seiki, NITTA Issei, MANDAI Tadakatsu, ISHIKAWA Teruhiko

      More details

    Grant amount:\6500000 ( Direct expense: \6500000 )

    The subject of this research is to establish versatile methods for the synthesis of Vitamin D and related compounds which can be submitted to physiological tests to systematically investigate the structure-activity relationship. The research takes advantage of convergent strategy and covers following categories : the development of novel methods for the asymmetric synthesis of C,D- and A-rings, which can be coupled by unprecedented methodology featuring nature-friendly and short-cut processes. The C,D-ring synthon has been prepared in 98.3 %de based on diastereoselective intramolecular Wadsworth-Emmons reaction relying on phenylmenthyl group as a chiral auxiliary. The optically pure A-ring synthon has been in hand efficiently by means of intramolecular 1,3-dipolar cycloaddition reaction of optically pure omega-olefinic dihydroxylnitriloxide which can be derived conveniently from optically pure ethyl (3S) -3,4-dihydroxybutanoate derivative available in multigram quantities from natural L-malic acid. Also, though remained at the stage of model reaction, it has been shown that Peterson-type olefination reaction between alpha, beta-unsaturated aldehyde and allylsilane may be promising for the forthcoming coupling process of the A-ring synthon with C,D-ring synthon. The methods developed in this research seem applicable to the synthesis of structurally diversed vitamin D derivatives. We will get involved in this research for the time being whcih would hopefully make the methods much better in terms of synthetic steps involved or availability of starting chiral templates for the C,D-ring synthon.

    researchmap

  • 保護した隣接ジオールによる不斉空間構築と不斉合成への応用

    Grant number:06225223  1994

    日本学術振興会  科学研究費助成事業  重点領域研究

    斎藤 清機, 石川 彰彦

      More details

    Grant amount:\2400000 ( Direct expense: \2400000 )

    (1)鎖状化合物として基質Z-(TBDMSO)CHCH(TBDMSO)-(R^1)C=XR^2R^3(1)を設計した。置換基-(R^1)C=XR^2R^3を-HC=N^+(O^-)BnおよびZを-CH_2OBnとした基質に対して、キラルな4-置換-α,β-不飽和ラクトンあるいは4-置換-シクロペンテノンを反応させたところ、いずれの場合にも一方の鏡像体のみが反応し、もう一方の鏡像体は実質的に反応しなかった。ニトロン(1)の炭素・窒素二重結合のジアステレオ面が完全に区別されることはすでに昨年の研究成果として報告した。しかし、その場合でのオレフィン(親双極子)側のエネンチオ面の区別は基質に大きく依存し、通常高い選択性で区別されることは稀であった。従って、今回の結果は基質(1)がその問題点を解決する方法を提供したことを意味し非常に興味深い。加えて、得られた環化付加体は全部で六個の連続する立体中心が構築されており、官能基の序列と絶対構造を詳細に解析した結果、シアル酸誘導体に要求されるものと一致しており、現在シアル酸誘導体の合成への反応について鋭意検討している。
    (2)置換基-(R^1)C=XR^2R^3を-CHO,置換基Zを-HC=C(CH_3)CO_2Etとした基質にヒドロキシルアミンを反応させたところ、オキシムの生成と引き続く分子内マイケル付加反応が進行し、全ての置換基がお互いにアンチの配向を有する環状キラルニトロンが単一のジアステレオマ-として高収率で得られた。このニトロンが、α,β-不飽和エステルのエナンチオ面を識別する能力は抜群であり、究めて広範囲に不斉合成が展開可能となってきた。

    researchmap

  • Studies on the development of new, short, and practical synthetic methods for the synthesis of isocarbacyclin

    Grant number:05453129  1993 - 1995

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for General Scientific Research (B)

    SAITO Seiki, ISHIKAWA Teruhiko

      More details

    Grant amount:\7400000 ( Direct expense: \7400000 )

    This research has established a novel, short-step, convergent, and practical method for the synthesis of isocarbacyclin featuring a one-pot, three-step process involving vinyl ether formation, Claisen rearrangement, and en reaction to give bicyclo [3.3.1]-backbone, which is not relying on any previous idea in this field that is principally the same as that for prostaglandin synthesis. The new method provided in this research can construct cyclopentenone framework bearing the homoallylic omega-chain longer by one-carbon at first followed by the introduction of the alpha-chain shorter by two-carbon to furnish the precursor for the bicyclo [3.3.1]-backbone. The method required (4S)-4-(O-tert-butyldimethylsilyl)-cyclopent-2-en-1-one as an important starting chiral compound, the antipode of which has been well-known starting material in PG synthesis. In other words, therefore, (4S)-isomer is given significant value which has not been experienced so far.
    A chiral synthon corresponding to the homoallylic omega-chain has been synthesized efficiently from (S)-1,2-(O-isopropylidene) glycerol in twenty-gram scale and 80-95% yield for each step through a series of routine reactions (7 steps).
    A precursor for the bicyclo [3.3.1]-backbone to be submitted to the one-pot, three-step process can be provided from an allylic tert-alcohol by vinyl ether formation. We hoped that a reaction to be used in this transformation should be free from mercury salts for some reasons and, after several attempts, has succeeded in developing a new, general method for the synthesis of vinyl ether from various allylic alcohols including tert-versions.

    researchmap

▼display all

 

Class subject in charge

  • Secondary Education Science Content Construction Ⅰ (2023academic year) 1st semester  - 火3~4

  • Secondary Education Science Content Construction Ⅲ (2023academic year) 3rd and 4th semester  - その他

  • Secondary Science Content Structure Basic (2023academic year) 1st and 2nd semester  - 水3~4

  • Chemistry Ⅰ (2023academic year) Third semester  - 水3~4

  • Chemistry Ⅱ (2023academic year) Fourth semester  - 水3~4

  • Chemistry Laboratory A (2023academic year) Third semester  - 火5~8

  • Chemistry Laboratory B (2023academic year) Fourth semester  - 火5~8

  • Chemistry Laboratory Ⅰ (2023academic year) Third semester  - 火5~8

  • Chemistry Laboratory Ⅱ (2023academic year) Fourth semester  - 火5~8

  • An Introduction to Chemistry A (2023academic year) Third semester  - 月7~8

  • An Introduction to Chemistry B (2023academic year) Fourth semester  - 月7~8

  • Introduction to Chemistry (2023academic year) Third semester  - 月7~8

  • Organic Chemistry Ⅰ (2023academic year) Third semester  - 金5~6

  • Organic Chemistry Ⅱ (2023academic year) Fourth semester  - 金5~6

  • Organic Chemistry Laboratory (2023academic year) 1st-4th semester  - その他

  • Instrumental Analytical Chemistr Ⅰ (2023academic year) 1st-4th semester  - その他

  • Instrumental Analytical Chemistr Ⅱ (2023academic year) 1st-4th semester  - その他

  • Biological Chemistry Ⅰ (2023academic year) 1st semester  - 水3~4

  • Biological Chemistry Ⅱ (2023academic year) Second semester  - 水3~4

  • Primary Education Science Basic Content (2023academic year) Third semester  - 水1~2

  • Primary Education Science Basic Content (2023academic year) Third semester  - 火3~4

  • Primary Education Science Content Construction (2023academic year) 3rd and 4th semester  - その他

  • Primary Education Science Content Teaching (2023academic year) Third semester  - 火3~4

  • Primary Education Science Content Teaching (2023academic year) Third semester  - 火3~4

  • Industrial organic chemistry Ⅰ (2023academic year) 1st-4th semester  - その他

  • Industrial organic chemistry Ⅱ (2023academic year) 1st-4th semester  - その他

  • Introduction to Industry (2023academic year) 3rd and 4th semester  - 木1~2

  • Introduction to Industry (2023academic year) 3rd and 4th semester  - [第3学期]木1~2, [第4学期]その他

  • Introduction to Industry (2023academic year) 3rd and 4th semester  - 木1~2

  • Special Studies in Idea and Problems of Academic Training B (2023academic year) 1st semester  - 金1,金2

  • Special Studies in Educational Science(Analytical Chemistry A): Seminar (2023academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Analytical Chemistry B): Seminar (2023academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry A): Seminar (2023academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry B): Seminar (2023academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IA) (2023academic year) Third semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IB) (2023academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Physical Chemistry A) (2023academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry B) (2023academic year) 1st-4th semester  - その他

  • Project Research in Educational Science (2023academic year) 1st-4th semester  - その他

  • Instrumental analysis Ⅰ (2023academic year) 1st-4th semester  - その他

  • Instrumental analysis Ⅱ (2023academic year) 1st-4th semester  - その他

  • Substance, Life, Earth and Environmental Sciences (2023academic year) Fourth semester  - その他

  • Basic Science (Chemistry) (2023academic year) Second semester  - 木7~8

  • Chemistry in Daily Life (2023academic year) Third semester  - 月5~6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) 1st semester  - 金5,金6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) Third semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) 1st semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) Second semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2023academic year) Third semester  - その他

  • Secondary Education Science Content Construction Ⅰ (2022academic year) 1st semester  - 火3,火4

  • Secondary Education Science Content Construction Ⅲ (2022academic year) 3rd and 4th semester  - その他

  • Chemistry Laboratory A (2022academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2022academic year) Fourth semester  - 火5,火6,火7,火8

  • An Introduction to Chemistry A (2022academic year) Third semester  - 月7,月8

  • An Introduction to Chemistry B (2022academic year) Fourth semester  - 月7,月8

  • Chemistry for Junior high school science A (2022academic year) Third semester  - 木7,木8

  • Chemistry for Junior high school science B (2022academic year) Fourth semester  - 木7,木8

  • Organic Chemistry Ⅰ (2022academic year) Third semester  - 金5,金6

  • Organic Chemistry Ⅱ (2022academic year) Fourth semester  - 金5,金6

  • Organic Chemistry Laboratory (2022academic year) 1st-4th semester  - その他

  • Biological Chemistry Ⅰ (2022academic year) 1st semester  - 水3,水4

  • Biological Chemistry Ⅱ (2022academic year) Second semester  - 水3,水4

  • Studies in Chemical-Content Based Development for Secondaly Science Education A (2022academic year) 3rd and 4th semester  - その他

  • Studies in Chemical-Content Based Development for Secondaly Science Education B (2022academic year) 3rd and 4th semester  - その他

  • Primary Education Science Content Construction (2022academic year) 3rd and 4th semester  - その他

  • Content Studies in Science for Elementary Education A (2022academic year) 1st semester  - 金7,金8

  • Content Studies in Science for Elementary Education B (2022academic year) Second semester  - 金7,金8

  • Primary Education Science Content Teaching (2022academic year) 1st semester  - 金7,金8

  • Chemistry Laboratory A (2022academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2022academic year) Fourth semester  - 火5,火6,火7,火8

  • Basic Chemistry A (2022academic year) Third semester  - 月7,月8

  • Basic Chemistry B (2022academic year) Fourth semester  - 月7,月8

  • Approaches to Education (2022academic year) 1st semester  - 火1~2

  • Industrial organic chemistry Ⅰ (2022academic year) 1st-4th semester  - その他

  • Industrial organic chemistry Ⅱ (2022academic year) 1st-4th semester  - その他

  • Introduction to Industry (2022academic year) 3rd and 4th semester  - 木1~2

  • Introduction to Industry (2022academic year) 3rd and 4th semester  - 木1~2

  • Special Studies in Idea and Problems of Academic Training B (2022academic year) 1st semester  - 金1,金2

  • Special Studies in Educational Science(Inorganic Chemistry A): Seminar (2022academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry B): Seminar (2022academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IIA) (2022academic year) Third semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IIB) (2022academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry A) (2022academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry B) (2022academic year) 1st-4th semester  - その他

  • Project Research in Educational Science (2022academic year) 1st-4th semester  - その他

  • Organic Chemistry (1) (2022academic year) Third semester  - 金5,金6

  • Organic Chemistry (2) (2022academic year) Fourth semester  - 金5,金6

  • Organic Chemistry Laboratory (2022academic year) special  - その他

  • Substance, Life, Earth and Environmental Sciences (2022academic year) Fourth semester  - その他

  • Chemistry in Basic Science (2022academic year) Second semester  - 木7,木8

  • Basic Science (Chemistry) (2022academic year) Second semester  - 木7,木8

  • Biological Chemistry (1) (2022academic year) 1st semester  - 水3,水4

  • Biological Chemistry (2) (2022academic year) Second semester  - 水3,水4

  • Chemistry in Daily Life (2022academic year) Third semester  - 月5~6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) 1st semester  - 金5,金6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) Third semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) 1st semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) Second semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2022academic year) Third semester  - その他

  • Secondary Education Science Content Construction Ⅰ (2021academic year) 1st semester  - 火3,火4

  • Secondary Education Science Content Construction Ⅲ (2021academic year) 3rd and 4th semester  - その他

  • Chemistry Laboratory A (2021academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2021academic year) Fourth semester  - 火5,火6,火7,火8

  • An Introduction to Chemistry A (2021academic year) Third semester  - 月7,月8

  • An Introduction to Chemistry B (2021academic year) Fourth semester  - 月7,月8

  • Chemistry for Junior high school science A (2021academic year) Third semester  - 木7,木8

  • Chemistry for Junior high school science B (2021academic year) Fourth semester  - 木7,木8

  • Organic Chemistry Ⅰ (2021academic year) Third semester  - 金5,金6

  • Organic Chemistry Ⅱ (2021academic year) Fourth semester  - 金5,金6

  • Organic Chemistry Laboratory (2021academic year) 1st-4th semester  - その他

  • Instrumental Analytical Chemistr Ⅰ (2021academic year) 1st-4th semester  - その他

  • Instrumental Analytical Chemistr Ⅱ (2021academic year) 1st-4th semester  - その他

  • Biological Chemistry Ⅰ (2021academic year) 1st semester  - 水3,水4

  • Biological Chemistry Ⅱ (2021academic year) Second semester  - 水3,水4

  • Studies in Chemical-Content Based Development for Secondaly Science Education A (2021academic year) 3rd and 4th semester  - その他

  • Studies in Chemical-Content Based Development for Secondaly Science Education B (2021academic year) 3rd and 4th semester  - その他

  • Primary Education Science Content Construction (2021academic year) 3rd and 4th semester  - その他

  • Content Studies in Science for Elementary Education A (2021academic year) 1st semester  - 金7,金8

  • Content Studies in Science for Elementary Education B (2021academic year) Second semester  - 金7,金8

  • Primary Education Science Content Teaching (2021academic year) 1st semester  - 金7,金8

  • Chemistry Laboratory A (2021academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2021academic year) Fourth semester  - 火5,火6,火7,火8

  • Basic Chemistry A (2021academic year) Third semester  - 月7,月8

  • Basic Chemistry B (2021academic year) Fourth semester  - 月7,月8

  • Industrial organic chemistry Ⅰ (2021academic year) 1st-4th semester  - その他

  • Industrial organic chemistry Ⅱ (2021academic year) 1st-4th semester  - その他

  • Introduction to Industry (2021academic year) 3rd and 4th semester  - 木1~2

  • Introduction to Industry (2021academic year) 3rd and 4th semester  - 木1,木2

  • Special Studies in Idea and Problems of Academic Training B (2021academic year) 1st semester  - 金1,金2

  • Introduction of Project Based Learning (2021academic year) 1st semester  - 火1,火2

  • Special Studies in Educational Science(Analytical Chemistry A): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Analytical Chemistry B): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry A): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry B): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry A): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry B): Seminar (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IA) (2021academic year) Third semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IB) (2021academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry A) (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Inorganic Chemistry B) (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry A) (2021academic year) 1st-4th semester  - その他

  • Special Studies in Educational Science(Physical Chemistry B) (2021academic year) 1st-4th semester  - その他

  • Project Research in Educational Science (2021academic year) 1st-4th semester  - その他

  • Organic Chemistry (1) (2021academic year) Third semester  - 金5,金6

  • Organic Chemistry (2) (2021academic year) Fourth semester  - 金5,金6

  • Organic Chemistry Laboratory (2021academic year) special  - その他

  • Instrumental analysis Ⅰ (2021academic year) 1st-4th semester  - その他

  • Instrumental analysis Ⅱ (2021academic year) 1st-4th semester  - その他

  • Instrumental Analytical Chemistry (1) (2021academic year) special  - その他

  • Instrumental Analytical Chemistry (2) (2021academic year) special  - その他

  • Substance, Life, Earth and Environmental Sciences (2021academic year) Fourth semester  - その他

  • Chemistry in Basic Science (2021academic year) Second semester  - 木7,木8

  • Basic Science (Chemistry) (2021academic year) Second semester  - 木7,木8

  • Biological Chemistry (1) (2021academic year) 1st semester  - 水3,水4

  • Biological Chemistry (2) (2021academic year) Second semester  - 水3,水4

  • Chemistry in Daily Life (2021academic year) Third semester  - 月5~6

  • Project Based Learning I (2021academic year) Second semester  - 火1,火2

  • Project Based Learning II (2021academic year) Third semester  - 火1,火2

  • Project Based Learning III (2021academic year) Fourth semester  - 火1,火2

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) 1st semester  - 金5,金6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) Third semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) 1st semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) Second semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2021academic year) Third semester  - その他

  • Secondary Education Science Content Construction Ⅰ (2020academic year) 1st semester  - 火3,火4

  • Chemistry Laboratory A (2020academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2020academic year) Fourth semester  - 火5,火6,火7,火8

  • An Introduction to Chemistry A (2020academic year) Third semester  - 月7,月8

  • An Introduction to Chemistry B (2020academic year) Fourth semester  - 月7,月8

  • Chemistry for Junior high school science A (2020academic year) Third semester  - 木7,木8

  • Chemistry for Junior high school science B (2020academic year) Fourth semester  - 木7,木8

  • Organic Chemistry Ⅰ (2020academic year) Third semester  - 金5,金6

  • Organic Chemistry Ⅱ (2020academic year) Fourth semester  - 金5,金6

  • Biological Chemistry Ⅰ (2020academic year) 1st semester  - 水3,水4

  • Biological Chemistry Ⅱ (2020academic year) Second semester  - 水3,水4

  • Studies in Chemical-Content Based Development for Secondaly Science Education A (2020academic year) 3rd and 4th semester  - その他

  • Studies in Chemical-Content Based Development for Secondaly Science Education B (2020academic year) 3rd and 4th semester  - その他

  • Content Studies in Science for Elementary Education A (2020academic year) 1st semester  - 金7,金8

  • Content Studies in Science for Elementary Education B (2020academic year) Second semester  - 金7,金8

  • Primary Education Science Content Teaching (2020academic year) 1st semester  - 金7,金8

  • Chemistry Laboratory A (2020academic year) Third semester  - 火5,火6,火7,火8

  • Chemistry Laboratory B (2020academic year) Fourth semester  - 火5,火6,火7,火8

  • Basic Chemistry A (2020academic year) Third semester  - 月7,月8

  • Basic Chemistry B (2020academic year) Fourth semester  - 月7,月8

  • Approaches to Education (2020academic year) 1st semester  - 火1,火2

  • Industrial organic chemistry Ⅰ (2020academic year) special  - その他

  • Industrial organic chemistry Ⅱ (2020academic year) special  - その他

  • Seminar in Teaching Profession Practice (Secondary school A) (2020academic year) 1st-4th semester  - 水7,水8

  • Special Studies in Idea and Problems of Academic Training B (2020academic year) 1st semester  - 金1,金2

  • Introduction of Project Based Learning (2020academic year) 1st semester  - 火1,火2

  • Special Studies in Educational Science(Organic Chemistry IIA) (2020academic year) Third semester  - その他

  • Special Studies in Educational Science(Organic Chemistry IIB) (2020academic year) Fourth semester  - その他

  • Project Research in Educational Science (2020academic year) 1st-4th semester  - その他

  • Organic Chemistry (1) (2020academic year) Third semester  - 金5,金6

  • Organic Chemistry (2) (2020academic year) Fourth semester  - 金5,金6

  • Organic Chemistry Laboratory (2020academic year) special  - その他

  • Substance, Life, Earth and Environmental Sciences (2020academic year) Fourth semester  - その他

  • Chemistry in Basic Science (2020academic year) Second semester  - 木7,木8

  • Basic Science (Chemistry) (2020academic year) Second semester  - 木7,木8

  • Biological Chemistry (1) (2020academic year) 1st semester  - 水3,水4

  • Biological Chemistry (2) (2020academic year) Second semester  - 水3,水4

  • Project Based Learning I (2020academic year) Second semester  - 火1,火2

  • Project Based Learning II (2020academic year) Third semester  - 火1,火2

  • Project Based Learning III (2020academic year) Fourth semester  - 火1,火2

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) 1st semester  - 金5,金6

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) Third semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) Fourth semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) 1st semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) Second semester  - その他

  • Special Studies in Educational Science(Special Studies in Project Based Learning (2020academic year) Third semester  - その他

▼display all