Updated on 2024/04/21

写真a

 
MIYAJI Takaaki
 
Organization
Advanced Science Research Center Associate Professor
Position
Associate Professor
External link

Degree

  • 博士(薬学) ( 2009.3   岡山大学 )

  • Ph.D ( 2009.3   Okayama University )

Research Interests

  • 疼痛

  • 創薬

  • ストレス耐性

  • Transporter

  • 神経伝達

  • 脂質

  • 生活習慣病

Research Areas

  • Life Science / Pharmaceutical hygiene and biochemistry

  • Life Science / Nutrition science and health science

  • Life Science / Pharmacology

Research History

  • Okayama University   Department of Genomics and Proteomics, Advanced Science Research Center

    2018.10

      More details

  • Okayama University   Department of Genomics and Proteomics, Advanced Science Research Center   Associate Professor

    2012.4

      More details

  • Okayama University   Department of Genomics and Proteomics, Advanced Science Research Center   Assistant Professor

    2009.4 - 2012.3

      More details

Professional Memberships

▼display all

 

Papers

  • An oligo peptide transporter family member, OsOPT7, mediates xylem unloading of Fe for its preferential distribution in rice Reviewed

    Naoki Yamaji, Yuma Yoshioka, Sheng Huang, Takaaki Miyaji, Akimasa Sasaki, Jian Feng Ma

    New Phytologist   2024.4

     More details

    Publishing type:Research paper (scientific journal)  

    DOI: 10.1111/nph.19756

    researchmap

  • Glia transmit negative valence information during aversive learning in Drosophila Reviewed

    Tomoyuki Miyashita, Kanako Murakami, Emi Kikuchi, Kyouko Ofusa, Kyohei Mikami, Kentaro Endo, Takaaki Miyaji, Sawako Moriyama, Kotaro Konno, Hinako Muratani, Yoshinori Moriyama, Masahiko Watanabe, Junjiro Horiuchi, Minoru Saitoe

    Science   382 ( 6677 )   2023.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Association for the Advancement of Science (AAAS)  

    During Drosophila aversive olfactory conditioning, aversive shock information needs to be transmitted to the mushroom bodies (MBs) to associate with odor information. We report that aversive information is transmitted by ensheathing glia (EG) that surround the MBs. Shock induces vesicular exocytosis of glutamate from EG. Blocking exocytosis impairs aversive learning, whereas activation of EG can replace aversive stimuli during conditioning. Glutamate released from EG binds to N -methyl- d -aspartate receptors in the MBs, but because of Mg 2+ block, Ca 2+ influx occurs only when flies are simultaneously exposed to an odor. Vesicular exocytosis from EG also induces shock-associated dopamine release, which plays a role in preventing formation of inappropriate associations. These results demonstrate that vesicular glutamate released from EG transmits negative valence information required for associative learning.

    DOI: 10.1126/science.adf7429

    researchmap

  • A silicon transporter gene required for healthy growth of rice on land. Reviewed International journal

    Namiki Mitani-Ueno, Naoki Yamaji, Sheng Huang, Yuma Yoshioka, Takaaki Miyaji, Jian Feng Ma

    Nature communications   14 ( 1 )   6522 - 6522   2023.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Silicon (Si) is the most abundant mineral element in the earth's crust. Some plants actively accumulate Si as amorphous silica (phytoliths), which can protect plants from stresses. Here, we report a gene (SIET4) that is required for the proper accumulation and cell-specific deposition of Si in rice and show that it is essential for normal growth. SIET4 is constitutively expressed in leaves and encodes a Si transporter. SlET4 polarly localizes at the distal side of epidermal cells and cells surrounding the bulliform cells (motor cells) of the leaf blade, where Si is deposited. Knockout of SIET4 leads to the death of rice in the presence but not absence of Si. Further analysis shows that SIET4 knockout induces abnormal Si deposition in mesophyll cells and the induction of hundreds of genes related to various stress responses. These results indicate that SIET4 is required for the proper export of Si from leaf cells to the leaf surface and for the healthy growth of rice on land.

    DOI: 10.1038/s41467-023-42180-y

    PubMed

    researchmap

  • エイコサペンタエン酸の新しい分子標的の発見:小胞型ヌクレオチドトランスポーターを標的としたエイコサペンタエン酸の慢性疼痛抑制メカニズム Invited Reviewed

    宮地孝明

    ファルマシア(Web)   59 ( 1 )   2023

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese  

    J-GLOBAL

    researchmap

  • Vesicular nucleotide transporter is a molecular target of eicosapentaenoic acid for neuropathic and inflammatory pain treatment Reviewed International journal

    Yuri Kato, Kengo Ohsugi, Yuto Fukuno, Ken Iwatsuki, Yuika Harada, Takaaki Miyaji

    Proceedings of the National Academy of Sciences   119 ( 30 )   e2122158119   2022.7

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.

    DOI: 10.1073/pnas.2122158119

    PubMed

    researchmap

  • Node-Localized Transporters of Phosphorus Essential for Seed Development in Rice. Reviewed

    Jing Che, Naoki Yamaji, Takaaki Miyaji, Namiki Mitani-Ueno, Yuri Kato, Ren Fang Shen, Jian Feng Ma

    Plant & cell physiology   61 ( 8 )   1387 - 1398   2020.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    About 60-85% of total phosphorus (P) in cereal crops is finally allocated to seeds, where it is required for seed development, germination and early growth. However, little is known about the molecular mechanisms underlying P allocation to seeds. Here, we found that two members (OsPHO1;1 and OsPHO1;2) of the PHO1 gene family are involved in the distribution of P to seeds in rice. Both OsPHO1;1 and OsPHO1;2 were localized to the plasma membrane and showed influx transport activities for inorganic phosphate. At the reproductive stage, both OsPHO1;1 and OsPHO1;2 showed higher expression in node I, the uppermost node connecting to the panicle. OsPHO1;1 was mainly localized at the phloem region of diffuse vascular bundles (DVBs) of node I, while OsPHO1;2 was expressed in the xylem parenchyma cells of the enlarged vascular bundles (EVBs). In addition, they were also expressed in the ovular vascular trace, the outer layer of the inner integument (OsPHO1;1) and in the nucellar epidermis (OsPHO1;2) of caryopses. Knockout of OsPHO1;2, as well as OsPHO1;1 to a lesser extent, decreased the distribution of P to the seed, resulting in decreased seed size and delayed germination. Taken together, OsPHO1;2 expressed in node I is responsible for the unloading of P from the xylem of EVBs, while OsPHO1;1 is involved in reloading P into the phloem of DVBs for subsequent allocation of P to seeds. Furthermore, OsPHO1;1 and OsPHO1;2 expression in the caryopsis is important for delivering P from the maternal tissues to the filial tissues for seed development.

    DOI: 10.1093/pcp/pcaa074

    PubMed

    researchmap

  • Outward open conformation of a Major Facilitator Superfamily multidrug/H+ antiporter provides insights into switching mechanism. Reviewed International journal

    Nagarathinam K, Nakada-Nakura Y, Parthier C, Terada T, Juge N, Jaenecke F, Liu K, Hotta Y, Miyaji T, Omote H, Iwata S, Nomura N, Stubbs MT, Tanabe M

    Nature communications   9 ( 1 )   4005 - 4005   2018.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    Multidrug resistance (MDR) poses a major challenge to medicine. A principle cause of MDR is through active efflux by MDR transporters situated in the bacterial membrane. Here we present the crystal structure of the major facilitator superfamily (MFS) drug/H+ antiporter MdfA from Escherichia coli in an outward open conformation. Comparison with the inward facing (drug binding) state shows that, in addition to the expected change in relative orientations of the N- and C-terminal lobes of the antiporter, the conformation of TM5 is kinked and twisted. In vitro reconstitution experiments demonstrate the importance of selected residues for transport and molecular dynamics simulations are used to gain insights into antiporter switching. With the availability of structures of alternative conformational states, we anticipate that MdfA will serve as a model system for understanding drug efflux in MFS MDR antiporters.

    DOI: 10.1038/s41467-018-06306-x

    PubMed

    researchmap

  • Efficient Mass Spectral Analysis of Active Transporters Overexpressed in Escherichia coli Reviewed

    Mamiyo Kawakami, Narinobu Juge, Yuri Kato, Hiroshi Omote, Yoshinori Moriyama, Takaaki Miyaji

    Journal of Proteome Research   17 ( 3 )   1108 - 1119   2018.3

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Chemical Society  

    Structural analysis of purified active membrane proteins can be performed by mass spectrometry (MS). However, no large-scale expression systems for active eukaryotic membrane proteins are available. Moreover, because membrane proteins cannot easily be digested by trypsin and ionized, they are difficult to analyze by MS. We developed a method for mass spectral analysis of eukaryotic membrane proteins combined with an overexpression system in Escherichia coli. Vesicular glutamate transporter 2 (VGLUT2/SLC17A6) with a soluble α-helical protein and histidine tag on the N- and C-terminus, respectively, was overexpressed in E. coli, solubilized with detergent, and purified by Ni-NTA affinity chromatography. Proteoliposomes containing VGLUT2 retained glutamate transport activity. For MS analysis, the detergent was removed from purified VGLUT2 by trichloroacetic acid precipitation, and VGLUT2 was then subjected to reductive alkylation and tryptic digestion. The resulting peptides were detected with 88% coverage by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS with or without liquid chromatography. Vesicular excitatory amino acid transporter and vesicular acetylcholine transporter were also detected with similar coverage by the same method. Thus this methodology could be used to analyze purified eukaryotic active transporters. Structural analysis with chemical modifiers by MS could have applications in functional binding analysis for drug discovery.

    DOI: 10.1021/acs.jproteome.7b00777

    Scopus

    PubMed

    researchmap

  • Vesicular nucleotide transporter mediates ATP release and migration in neutrophils Reviewed

    Yuika Harada, Yuri Kato, Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama, Miki Hiasa

    Journal of Biological Chemistry   293 ( 10 )   3770 - 3779   2018

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Society for Biochemistry and Molecular Biology Inc.  

    Neutrophils migrate to sites infected by pathogenic microorganisms. This migration is regulated by neutrophil-secreted ATP, which stimulates neutrophils in an autocrine manner through purinergic receptors on the plasma membrane. Although previous studies have shown that ATP is released through channels at the plasma membrane of the neutrophil, it remains unknown whether it is also released through alternate secretory systems involving vesicular mechanisms. In this study, we investigated the possible involvement of vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and nucleotide release, in ATP secretion from neutrophils. RT-PCR and Western blotting analysis indicated that VNUT is expressed in mouse neutrophils. Immunohistochemical analysis indicated that VNUT mainly colocalized with matrix metalloproteinase-9 (MMP-9), a marker of tertiary granules, which are secretory organelles. In mouse neutrophils, ATP release was inhibited by clodronate, which is a potent VNUT inhibitor. Furthermore, neutrophils from VNUT/ mice did not release ATP and exhibited significantly reduced migration in vitro and in vivo. These findings suggest that tertiary granule-localized VNUT is responsible for vesicular ATP release and subsequent neutrophil migration. Thus, these findings suggest an additional mechanism through which ATP is released by neutrophils.

    DOI: 10.1074/jbc.M117.810168

    Scopus

    PubMed

    researchmap

  • トランスポーターを標的としたプリン作動性化学伝達の特異的遮断薬の同定 Invited Reviewed

    宮地孝明

    生化学   90 ( 5 )   2018

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese  

    J-GLOBAL

    researchmap

  • Structural basis for xenobiotic extrusion by eukaryotic MATE transporter Reviewed

    Hirotake Miyauchi, Satomi Moriyama, Tsukasa Kusakizako, Kaoru Kumazaki, Takanori Nakane, Keitaro Yamashita, Kunio Hirata, Naoshi Dohmae, Tomohiro Nishizawa, Koichi Ito, Takaaki Miyaji, Yoshinori Moriyama, Ryuichiro Ishitani, Osamu Nureki

    Nature communications   8 ( 1 )   1633   2017.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Mulitidrug and toxic compound extrusion (MATE) family transporters export xenobiotics to maintain cellular homeostasis. The human MATE transporters mediate the excretion of xenobiotics and cationic clinical drugs, whereas some plant MATE transporters are responsible for aluminum tolerance and secondary metabolite transport. Here we report the crystal structure of the eukaryotic MATE transporter from Arabidopsis thaliana, at 2.6 angstrom resolution. The structure reveals that its carboxy-terminal lobe (C-lobe) contains an extensive hydrogen-bonding network with well-conserved acidic residues, and their importance is demonstrated by the structure-based mutational analysis. The structural and functional analyses suggest that the transport mechanism involves the structural change of transmembrane helix 7, induced by the formation of a hydrogen-bonding network upon the protonation of the conserved acidic residue in the C-lobe. Our findings provide insights into the transport mechanism of eukaryotic MATE transporters, which is important for the improvement of the pharmacokinetics of the clinical drugs.

    DOI: 10.1038/s41467-017-01541-0

    Web of Science

    PubMed

    researchmap

  • Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain Reviewed

    Yuri Kato, Miki Hiasa, Reiko Ichikawa, Nao Hasuzawa, Atsushi Kadowaki, Ken Iwatsuki, Kazuhiro Shima, Yasuo Endo, Yoshiro Kitahara, Tsuyoshi Inoue, Masatoshi Nomura, Hiroshi Omote, Yoshinori Moriyama, Takaaki Miyaji

    Proceedings of the National Academy of Sciences   114 ( 31 )   E6297 - E6305   2017.8

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    Despite the high incidence of neuropathic and inflammatory pain worldwide, effective drugs with few side effects are currently unavailable for the treatment of chronic pain. Recently, researchers have proposed that inhibitors of purinergic chemical transmission, which plays a key role in the pathological pain response, may allow for targeted treatment of pathological neuropathic and inflammatory pain. However, such therapeutic analgesic agents have yet to be developed. In the present study, we demonstrated that clodronate, a first-generation bisphosphonate with comparatively fewer side effects than traditional treatments, significantly attenuates neuropathic and inflammatory pain unrelated to bone abnormalities via inhibition of vesicular nucleotide transporter (VNUT), a key molecule for the initiation of purinergic chemical transmission. In vitro analyses indicated that clodronate inhibits VNUT at a half-maximal inhibitory concentration of 15.6 nM without affecting other vesicular neurotransmitter transporters, acting as an allosteric modulator through competition with Cl-. A low concentration of clodronate impaired vesicular ATP release from neurons, microglia, and immune cells. In vivo analyses revealed that clodronate is more effective than other therapeutic agents in attenuating neuropathic and inflammatory pain, as well as the accompanying inflammation, in wild-type but not VNUT-/- mice, without affecting basal nociception. These findings indicate that clodronate may represent a unique treatment strategy for chronic neuropathic and inflammatory pain via inhibition of vesicular ATP release.

    DOI: 10.1073/pnas.1704847114

    Web of Science

    PubMed

    researchmap

  • Comparative proteome analysis of wild-type and klotho-knockout mouse kidneys using a combination of MALDI-IMS and LC-MS/MS Reviewed

    Yoko Fujino, Tomoko Minamizaki, Ikue Hayashi, Asako Kawakami, Takaaki Miyaji, Kaoru Sakurai, Hirotaka Yoshioka, Katsuyuki Kozai, Mitsugi Okada, Yuji Yoshiko

    PROTEOMICS CLINICAL APPLICATIONS   11 ( 7-8 )   2017.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-V C H VERLAG GMBH  

    Purpose: Mutation of the klotho gene in mice elicits a syndrome resembling accelerated human aging. However, there is limited evidence for the role of Klotho in the kidney. We conducted a comparative proteome analysis of wild-type (WT) and klotho-knockout (kl(-/-)) mouse kidneys to identify proteins involved in Klotho deficiency.Experimental design: MALDI imaging MS (MALDI-IMS) of frozen kidney sections from 7-wk-old male WT and kl(-/-) mice was used to determine genotype-specific differences in the MS distribution. Proteins uniquely distributed in kl-/-kidneys were identified by subsequent analysis of adjacent trypsinized sections by MALDI-IMS in combination with LC-MS/MS. Immunohistochemistry and western blotting were adopted in qualitative and quantitation analysis.Results: Ninety-seven and 69 proteins identified by LC-MS/MS were matched to the MALDI-IMS spectra in WT and kl(-/-) mouse kidneys, respectively. Among protein types matched, nucleic acid binding proteins were most abundant, followed by enzymes. We identified secretogranin-1 (SCG1), which was predominately distributed in the glomeruli and renal tubules of kl(-/-) mouse kidneys. Immunohistochemistry for SCG1 mirrored images of MALDI-IMS.Conclusions: SCG1 may be a candidate protein involved in Klotho deficiency. Although further research is needed to investigate the role of SCG1 in the kidney, we show the usefulness of MALDI-IMS combined with LC-MS/MS.

    DOI: 10.1002/prca.201600095

    Web of Science

    PubMed

    researchmap

  • Vesicular Polyamine Transporter Mediates Vesicular Storage and Release of Polyamine from Mast Cells Reviewed

    Tomoya Takeuchi, Yuika Harada, Satomi Moriyama, Kazuyuki Furuta, Satoshi Tanaka, Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama, Miki Hiasa

    JOURNAL OF BIOLOGICAL CHEMISTRY   292 ( 9 )   3909 - 3918   2017.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Mast cells are secretory cells that play an important role in host defense by discharging various intragranular contents, such as histamine and serotonin, upon stimulation of Fc receptors. The granules also contain spermine and spermidine, which can act as modulators of mast cell function, although the mechanism underlying vesicular storage remains unknown. Vesicular polyamine transporter (VPAT), the fourth member of the SLC18 transporter family, is an active transporter responsible for vesicular storage of spermine and spermidine in neurons. In the present study, we investigated whether VPAT functions in mast cells. RT-PCR and Western blotting indicated VPAT expression in murine bone marrow-derived mast cells (BMMCs). Immunohistochemical analysis indicated that VPAT is colocalized with VAMP3 but not with histamine, serotonin, cathepsin D, VAMP2, or VAMP7. Membrane vesicles from BMMCs accumulated spermidine upon the addition of ATP in a reserpine- and bafilomycin A(1)-sensitive manner. BMMCs secreted spermine and spermidine upon the addition of either antigen or A23187 in the presence of Ca2+, and the antigen-mediated release, which was shown to be temperature-dependent and sensitive to bafilomycin A(1) and tetanus toxin, was significantly suppressed by VPAT gene RNA interference. Under these conditions, expression of vesicular monoamine transporter 2 was unaffected, but antigen-dependent histamine release was significantly suppressed, which was recovered by the addition of 1 mm spermine. These results strongly suggest that VPAT is expressed and is responsible for vesicular storage of spermine and spermidine in novel secretory granules that differ from histamine- and serotonin-containing granules and is involved in vesicular release of these polyamines from mast cells.

    DOI: 10.1074/jbc.M116.756197

    Web of Science

    PubMed

    researchmap

  • Reducing phosphorus accumulation in rice grains with an impaired transporter in the node Reviewed

    Naoki Yamaji, Yuma Takemoto, Takaaki Miyaji, Namiki Mitani-Ueno, Kaoru T. Y. Oshida, Jian Feng Ma

    NATURE   541 ( 7635 )   92 - +   2017.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Phosphorus is an important nutrient for crop productivity. More than 60% of the total phosphorus in cereal crops is finally allocated into the grains and is therefore removed at harvest. This removal accounts for 85% of the phosphorus fertilizers applied to the field each year(1,2). However, because humans and non-ruminants such as poultry, swine and fish cannot digest phytate, the major form of phosphorus in the grains, the excreted phosphorus causes eutrophication of waterways. A reduction in phosphorus accumulation in the grain would contribute to sustainable and environmentally friendly agriculture. Here we describe a rice transporter, SULTR-like phosphorus distribution transporter (SPDT), that controls the allocation of phosphorus to the grain. SPDT is expressed in the xylem region of both enlarged-and diffuse-vascular bundles of the nodes, and encodes a plasma-membrane-localized transporter for phosphorus. Knockout of this gene in rice (Oryza sativa) altered the distribution of phosphorus, with decreased phosphorus in the grains but increased levels in the leaves. Total phosphorus and phytate in the brown de-husked rice were 20-30% lower in the knockout lines, whereas yield, seed germination and seedling vigour were not affected. These results indicate that SPDT functions in the rice node as a switch to allocate phosphorus preferentially to the grains. This finding provides a potential strategy to reduce the removal of phosphorus from the field and lower the risk of eutrophication of waterways.

    DOI: 10.1038/nature20610

    Web of Science

    PubMed

    researchmap

  • Urothelial ATP exocytosis: regulation of bladder compliance in the urine storage phase Reviewed

    Hiroshi Nakagomi, Mitsuharu Yoshiyama, Tsutomu Mochizuki, Tatsuya Miyamoto, Ryohei Komatsu, Yoshio Imura, Yosuke Morizawa, Miki Hiasa, Takaaki Miyaji, Satoru Kira, Isao Araki, Kayoko Fujishita, Keisuke Shibata, Eiji Shigetomi, Youichi Shinozaki, Reiko Ichikawa, Hisayuki Uneyama, Ken Iwatsuki, Masatoshi Nomura, William C. de Groat, Yoshinori Moriyama, Masayuki Takeda, Schuichi Koizumi

    SCIENTIFIC REPORTS   6   29761   2016.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    The bladder urothelium is more than just a barrier. When the bladder is distended, the urothelium functions as a sensor to initiate the voiding reflex, during which it releases ATP via multiple mechanisms. However, the mechanisms underlying this ATP release in response to the various stretch stimuli caused by bladder filling remain largely unknown. Therefore, the aim of this study was to elucidate these mechanisms. By comparing vesicular nucleotide transporter (VNUT)-deficient and wildtype male mice, we showed that ATP has a crucial role in urine storage through exocytosis via a VNUT-dependent mechanism. VNUT was abundantly expressed in the bladder urothelium, and when the urothelium was weakly stimulated (i.e. in the early filling stages), it released ATP by exocytosis. VNUT-deficient mice showed reduced bladder compliance from the early storage phase and displayed frequent urination in inappropriate places without a change in voiding function. We conclude that urothelial, VNUT-dependent ATP exocytosis is involved in urine storage mechanisms that promote the relaxation of the bladder during the early stages of filling.

    DOI: 10.1038/srep29761

    Web of Science

    PubMed

    researchmap

  • Structure, Function, and Drug Interactions of Neurotransmitter Transporters in the Postgenomic Era Reviewed

    Hiroshi Omote, Takaaki Miyaji, Miki Hiasa, Narinobu Juge, Yoshinori Moriyama

    ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 56   56   385 - 402   2016

     More details

    Language:English   Publishing type:Part of collection (book)   Publisher:ANNUAL REVIEWS  

    Vesicular neurotransmitter transporters are responsible for the accumulation of neurotransmitters in secretory vesicles and play essential roles in chemical transmission. The SLC17 family contributes to sequestration of anionic neurotransmitters such as glutamate, aspartate, and nucleotides. Identification and subsequent cellular and molecular biological studies of SLC17 transporters unveiled the principles underlying the actions of these transporters. Recent progress in reconstitution methods in combination with postgenomic approaches has advanced studies on neurotransmitter transporters. This review summarizes the molecular properties of SLC17-type transporters and recent findings regarding the novel SLC18 transporter.

    DOI: 10.1146/annurev-pharmtox-010814-124816

    Web of Science

    PubMed

    researchmap

  • A polarly localized transporter for efficient manganese uptake in rice Reviewed

    Daisei Ueno, Akimasa Sasaki, Naoki Yamaji, Takaaki Miyaji, Yumi Fujii, Yuma Takemoto, Sawako Moriyama, Jing Che, Yoshinori Moriyama, Kozo Iwasaki, Jian Feng Ma

    NATURE PLANTS   1 ( 12 )   15170   2015.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Manganese is an essential metal for plant growth. A number of transporters involved in the uptake of manganese from soils, and its translocation to the shoot, have been identified in Arabidopsis and rice. However, the transporter responsible for the radial transport of manganese out of root exodermis and endodermis cells and into the root stele remains unknown. Here, we show that metal tolerance protein 9 (MTP9), a member of the cation diffusion facilitator family, is a critical player in this process in rice (Oryza sativa). We find that MTP9 is mainly expressed in roots, and that the resulting protein is localized to the plasma membrane of exo- and endodermis cells, at the proximal side of these cell layers (opposite the manganese uptake transporter Nramp5, which is found at the distal side). We demonstrate that MTP9 has manganese transport activity by expression in proteoliposomes and yeast, and show that knockout of MTP9 in rice reduces manganese uptake and its translocation to shoots. We conclude that at least in rice MTP9 is required for manganese translocation to the root stele, and thereby manganese uptake.

    DOI: 10.1038/NPLANTS.2015.170

    Web of Science

    PubMed

    researchmap

  • Wide expression of type I Na+-phosphate cotransporter 3 (NPT3/SLC17A2), a membrane potential-driven organic anion transporter Reviewed

    Natsuko Togawa, Narinobu Juge, Takaaki Miyaji, Miki Hiasa, Hiroshi Omote, Yoshinori Moriyama

    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY   309 ( 2 )   C71 - C80   2015.7

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER PHYSIOLOGICAL SOC  

    Membrane potential (Delta psi)-driven and Cl--dependent organic anion transport is a primary function of the solute carrier family 17 (SLC17) transporter family. Although the transport substrates and physiological relevance of the major members are well understood, SLC17A2 protein known to be Na+-phosphate cotransporter 3 (NPT3) is far less well characterized. In the present study, we investigated the transport properties and expression patterns of mouse SLC17A2 protein (mNPT3). Proteoliposomes containing the purified mNPT3 protein took up radiolabeled p-aminohippuric acid (PAH) in a Delta psi- and Cl--dependent manner. The mNPT3-mediated PAH uptake was inhibited by 4,4'-diisothiocyanostilbene- 2,2'-disulfonic acid (DIDs) and Evans blue, common inhibitors of SLC17 family members. The PAH uptake was also inhibited by various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs (NSAIDs) and urate. Consistent with these observations, the proteoliposome took up radiolabeled urate in a Delta psi- and Cl--dependent manner. Immunohistochemistry with specific antibodies against mNPT3 combined with RT-PCR revealed that mNPT3 is present in various tissues, including the hepatic bile duct, luminal membranes of the renal urinary tubules, maternal side of syncytiotrophoblast in the placenta, apical membrane of follicle cells in the thyroid, bronchiole epithelial cells in the lungs, and astrocytes around blood vessels in the cerebrum. These results suggested that mNPT3 is a polyspecific organic anion transporter that is involved in circulation of urate throughout the body.

    DOI: 10.1152/ajpcell.00048.2015

    Web of Science

    PubMed

    researchmap

  • Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter Reviewed

    Narinobu Juge, Sawako Moriyama, Takaaki Miyaji, Mamiyo Kawakami, Haruka Iwai, Tomoya Fukui, Nathan Nelson, Hiroshi Omote, Yoshinori Moriyama

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   112 ( 11 )   3356 - 3361   2015.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    Extrusion of chloroquine (CQ) from digestive vacuoles through the Plasmodium falciparum CQ resistance transporter (PfCRT) is essential to establish CQ resistance of the malaria parasite. However, the physiological relevance of PfCRT and how CQ-resistant PfCRT gains the ability to transport CQ remain unknown. We prepared proteoliposomes containing purified CQ-sensitive and CQ-resistant PfCRTs and measured their transport activities. All PfCRTs tested actively took up tetraethylammonium, verapamil, CQ, basic amino acids, polypeptides, and polyamines at the expense of an electrochemical proton gradient. CQ-resistant PfCRT exhibited decreased affinity for CQ, resulting in increased CQ uptake. Furthermore, CQ competitively inhibited amino acid transport. Thus, PfCRT is a H+-coupled polyspecific nutrient and drug exporter.

    DOI: 10.1073/pnas.1417102112

    Web of Science

    PubMed

    researchmap

  • AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis Reviewed

    Takaaki Miyaji, Takashi Kuromori, Yu Takeuchi, Naoki Yamaji, Kengo Yokosho, Atsushi Shimazawa, Eriko Sugimoto, Hiroshi Omote, Jian Feng Ma, Kazuo Shinozaki, Yoshinori Moriyama

    NATURE COMMUNICATIONS   6   5928   2015.1

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Ascorbate is an antioxidant and coenzyme for various metabolic reactions in vivo. In plant chloroplasts, high ascorbate levels are required to overcome photoinhibition caused by strong light. However, ascorbate is synthesized in the mitochondria and the molecular mechanisms underlying ascorbate transport into chloroplasts are unknown. Here we show that AtPHT4;4, a member of the phosphate transporter 4 family of Arabidopsis thaliana, functions as an ascorbate transporter. In vitro analysis shows that proteoliposomes containing the purified AtPHT4; 4 protein exhibit membrane potential- and Cl- dependent ascorbate uptake. The AtPHT4; 4 protein is abundantly expressed in the chloroplast envelope membrane. Knockout of AtPHT4; 4 results in decreased levels of the reduced form of ascorbate in the leaves and the heat dissipation process of excessive energy during photosynthesis is compromised. Taken together, these observations indicate that the AtPHT4; 4 protein is an ascorbate transporter at the chloroplast envelope membrane, which may be required for tolerance to strong light stress.

    DOI: 10.1038/ncomms6928

    Web of Science

    PubMed

    researchmap

  • 環境ストレス耐性作物の開発に向けて 光障害を防ぐ植物ビタミンCトランスポーターの発見 Invited Reviewed

    宮地孝明, 森山芳則

    Bio Industry   32 ( 12 )   2015

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese  

    J-GLOBAL

    researchmap

  • Impairment of vesicular ATP release affects glucose metabolism and increases insulin sensitivity Reviewed

    Shohei Sakamoto, Takaaki Miyaji, Miki Hiasa, Reiko Ichikawa, Akira Uematsu, Ken Iwatsuki, Atsushi Shibata, Hisayuki Uneyama, Ryoichi Takayanagi, Akitsugu Yamamoto, Hiroshi Omote, Masatoshi Nomura, Yoshinori Moriyama

    SCIENTIFIC REPORTS   4   6689   2014.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Neuroendocrine cells store ATP in secretory granules and release it along with hormones that may trigger a variety of cellular responses in a process called purinergic chemical transmission. Although the vesicular nucleotide transporter (VNUT) has been shown to be involved in vesicular storage and release of ATP, its physiological relevance in vivo is far less well understood. In Vnut knockout (Vnut(-/-)) mice, we found that the loss of functional VNUT in adrenal chromaffin granules and insulin granules in the islets of Langerhans led to several significant effects. Vesicular ATP accumulation and depolarization-dependent ATP release were absent in the chromaffin granules of Vnut(-/-) mice. Glucose-responsive ATP release was also absent in pancreatic beta-cells in Vnut(-/-) mice, while glucose-responsive insulin secretion was enhanced to a greater extent than that in wild-type tissue. Vnut(-/-) mice exhibited improved glucose tolerance and low blood glucose upon fasting due to increased insulin sensitivity. These results demonstrated an essential role of VNUT in vesicular storage and release of ATP in neuroendocrine cells in vivo and suggest that vesicular ATP and/or its degradation products act as feedback regulators in catecholamine and insulin secretion, thereby regulating blood glucose homeostasis.

    DOI: 10.1038/srep06689

    Web of Science

    PubMed

    researchmap

  • Identification of a mammalian vesicular polyamine transporter Reviewed

    Miki Hiasa, Takaaki Miyaji, Yuka Haruna, Tomoya Takeuchi, Yuika Harada, Sawako Moriyama, Akitsugu Yamamoto, Hiroshi Omote, Yoshinori Moriyama

    SCIENTIFIC REPORTS   4   6836   2014.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-D-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H+. SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT).

    DOI: 10.1038/srep06836

    Web of Science

    PubMed

    researchmap

  • Essential role of vesicular nucleotide transporter in vesicular storage and release of nucleotides in platelets Reviewed

    Miki Hiasa, Natsuko Togawa, Takaaki Miyaji, Hiroshi Omote, Akitsugu Yamamoto, Yoshinori Moriyama

    Physiological Reports   2 ( 6 )   2014

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:American Physiological Society  

    Nucleotides are stored in the dense granules of platelets. The release of nucleotides triggers one of the first steps in a series of cascades responsible for blood coagulation. However, the mechanism of how the nucleotides are accumulated in the granules is still far less understood. The transporter protein responsible for storage of nucleotides in the neuroendocrine cells has been identified and characterized. We hypothesized that the vesicular nucleotide transporter (VNUT) is also involved in the vesicular storage of nucleotides in platelets. In this article, we present three lines of evidence that VNUT is responsible for the vesicular storage of nucleotides in platelets and that vesicular ATP transport is crucial for platelet function, detection and characterization of VNUT activity in platelets isolated from healthy humans and MEG-01 cells, RNA interference experiments on MEG-01 cells, and studies on nucleotide transport and release with a selective inhibitor.

    DOI: 10.14814/phy2.12034

    Scopus

    PubMed

    researchmap

  • Inhibitors of ATP release inhibit vesicular nucleotide transporter Reviewed

    Yuri Kato, Hiroshi Omote, Takaaki Miyaji

    Biological and Pharmaceutical Bulletin   36 ( 11 )   1688 - 1691   2013.11

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Vesicular nucleotide transporter (VNUT) is responsible for vesicular ATP storage in ATP-secreting cells. In the present study, we examined the effects on VNUT-mediated transport of ATP release inhibitors such as ATP-binding cassette (ABC) proteins, hemichannels, maxi anion channels and P2X7 receptor. The ATP transport activity of proteoliposomes containing purified human VNUT was blocked by glibenclamide, carbenoxolone, 18 á-glycyrrhetinic acid, flufenamic acid, arachidonic acid and A438079 without the formation of Äø (positive inside) as a driving force being affected. Thus, inhibitors of ATP release may inhibit VNUT and subsequent ATP release, since the previous works proved that inhibitors of ATP release blocked VNUT-mediated ATP release at the cell level. © 2013 The Pharmaceutical Society of Japan.

    DOI: 10.1248/bpb.b13-00544

    Scopus

    PubMed

    researchmap

  • Type 1 sodium-dependent phosphate transporter acts as a membrane potential-driven urate exporter Reviewed

    Takaaki Miyaji, Tatsuya Kawasaki, Natsuko Togawa, Hiroshi Omote, Yoshinori Moriyama

    Current Molecular Pharmacology   6 ( 2 )   88 - 94   2013

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    SLC17A1 protein (NPT1) was the first identified member of the SLC17 phosphate transporter family, and is known to mediate Na+/inorganic phosphate (Pi) co-transport when expressed in Xenopus oocytes. Although this protein was suggested to be a renal polyspecific anion exporter, its transport properties were not well characterized. The clean biochemical approach revealed that proteoliposomes comprising purified NPT1 as the only protein source transport various organic anions such as urate, p-aminohippuric acid (PAH), and acetylsalicylic acid (aspirin) in a membrane potential (δ̄)-driven and Cl- -dependent manner. Human NPT1 carrying an SNP mutation, Thr269Ile, known to increase the risk of gout, exhibited 32% lower urate transport activity compared to the wild type protein, leading to the conclusion that NPT1 is the long searched for transporter responsible for renal urate excretion. In the present article, we summarized the history of identification of the urate exporter and its possible involvement in the dynamism of urate under physiological and pathological conditions. © 2013 Bentham Science Publishers.

    DOI: 10.2174/18744672113069990035

    Scopus

    PubMed

    researchmap

  • A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter Reviewed

    Natsuko Togawa, Takaaki Miyaji, Sho Izawa, Hiroshi Omote, Yoshinori Moriyama

    AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY   302 ( 11 )   C1652 - C1660   2012.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER PHYSIOLOGICAL SOC  

    Togawa N, Miyaji T, Izawa S, Omote H, Moriyama Y. A Na+ phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am J Physiol Cell Physiol 302: C1652-C1660, 2012. First published March 28, 2012; doi:10.1152/ajpcell.00015.2012.-The SLC17 anion transporter family comprises nine members that transport various organic anions in membrane potential (Delta psi)- and Cl- dependent manners. Although the transport substrates and physiological relevance of the majority of the members have already been determined, little is known about SLC17A4 proteins known to be Na+-phosphate cotransporter homologue (NPT homologue). In the present study, we investigated the expression and transport properties of human SLC17A4 protein. Using specific antibodies, we found that a human NPT homologue is specifically expressed and present in the intestinal brush border membrane. Proteoliposomes containing the purified protein took up radiolabeled p-aminohippuric acid (PAH) in a Cl--dependent manner at the expense of an electrochemical gradient of protons, especially Delta psi, across the membrane. The Delta psi- and Cl--dependent PAH uptake was inhibited by diisothiocyanostilbene-2,2'-disulfonic acid and Evans blue, common inhibitors of SLC17 family members. cis-Inhibition studies revealed that various anionic compounds, such as hydrophilic nonsteroidal anti-inflammatory drugs, pravastatin, and urate inhibited the PAH uptake. Proteoliposomes took up radiolabeled urate, with the uptake having properties similar to those of PAH uptake. These results strongly suggested that the human NPT homologue acts as a polyspecific organic anion exporter in the intestines. Since SLC17A1 protein (NPT1) and SLC17A3 protein (NPT4) are responsible for renal urate extrusion, our results reveal the possible involvement of a NPT homologue in urate extrusion from the intestinal duct.

    DOI: 10.1152/ajpcell.00015.2012

    Web of Science

    PubMed

    researchmap

  • Divalent Cation Transport by Vesicular Nucleotide Transporter Reviewed

    Takaaki Miyaji, Keisuke Sawada, Hiroshi Omote, Yoshinori Moriyama

    JOURNAL OF BIOLOGICAL CHEMISTRY   286 ( 50 )   42881 - 42887   2011.12

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Background: The vesicular nucleotide transporter (VNUT) transports nucleotides in the presence of Mg2+.
    Results: VNUT transports divalent cations in a membrane potential-and nucleotide-dependent manner.
    Conclusion: VNUT transports divalent cations as a nucleotide complex.
    Significance: VNUT functions as a divalent cation importer in secretory vesicles.

    DOI: 10.1074/jbc.M111.277269

    Web of Science

    PubMed

    researchmap

  • Functional characterization of vesicular excitatory amino acid transport by human sialin Reviewed

    Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama

    JOURNAL OF NEUROCHEMISTRY   119 ( 1 )   1 - 5   2011.10

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    Sialin, the protein coded by SLC17A5, is responsible for membrane potential (Delta psi)-driven aspartate and glutamate transport into synaptic vesicles in addition to H(+)/sialic acid cotransport in lysosomes. Rodent sialin mutants harboring the mutations associated with Salla disease in humans did not transport aspartate and glutamate whereas H(+)/sialic acid cotransport activity was about one-third of the wild-type protein. In this study, we investigate the effects of various mutations on the transport activities of human sialin. Proteoliposomes containing purified heterologously expressed human sialin exhibited both Delta psi-driven aspartate and glutamate transport activity and H(+)/sialic acid co-transport activity. Aspartate and glutamate transport was not detected in the R39C and K136E mutant forms of SLC17A5 protein associated with Salla disease, whereas H(+)/sialic acid co-transport activity corresponded to 30-50% of the recombinant wild-type protein. In contrast, SLC17A5 protein harboring the mutations associated with infantile sialic acid storage disease, H183R and Delta 268SSLRN272 still showed normal levels of Delta psi-driven aspartate and glutamate transport even though H(+)/sialic acid co-transport activity was absent. Human sialin carrying the G328E mutation that causes both phenotypes, and P334R and G378V mutations that cause infantile sialic acid storage disease showed no transport activity. These results support the idea that people suffering from Salla disease have been defective in aspartergic and glutamatergic neurotransmissions.

    DOI: 10.1111/j.1471-4159.2011.07388.x

    Web of Science

    PubMed

    researchmap

  • Combinatorial Method for Overexpression of Membrane Proteins Invited Reviewed

    MIYAJI Takaaki, MORIYAMA Yoshinori

    Seibutsu Butsuri   51 ( 5 )   228 - 229   2011.9

     More details

    Authorship:Lead author   Language:Japanese   Publisher:The Biophysical Society of Japan General Incorporated Association  

    DOI: 10.2142/biophys.51.228

    CiNii Article

    CiNii Books

    researchmap

    Other Link: http://search.jamas.or.jp/link/ui/2011354406

  • Characterization of the human MATE2 proton-coupled polyspecific organic cation exporter Reviewed

    Toshinori Komatsu, Miki Hiasa, Takaaki Miyaji, Takuji Kanamoto, Takuya Matsumoto, Masato Otsuka, Yoshinori Moriyama, Hiroshi Omote

    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY   43 ( 6 )   913 - 918   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PERGAMON-ELSEVIER SCIENCE LTD  

    Human multidrug and toxic compound extrusion 2 (hMATE2) is a kidney-specific isoform of hMATE1, an exporter of toxic organic cations (OCs) of exogenous and endogenous origins at the final excretion step in the kidneys and liver (Otsuka et al., 2005), and contains a splicing variant, MATE2K, that has an exon of hMATE2 deleted (Masuda et al., 2006). In the present study, we characterized the degree of expression and the transport properties of hMATE2. Quantitative PCR analysis with probes specific for hMATE2 indicated the presence of hMATE2 mRNA in the kidneys, which corresponded to 39% of total mRNA encoding both hMATE2 and hMATE2K. hMATE2-specific antibodies immunostained the renal urinary tubules. Upon expression in HEK293 cells, hMATE2 was localized in intracellular vesicular structures, and thus transport activity of tetraethylammonium (TEA), a typical substrate for MATE transporters, by the cells was not detected. The hMATE2 protein was purified and reconstituted into liposomes. An artificially imposed pH gradient (Delta pH) across the proteoliposomal membrane drove the uptake of TEA. Dissipation of Delta pH by ammonium sulfate effectively inhibited the TEA uptake, while that of the membrane potential by valinomycin had little effect. The profiles of cis-inhibition of TEA transport by hMATE2 and hMATE2K are similar to each other. Thus, both hMATE2 and hMATE2K equally operate in the human kidneys to extrude OCs into the urine. (C) 2011 Elsevier Ltd. All rights reserved.

    DOI: 10.1016/j.biocel.2011.03.005

    Web of Science

    PubMed

    researchmap

  • Vesicular Neurotransmitter Transporter: Bioenergetics and Regulation of Glutamate Transport Reviewed

    Hiroshi Omote, Takaaki Miyaji, Narinobu Juge, Yoshinori Moriyama

    BIOCHEMISTRY   50 ( 25 )   5558 - 5565   2011.6

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER CHEMICAL SOC  

    Glutamate plays essential roles in chemical transmission as a major excitatory neurotransmitter. The accumulation of glutamate in Secretory vesicles is mediated by vesicular glutamate transporters (VGLUTs) that together with the driving electrochemical gradient of proteins influence the subsequent quantum release Of glutamate and the function of higher order neurons. The vesicular content of glutamate is Well correlated with membrane potential (Delta psi) which suggests that Delta psi determines the vesicular glutamate concentration The transport of glutamate into secretory vesicles is highly dependent on Cl(-). This anion stimulates glutamate transport but is inhibitory at higher concentrations. Accumulating evidence indicates that Cl(-) regulates glutamate transport through control of VGLUT activity and the H(+) electrochemical gradient. Recently, a comprehensive study demonstrated that Cl(-) regulation of VGLUT is competitively inhibited by metabolic intermediates such as ketone bodies. It also showed that ketone bodies are effective in controlling epilepsy. These results suggest a correlation between metabolic state and higher order brain function. We propose a novel function for Cl(-) as a fundamental regulator for signal transmission.

    DOI: 10.1021/bi200567k

    Web of Science

    PubMed

    researchmap

  • 神経伝達物質トランスポーターの新展開:小胞型神経伝達物質トランスポーター 小胞型グルタミン酸トランスポーターの機能と制御 Invited Reviewed

    表弘志, 宮地孝明

    脳21   14 ( 4 )   2011

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • 神経伝達物質トランスポーターの新展開:新たに同定された小胞型神経伝達物質トランスポーター Invited Reviewed

    宮地孝明, 森山芳則

    脳21   14 ( 4 )   2011

     More details

    Authorship:Lead author   Language:Japanese  

    J-GLOBAL

    researchmap

  • A Vesicular Transporter That Mediates Aspartate and Glutamate Neurotransmission Reviewed

    Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama

    BIOLOGICAL & PHARMACEUTICAL BULLETIN   33 ( 11 )   1783 - 1785   2010.11

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:PHARMACEUTICAL SOC JAPAN  

    Aspartate, an excitatory amino acid, is known to be stored in synaptic vesicles and exocytosed from some neurons to perform aspartergic neurotransmission. Through in vitro reconstitution, we found that sialin, a lysosomal sialic acid exporter, is responsible for the vesicular storage of aspartate in hippocampal neurons and pinealocytes. Mutations found in Salla disease cause decreased aspartate transport activity without affecting sialic acid transport. Thus, sialin is a multifunctional transporter. It is possible that people with Salla disease lose the ability of aspartergic neurotransmission, and this could explain why Salla disease involves severe neurological defects.

    DOI: 10.1248/bpb.33.1783

    Web of Science

    PubMed

    researchmap

  • Metabolic Control of Vesicular Glutamate Transport and Release Reviewed

    Narinobu Juge, John A. Gray, Hiroshi Omote, Takaaki Miyaji, Tsuyoshi Inoue, Chiaki Hara, Hisayuki Uneyama, Robert H. Edwards, Roger A. Nicoll, Yoshinori Moriyama

    NEURON   68 ( 1 )   99 - 112   2010.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Fasting has been used to control epilepsy since antiquity, but the mechanism of coupling between metabolic state and excitatory neurotransmission remains unknown. Previous work has shown that the vesicular glutamate transporters (VGLUTs) required for exocytotic release of glutamate undergo an unusual form of regulation by Cl(-). Using functional reconstitution of the purified VGLUTs into proteoliposomes, we now show that Cl(-) acts as an allosteric activator, and the ketone bodies that increase with fasting inhibit glutamate release by competing with at the site of allosteric regulation. Consistent with these observations, acetoacetate reduced quantal size at hippocampal synapses and suppresses glutamate release and seizures evoked with 4-aminopyridine in the brain. The results indicate an unsuspected link between metabolic state and excitatory neurotransmission through anion-dependent regulation of VGLUT activity.

    DOI: 10.1016/j.neuron.2010.09.002

    Web of Science

    PubMed

    researchmap

  • Type 1 Sodium-dependent Phosphate Transporter (SLC17A1 Protein) Is a Cl--dependent Urate Exporter Reviewed

    Masafumi Iharada, Takaaki Miyaji, Takahiro Fujimoto, Miki Hiasa, Naohiko Anzai, Hiroshi Omote, Yoshinori Moriyama

    JOURNAL OF BIOLOGICAL CHEMISTRY   285 ( 34 )   26107 - 26113   2010.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    SLC17A1 protein (NPT1) is the first identified member of the SLC17 phosphate transporter family and mediates the transmembrane cotransport of Na+/P-i in oocytes. Although this protein is believed to be a renal polyspecific anion exporter, its transport properties are not well characterized. Here, we show that proteoliposomes containing purified SLC17A1 transport various organic anions such as p-aminohippuric acid and acetylsalicylic acid (aspirin) in an inside positive membrane potential (Delta psi)-dependent manner. We found that NPT1 also transported urate. The uptake characteristics were similar to that of SLC17 members in its Cl- dependence and inhibitor sensitivity. When arginine 138, an essential amino acid residue for members of the SLC17 family such as the vesicular glutamate transporter, was specifically mutated to alanine, the resulting mutant protein was inactive in Delta psi-dependent anion transport. Heterologously expressed and purified human NPT1 carrying the single nucleotide polymorphism mutation that is associated with increased risk of gout in humans exhibited 32% lower urate transport activity compared with the wild type protein. These results strongly suggested that NPT1 is a Cl--dependent polyspecific anion exporter involved in urate excretion under physiological conditions.

    DOI: 10.1074/jbc.M110.122721

    Web of Science

    PubMed

    researchmap

  • ABC transporter AtABCG25 is involved in abscisic acid transport and responses Reviewed

    Takashi Kuromori, Takaaki Miyaji, Hikaru Yabuuchi, Hidetada Shimizu, Eriko Sugimoto, Asako Kamiya, Yoshinori Moriyama, Kazuo Shinozaki

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   107 ( 5 )   2361 - 2366   2010.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    Abscisic acid (ABA) is one of the most important phytohormones involved in abiotic stress responses, seed maturation, germination, and senescence. ABA is predominantly produced in vascular tissues and exerts hormonal responses in various cells, including guard cells. Although ABA responses require extrusion of ABA from ABA-producing cells in an intercellular ABA signaling pathway, the transport mechanisms of ABA through the plasma membrane remain unknown. Here we isolated an ATP-binding cassette (ABC) transporter gene, AtABCG25, from Arabidopsis by genetically screening for ABA sensitivity. AtABCG25 was expressed mainly in vascular tissues. The fluorescent protein-fused AtABCG25 was localized at the plasma membrane in plant cells. In membrane vesicles derived from AtABCG25-expressing insect cells, AtABCG25 exhibited ATP-dependent ABA transport. The AtABCG25-overexpressing plants showed higher leaf temperatures, implying an influence on stomatal regulation. These results strongly suggest that AtABCG25 is an exporter of ABA and is involved in the intercellular ABA signaling pathway. The presence of the ABA transport mechanism sheds light on the active control of multicellular ABA responses to environmental stresses among plant cells.

    DOI: 10.1073/pnas.0912516107

    Web of Science

    PubMed

    researchmap

  • Identification of a vesicular aspartate transporter Reviewed

    Takaaki Miyaji, Noriko Echigo, Miki Hiasa, Shigenori Senoh, Hiroshi Omote, Yoshinori Moriyama

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   105 ( 33 )   11720 - 11724   2008.8

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    Aspartate is an excitatory amino acid that is costored with glutamate in synaptic vesicles of hippocampal neurons and synaptic-like microvesicles (SLMVs) of pinealocytes and is exocytosed and stimulates neighboring cells by binding to specific cell receptors. Although evidence increasingly supports the occurrence of aspartergic neurotransmission, this process is still debated because the mechanism for the vesicular storage of aspartate is unknown. Here, we show that sialin, a lysosomal H+/sialic acid cotransporter, is present in hippocampal synaptic vesicles and pineal SLMVs. RNA interference of sialin expression decreased exocytosis of aspartate and glutamate in pinealocytes. Proteoliposomes containing purified sialin actively accumulated aspartate and glutamate to a similar extent when inside positive membrane potential is imposed as the driving force. Sialin carrying a mutation found in people suffering from Salla disease (R39C) was completely devoid of aspartate and glutamate transport activity, although it retained appreciable H+/sialic acid cotransport activity. These results strongly suggest that sialin possesses dual physiological functions and acts as a vesicular aspartate/glutamate transporter. It is possible that people with Salla disease lose aspartergic (and also the associated glutamatergic) neurotransmission, and this could provide an explanation for why Salla disease causes severe neurological defects.

    DOI: 10.1073/pnas.0804015105

    Web of Science

    PubMed

    researchmap

  • Identification of a vesicular nucleotide transporter Reviewed

    Keisuke Sawada, Noriko Echigo, Narinobu Juge, Takaaki Miyaji, Masato Otsuka, Hiroshi Omote, Akitsugu Yamamoto, Yoshinori Moriyama

    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA   105 ( 15 )   5683 - 5686   2008.4

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATL ACAD SCIENCES  

    ATP is a major chemical transmitter in purinergic signal transmission. Before secretion, ATIP is stored in secretory vesicles found in purinergic cells. Although the presence of active transport mechanisms for ATP has been postulated for a long time, the proteins responsible for its vesicular accumulation remains unknown. The transporter encoded by the human and mouse SLC17A9 gene, a novel member of an anion transporter family, was predominantly expressed in the brain and adrenal gland. The mouse and bovine counterparts were associated with adrenal chromaffin granules. Proteoliposomes containing purified transporter actively took up ATP, ADP, and GTP by using membrane potential as the driving force. The uptake properties of the reconstituted transporter were similar to that of the ATP uptake by synaptic vesicles and chromaffin granules. Suppression of endogenous SLC17A9 expression in PC12 cells decreased exocytosis of ATP. These findings strongly suggest that SLC17A9 protein is a vesicular nucleotide transporter and should lead to the elucidation of the molecular mechanism of ATP secretion in purinergic signal transmission.

    DOI: 10.1073/pnas.0800141105

    Web of Science

    PubMed

    researchmap

  • Vesicular storage and secretion of L-glutamate from glucagon-like peptide 1-secreting clonal intestinal L cells Reviewed

    S Uehara, SK Jung, R Morimoto, S Arioka, T Miyaji, N Juge, M Hiasa, K Shimizu, A Ishimura, M Otsuka, A Yamamoto, P Maechler, Y Moriyama

    JOURNAL OF NEUROCHEMISTRY   96 ( 2 )   550 - 560   2006.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:BLACKWELL PUBLISHING  

    Vesicular glutamate transporter (VGLUT) is responsible for the vesicular storage of (L)-glutamate, and plays an essential role in glutamate-mediated intercellular signal transmission in the CNS and in some neuroendocrine cells. Intestinal L cells are the glucose-responsive neuroendocrine cells responsible for the secretion of glucagon-like peptide 1 (GLP-1). We have shown that intestinal L cells express VGLUT2, a VGLUT isoform, which suggests that L cells secrete (L)-glutamate. In the present study, we investigated this possibility using GLUTag mouse clonal L cells. RT-PCR and northern blot analyses revealed expression of the VGLUT1 and VGLUT2 genes, but not of the VGLUT3 gene. Western blot analysis revealed immunological counterparts for VGLUT2, whereas an immunological counterpart of VGLUT1 was not detected. Indirect immunofluorescence microscopy revealed a punctate distribution of VGLUT2 immunoreactivity throughout the cells, which co-localized with GLP-1. Double-labeling immunoelectronmicroscopy confirmed the association of VGLUT2 with GLP-1-containing secretory granules. The membrane fraction exhibited ATP-dependent (L)-glutamate uptake, which was sensitive to bafilomycin A1 (a vacuolar proton ATPase inhibitor) and Evans blue (a VGLUT inhibitor) but insensitive to (D,L)-aspartate. Upon depolarization with KCl, GLUTag cells secreted appreciable amounts of (L)-glutamate and GLP-1. (D)-Glucose and methyl-alpha-(D)-glucopyranoside, stimulators of exocytosis of GLP-1, also triggered the secretion of (L)-glutamate. The (L)-glutamate secretion was partially dependent on Ca2+ and sensitive to bafilomycin A1. These results demonstrated that GLUTag cells stored (L)-glutamate in secretory granules and secreted it with GLP-1 by exocytosis. As GLUTag cells and intestinal L cells express kainate receptors and plasma membrane glutamate transporters, these results support the concept of (L)-glutamate-mediated intercellular signaling in the vicinity of intestinal L cells.

    DOI: 10.1111/j.1471-4159.2005.03575.x

    Web of Science

    PubMed

    researchmap

▼display all

MISC

  • 神経因性・炎症性疼痛に有効な小胞型ヌクレオチドトランスポーターの特異的阻害剤の同定

    加藤 百合, 日浅 未来, 市川 玲子, 蓮澤 奈央, 門脇 敦志, 岩槻 健, 島 和弘, 遠藤 康男, 北原 吉朗, 井上 剛, 野村 政壽, 表 弘志, 森山 芳則, 宮地 孝明

    脂質生化学研究   60   54 - 56   2018.5

     More details

    Language:Japanese   Publisher:日本脂質生化学会  

    神経・内分泌細胞は分泌小胞に充填したATPを開口放出し、プリン受容体を介して痛覚等の多彩な生理機能を制御する。我々は、ATPを分泌小胞に充填する小胞型ヌクレオチドトランスポーター(VNUT)を同定し、VNUTはプリン作動性化学伝達の必須因子であること、VNUTには塩素イオン(ON)とケトン体(OFF)によるアロステリックな代謝スイッチがあることを見出した。このスイッチを特異的にOFFできる化合物は画期的な鎮痛薬になると期待できる。骨粗鬆症治療薬の第一世代ビスホスホネート製剤は骨吸収抑制作用や副作用が弱く、鎮痛効果があることが報告されていたが、その作用機構は不明であった。我々は、このうちクロドロン酸が低濃度でVNUTを阻害することを見出した。興味深いことに、クロドロン酸はVNUTの代謝スイッチを選択的にOFFするアロステリック薬剤であった。神経因性と炎症性疼痛モデルマウスにクロドロン酸を投与したところ、鎮痛効果と抗炎症効果を発揮することを見出した。VNUT-/-マウスではクロドロン酸の効果が消失していた。以上より、クロドロン酸の鎮痛・抗炎症効果の分子標的はVNUTであり、クロドロン酸は副作用の少ない神経因性・炎症性疼痛の画期的治療薬になると期待できる。今後、ドラッグリポジショニングによる新規鎮痛薬のトランスポーター創薬が期待される。(著者抄録)

    researchmap

  • 骨粗鬆症症治療薬クロドロン酸は小胞型ヌクレオチドトランスポーターを標的として慢性疼痛を改善する

    加藤 百合, 日浅 未来, 市川 玲子, 蓮澤 奈央, 門脇 敦史, 岩槻 健, 島 和弘, 遠藤 康男, 北原 吉郎, 井上 剛, 野村 政壽, 表 弘志, 森山 芳則, 宮地 孝明

    生命科学系学会合同年次大会   2017年度   [2P - 1053(2AT26   2017.12

     More details

    Language:Japanese   Publisher:生命科学系学会合同年次大会運営事務局  

    researchmap

  • 骨粗鬆症治療薬クロドロン酸は小胞型ヌクレオチドトランスポーターを標的として慢性疼痛を改善する

    加藤 百合, 日浅 未来, 市川 玲子, 蓮澤 奈央, 門脇 敦史, 岩槻 健, 島 和弘, 遠藤 康男, 北原 吉郎, 井上 剛, 野村 政壽, 表 弘志, 森山 芳則, 宮地 孝明

    生命科学系学会合同年次大会   2017年度   [2AT26 - 03(2P   2017.12

     More details

    Language:Japanese   Publisher:生命科学系学会合同年次大会運営事務局  

    researchmap

  • 小胞型ヌクレオチドトランスポーター特異的阻害剤を用いたプリン作動性化学伝達のin vivo制御

    加藤 百合, 日浅 未来, 門脇 敦志, 島 和弘, 市川 玲子, 岩槻 健, 北原 吉朗, 井上 剛, 遠藤 康男, 表 弘志, 森山 芳則, 宮地 孝明

    日本生化学会大会プログラム・講演要旨集   89回   [1P - 308]   2016.9

     More details

    Language:Japanese   Publisher:(公社)日本生化学会  

    researchmap

  • 小胞型ヌクレオチドトランスポーター特異的阻害剤の同定とプリン作動性化学伝達のin vivo制御

    加藤 百合, 日浅 未来, 門脇 敦志, 島 和弘, 市川 玲子, 岩槻 健, 北原 吉朗, 井上 剛, 遠藤 康男, 表 弘志, 森山 芳則, 宮地 孝明

    日本薬学会年会要旨集   136年会 ( 3 )   77 - 77   2016.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

    researchmap

  • コメへの優先的リン分配を担うイネの新規リン酸輸送体

    山地直樹, 竹本侑馬, 宮地孝明, 三谷奈見季, 吉田薫, 馬建鋒

    トランスポーター研究会年会抄録集   11th   2016

  • 葉緑体ビタミンCトランスポーターの同定とその生理的役割

    宮地孝明, 黒森崇, 竹内優, 山地直樹, 横正健剛, 嶋澤厚, 杉本絵理子, 表弘志, 馬建鋒, 篠崎一雄, 森山芳則, 森山芳則

    トランスポーター研究会年会抄録集   10th   41   2015.6

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • 小胞型ヌクレオチドトランスポーター(VNUT)は血糖値の制御に関わる

    表 弘志, 坂本 昌平, 宮地 孝明, 日浅 未来, 市川 玲子, 岩槻 健, 畝山 寿之, 高柳 涼一, 野村 政壽, 森山 芳則

    日本薬学会年会要旨集   135年会 ( 3 )   62 - 62   2015.3

     More details

    Language:Japanese   Publisher:(公社)日本薬学会  

    researchmap

  • 葉緑体のアスコルビン酸トランスポーターの同定とその生理的役割

    宮地孝明, 黒森崇, 竹内優, 山地直樹, 横正健剛, 嶋澤厚, 杉本絵理子, 表弘志, 馬建鋒, 篠崎一雄, 森山芳則

    日本薬学会年会要旨集(CD-ROM)   135th   ROMBUNNO.26P-PM12   2015

     More details

    Language:Japanese  

    J-GLOBAL

    researchmap

  • Inhibitors of ATP release inhibit vesicular nucleotide transporter

    Yuri Kato, Hiroshi Omote, Takaaki Miyaji

    PURINERGIC SIGNALLING   10 ( 4 )   787 - 788   2014.12

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER  

    Web of Science

    researchmap

  • NPT homologue (SLC17A4) is an intestinal urate exporter

    Natsuko Togawa, Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama

    PURINERGIC SIGNALLING   10 ( 4 )   789 - 789   2014.12

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER  

    Web of Science

    researchmap

  • Vesicular nucleotide transporter (Vnut) regulates glucose metabolism.

    Shohei Sakamoto, Takaaki Miyaji, Miki Hiasa, Reiko Ichikawa, Akira Uematsu, Ken Iwatsuki, Atsushi Shibata, Hisayuki Uneyama, Ryoichi Takayanagi, Akitsugu Yamamoto, Hiroshi Omote, Masatoshi Nomura, Yoshinori Moriyama

    PURINERGIC SIGNALLING   10 ( 4 )   670 - 670   2014.12

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER  

    Web of Science

    researchmap

  • Divalent cation transport by vesicular nucleotide transporter

    Takaaki Miyaji, Keisuke Sawada, Hiroshi Omote, Yoshinori Moriyama

    PURINERGIC SIGNALLING   10 ( 4 )   788 - 788   2014.12

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:SPRINGER  

    Web of Science

    researchmap

  • 恒常性維持のためのホルモン分泌調節 小胞型ヌクレオチドトランスポーター(VNUT)による内分泌制御

    表 弘志, 坂本 昌平, 宮地 孝明, 日浅 未来, 市川 玲子, 岩槻 健, 畝山 寿之, 高柳 涼一, 野村 政壽, 森山 芳則

    日本内分泌学会雑誌   90 ( 1 )   207 - 207   2014.4

     More details

    Language:Japanese   Publisher:(一社)日本内分泌学会  

    researchmap

  • The characterization of drosophila vesicular excitatory amino acid transporter

    Takaaki Miyaji, Bram Laridon, Bart Dermaut, Haruka Ouchi, Patrick Callaerts, Yoshinori Moriyama, Koen Norga

    NEUROSCIENCE RESEARCH   68   E225 - E225   2010

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:ELSEVIER IRELAND LTD  

    DOI: 10.1016/j.neures.2010.07.994

    Web of Science

    researchmap

  • Identification and characterization of a vesicular nucleotide transporter

    Keisuke Sawada, Miki Hiasa, Noriko Echigo, Narinobu Juge, Takaaki Miyaji, Hiroshi Omote, Yoshinori Moriyama

    NEUROSCIENCE RESEARCH   65   S77 - S77   2009

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:ELSEVIER IRELAND LTD  

    DOI: 10.1016/j.neures.2009.09.280

    Web of Science

    researchmap

  • Identification and characterization of a vesicular nucleotide transporter

    Keisuke Sawada, Noriko Echigo, Narinobu Juge, Takaaki Miyaji, Miki Hiasa, Masato Otsuka, Hiroshi Omote, Yoshinori Moriyama

    YAKUGAKU ZASSHI-JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN   128   65 - 66   2008

     More details

    Language:English   Publishing type:Research paper, summary (international conference)   Publisher:PHARMACEUTICAL SOC JAPAN  

    Web of Science

    researchmap

▼display all

Presentations

  • プリン作動性化学伝達を制御する機能性脂質代謝物の同定 Invited

    宮地 孝明

    第8回JFAS(Japan/Joy of Fatty Acids Secrets/Society)  2022.3.19 

     More details

    Event date: 2022.3.19

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • トランスポーター創薬を指向した化学伝達の制御 Invited

    宮地 孝明

    Onco-Cardiology Seminar  2019.4.15 

     More details

    Event date: 2019.4.15

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • プリン作動性化学伝達を司る小胞型ヌクレオチドトランス ポーターの新たな脂質制御機構

    宮地孝明

    第96回日本生化学会大会  2023.10.31 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • プリン作動性化学伝達を制御する機能性脂質代謝物の同定と薬学的応用 Invited

    宮地 孝明

    島根大学 第264回 遺伝子機能解析部門セミナー(第388回 細胞工学研究会講演会)  2023.2.28 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • 神経障害性疼痛の予防や治療を目指したプリン作動性化学伝達を制御する機能性脂質代謝物の同定 Invited

    宮地 孝明

    Pain Live Symposium for Diabetes  2022.9 

     More details

    Presentation type:Oral presentation (invited, special)  

    researchmap

  • プリン作動性化学伝達を標的としたトランスポーター創薬研究 Invited

    宮地 孝明

    医療薬学フォーラム2018  2018.6 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • 脂質代謝物によるプリン作動性化学伝達の制御とその応用 International conference

    宮地 孝明

    ConBio2017  2017.12 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • VNUT特異的阻害剤の開発とその薬学的応用 Invited

    宮地 孝明

    アステラス病態代謝研究会  2017.10 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • プリン作動性化学伝達を標的としたトランスポーター創薬 Invited

    宮地 孝明

    日本薬学会関東支部大会  2017.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • ほ乳類の小胞型ポリアミントランスポーターの同定とその役割 Invited

    宮地 孝明

    第12回トランスポーター研究会  2017.7 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • プリン作動性化学伝達のミッシングリンク:小胞型ヌクレオチドトランスポーターが関わる生理現象とその創薬展開 International conference

    宮地 孝明

    第89回日本生化学会  2016.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • 小胞型ヌクレオチドトランスポーターの同定から創薬展開へ Invited

    宮地 孝明

    千里ライフサイエンスセミナー  2016.7 

     More details

    Language:Japanese   Presentation type:Public lecture, seminar, tutorial, course, or other speech  

    researchmap

  • クリーンバイオケミカル手法による植物ビタミンCトランスポーターの同定と機能解析 Invited

    宮地 孝明

    第11回トランスポーター研究会年会  2016.7 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • Clean biochemical approach identified ascorbate transporter in chloroplast Invited International conference

    宮地 孝明

    International Workshop on Plant Membrane Biology  2016.6 

     More details

    Language:English   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • 創薬を指向した真核生物トランスポーターの構造と機能に関する研究 Invited

    宮地 孝明

    日本薬学会  2016.3 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • Clean biochemical approach reveals physiological function of plant transporter Invited International conference

    宮地 孝明

    31th IPSR international symposium、7th Symposium on Plant Stress Science  2015.3 

     More details

    Language:English   Presentation type:Oral presentation (invited, special)  

    researchmap

  • 再構成手法によるストレス耐性物質トランスポーターの探索 Invited

    宮地 孝明

    日本植物学会第78回大会  2014.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • Clean biochemical approach reveals physiological and pathological function of vesicular neurotransmitter transporter International conference

    宮地 孝明

    第86回日本生化学会大会  2013.9 

     More details

    Language:English   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • 受託解析から見る質量分析研究 Invited

    宮地 孝明

    第38回日本医用マススペクトル学会年会  2013.9 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • プリン性化学伝達における小胞型ヌクレオチドトランスポーターの意義 Invited

    宮地 孝明

    第38回 岡山脳研究セミナー  2011.6 

     More details

    Language:Japanese   Presentation type:Oral presentation (invited, special)  

    researchmap

  • 小胞型神経伝達物質トランスポーターの機能解析 Invited

    宮地 孝明

    第5回 トランスポーター研究会  2010.7 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

  • 小胞型アスパラギン酸トランスポーターの発見 International conference

    宮地 孝明

    第129年会 日本薬学会  2009.3 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (public)  

    researchmap

  • 小胞型アスパラギン酸トランスポーターの発見 Invited

    宮地 孝明

    平成20年度 シナプス研究会(若手)  2008.12 

     More details

    Language:Japanese   Presentation type:Symposium, workshop panel (nominated)  

    researchmap

▼display all

Industrial property rights

▼display all

Awards

  • 若手トップリサーチャー研究奨励賞

    2019.2   岡山大学  

    宮地 孝明

     More details

  • 若手科学者賞

    2018.4   文部科学大臣表彰  

    宮地 孝明

     More details

  • 竹中奨励賞

    2016.10   アステラス病態代謝研究会  

    宮地 孝明

     More details

  • 奨励賞

    2016.3   日本薬学会  

    宮地 孝明

     More details

  • 優秀発表賞

    2015.6   トランスポーター研究会  

    宮地 孝明

     More details

  • 鈴木紘一メモリアル賞

    2012.12   日本生化学会大会  

    宮地 孝明

     More details

  • 若手ワークショップ優秀賞

    2009.1   特定領域研究「生体膜トランスポートソームの分子構築と生理機能」  

    宮地 孝明

     More details

▼display all

Research Projects

  • 小胞型神経伝達物質トランスポーターを切り口とした革新的創薬

    2023.04 - 2026.03

    科学技術振興機構(JST)  創発的研究支援事業 

    宮地 孝明

      More details

    Authorship:Principal investigator 

    researchmap

  • プリン作動性化学伝達を制御する機能性栄養代謝物による疾患予防

    2022.04 - 2025.03

    公益財団法人 ロッテ財団  奨励研究助成A 

      More details

    Authorship:Principal investigator 

    researchmap

  • 食事由来脂質が神経伝達物質の小胞内充填と放出を制御する分子基盤

    Grant number:22H03534  2022.04 - 2025.03

    日本学術振興会  科学研究費助成事業 基盤研究(B)  基盤研究(B)

    宮地 孝明

      More details

    Grant amount:\17550000 ( Direct expense: \13500000 、 Indirect expense:\4050000 )

    researchmap

  • Plasticity of mineral element transport system in response to soil environmental fluctuations in plants

    Grant number:21H05034  2021.07 - 2026.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (S)  Grant-in-Aid for Scientific Research (S)

    馬 建鋒, 山地 直樹, 宮地 孝明, 三谷 奈見季, 菅 倫寛

      More details

    Grant amount:\189280000 ( Direct expense: \145600000 、 Indirect expense:\43680000 )

    researchmap

  • トランスポーター創薬を飛躍的に加速するハイスループットスクリーニング技術の確立

    Grant number:21K19338  2021.07 - 2024.03

    日本学術振興会  科学研究費助成事業 挑戦的研究(萌芽)  挑戦的研究(萌芽)

    宮地 孝明

      More details

    Grant amount:\6500000 ( Direct expense: \5000000 、 Indirect expense:\1500000 )

    これまでトランスポーター(輸送体)の普遍的なハイスループットスクリーニング技術がなかったため、トランスポーターの過半数の機能は不明なままである。本研究では、幅広い輸送基質候補の中から任意のトランスポーターの輸送機能を同定し、さらにはその創薬候補化合物をハイスループットで探索できる夢のような基盤技術の開発に挑戦する。この技術を利用して、神経伝達の新しい概念を確立し、脳・創薬研究分野で革新的な分子プローブを提供する。
    初年度は、質量分析装置を用いたオルガネラレベルのプロテオーム解析により、候補トランスポーターを選抜した。輸送基質をスクリーニングするため、ヒスタグを連結した候補トランスポーターをバキュロウイルス・昆虫細胞発現系あるいは大腸菌発現系で大量発現させ、膜画分を界面活性剤で可溶化し、Ni-NTAアフィニティー精製した。CBB染色法とウエスタンブロット法を用いて、溶出画分で高純度かつ十分量の精製タンパク質が得られたことを確認した。これら精製タンパク質の輸送基質スクリーニングを多検体プレートで開始した。輸送基質候補と精製タンパク質との結合を評価することで、有望な輸送基質候補を選抜することができた。また、多検体で評価するには至っていないが、精製タンパク質の構造変化を検出する実験系を確立することができた。

    researchmap

  • 細胞外小胞の口腔トロピズムを基軸とする侵襲性歯周炎の病態解明と診断への応用展開

    Grant number:21H03119  2021.04 - 2025.03

    日本学術振興会  科学研究費助成事業 基盤研究(B)  基盤研究(B)

    山本 直史, 井手口 英隆, 宮地 孝明, 江口 傑徳, 江國 大輔, 高柴 正悟

      More details

    Grant amount:\16900000 ( Direct expense: \13000000 、 Indirect expense:\3900000 )

    侵襲性歯周炎(Aggressive periodontitis:AgP)は全身的には健康な若年者に発症し,急速に進行する特殊な歯周炎であるが、その発症病態は不明なままである。本研究では,臓器特異的な作用(臓器トロピズム)が近年注目されている血中の細胞外小胞(EV)とAgPの病態関与の可能性を調べた。
    今年度は、AgP患者6名と健常者3名の初診時血中EVから,AgPで高発現するmiRNAをRNAシーケンスにて調べ,マーカー候補となるそれらのmiRNA mimicをヒト歯肉線維芽細胞と歯周炎モデルマウスに遺伝子導入した。誘導された炎症性サイトカインの発現量をリアルタイムPCR法とELISA法にて測定し,歯槽骨吸収量をマイクロCTにて調べた。
    健常者と比較して,AgP患者で発現量が2倍以上増加したmiRNAを500種類以上同定した。それらのうち5種のmiRNAとmiR-181b-5pを歯肉線維芽細胞に導入すると,IL-6とIL-1βの産生が増加した。とりわけ,miR-181b-5p を歯肉組織に導入すると歯槽骨吸収が進行した。
    すなわち、AgP患者の血中EVには診断マーカー候補となるmiRNAが多く発現しており,miR-181b-5pはIL-6とIL-1β発現を伴う炎症を助長することによってAgPを重症化する可能性が示された。

    researchmap

  • 塩素イオンバランスの破綻によって発症する神経障害性疼痛の新規経路の同定とその分子メカニズムに基づく疼痛制御

    2021.04 - 2022.03

    公益財団法人 ソルト・サイエンス研究財団  一般公募研究助成 

      More details

    Authorship:Principal investigator 

    researchmap

  • コリン作動性化学伝達の新たな作動原理の解明

    2021 - 2023

    内藤記念科学振興財団  奨励金・研究助成 

    宮地 孝明

      More details

    Authorship:Principal investigator 

    researchmap

  • コリン作動性化学伝達の新たな作動原理の解明とその薬学的応用

    2021 - 2022

    武田科学振興財団  薬学奨励研究 

    宮地 孝明

      More details

    Authorship:Principal investigator 

    researchmap

  • 塩素イオンバランスによるプリン作動性化学伝達の制御機構の解明とその分子メカニズムに基づく疼痛制御

    2020.04 - 2021.03

    公益財団法人 ソルト・サイエンス研究財団  一般公募研究助成 

      More details

    Authorship:Principal investigator 

    researchmap

  • トランスポーター創薬を指向した化学伝達の制御

    2019

    公益財団法人 上原記念生命科学財団  研究奨励金 

    宮地 孝明

      More details

    Authorship:Principal investigator 

    researchmap

  • オーファン栄養代謝物の分子標的の同定とその作用メカニズムに基づく疾患予防

    Grant number:18H03179  2018.04 - 2021.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (B)  Grant-in-Aid for Scientific Research (B)

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\17420000 ( Direct expense: \13400000 、 Indirect expense:\4020000 )

    生活習慣病等の予防効果がある栄養代謝物は数多く報告されているが、未だその多くの分子メカニズムは解明されていない。独自のトランスポーター(輸送体)の研究基盤を用いて、これまでに栄養代謝物の分子標的を同定してきた。これにより、トランスポーターが栄養代謝物の分子標的として有望であることがわかってきた。そこで本研究課題では、分子標的が不明な栄養代謝物をオーファン栄養代謝物と定義し、トランスポーターからその新たな分子標的を同定することを目的とする。本研究成果により革新的な生活習慣病等の予防基盤の構築が期待できる。
    初年度は、独自のトランスポーターの評価系を用いて、オーファン栄養代謝物の分子標的を探索した。すなわち、Hisタグを連結した任意のトランスポーターを大量発現させ、膜画分を可溶化し、Ni-NTAアフィニティーカラムで精製する。精製タンパク質を人工膜小胞に凍結・融解希釈法により再構成して、それぞれの輸送活性を評価するというものである。この方法は全てのタイプのトランスポーターを単一の機能で定量的に評価することができる利点がある。これまでに探索した結果、いくつかのオーファン栄養代謝物の分子標的を同定することに成功した。この代謝物の細胞レベルでの機能を評価したところ、タンパク質レベルと同様の効果があり、その特異性も高いことを明らかにすることができた。

    researchmap

  • A novel strategy to control of chemical transmission for transporter-targeted drug discovery

    Grant number:17K19489  2017.06 - 2020.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Challenging Research (Exploratory)  Challenging Research (Exploratory)

    Miyaji Takaaki

      More details

    Grant amount:\6500000 ( Direct expense: \5000000 、 Indirect expense:\1500000 )

    Although neuropathic and inflammatory pain are unbearable chronic pain by various diseases, effective analgesics with few side effects have yet to be developed. In this study, we aimed to establish the control system of chemical transmission for transporter-targeted drug discovery. We identified several selective inhibitors of vesicular chemical transmitter transporter, which were more effective for chronic pain with few side effects than existing drugs. These compounds are expected to become new drug candidates for neuropathic and inflammatory pain.

    researchmap

  • プリン作動性化学伝達を制御する機能性脂質代謝物の同定とその分子メカニズムに基づく創薬基盤の構築

    2016.10 - 2020.03

    国立研究開発法人日本医療研究開発機構  革新的先端研究開発支援事業(PRIME) 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • Integrated analysis of mineral transport system in crops

    Grant number:16H06296  2016.04 - 2021.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Specially Promoted Research  Grant-in-Aid for Specially Promoted Research

    Ma Jian Feng

      More details

    Grant amount:\536250000 ( Direct expense: \412500000 、 Indirect expense:\123750000 )

    We have identified more than 30 transporter genes related to uptake, translocation and distribution of mineral elements including essential, beneficial and toxic elements mainly in rice and buckwheat. We further revealed the mechanisms for response of these transporters to environmental changes, regulation of transporters and their roles in plant growth and productivity by using different approaches. For the first time, we succeeded to crystalize the silicon transporter Lsi1 and revealed its crystal structure. We also constructed a mathematical model for mineral element transport at whole plant scales. These achievements have been published in many international top journals including Nature.

    researchmap

  • VNUT特異的阻害剤の開発とその薬学的応用

    2015 - 2016

    公益財団法人アステラス病態代謝研究会  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 植物アスコルビン酸トランスポーターの機能解析による環境ストレス耐性化機構の解明

    2015 - 2016

    公益財団法人加藤記念バイオサイエンス振興財団  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 小胞型ヌクレオチドトランスポーターの特異的阻害剤による血糖制御

    2015

    公益財団法人ソルトサイエンス研究財団  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • The molecular mechanism and physiological significance of vesicular ATP release in purinergic chemical transmission

    Grant number:26460067  2014.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Miyaji Takaaki

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\4940000 ( Direct expense: \3800000 、 Indirect expense:\1140000 )

    Vesicular nucleotide transporter (VNUT) is responsible for vesicular storage and release of ATP, and is essential for purinergic chemical transmission. The aim of this research project was to reveal the molecular mechanism of vesicular ATP release and its physiological significance in nervous and endocrine systems. We showed that VNUT knockout mice improve hyperglycemia, insulin resistance, inflammatory and neuropathic pain, and the accompanying inflammation. In addition, we found VNUT specific inhibitor among the existing drugs, and demonstrated that VNUT inhibitor have the therapeutic effects as well as VNUT knockout mice. In summary, VNUT plays an important roles in onset of neurological and endocrine diseases, and the VNUT inhibitor is a suitable target of drug discovery.

    researchmap

  • 環境ストレス耐性を付与するトランスポーターファミリーの網羅的解析

    Grant number:25119714  2013.04 - 2015.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)  Grant-in-Aid for Scientific Research on Innovative Areas (Research in a proposed research area)

    宮地 孝明

      More details

    Grant amount:\8970000 ( Direct expense: \6900000 、 Indirect expense:\2070000 )

    植物は環境ストレス耐性物質を産生し利用することで多くの環境ストレスに適応し生存している。アスコルビン酸(ビタミンC)は、植物においては光・酸化ストレスに耐性を付与する代謝産物であり、ミトコンドリアで合成され、葉緑体に運ばれ、光合成により生じた活性酸素の除去や、過剰な光エネルギーを熱放散する酵素の補酵素として働く。このためにはアスコルビン酸を葉緑体に輸送するトランスポーターが必要であるが、アスコルビン酸の輸送機構は長らく不明であった。
    我々はシロイヌナズナのアスコルビン酸トランスポーター候補タンパク質を大腸菌に大量発現させ、膜画分を界面活性剤にて可溶化し、アフィニティー精製した。これを人工膜小胞に再構成し、アスコルビン酸輸送活性を測定した。その結果、AtPHT4;4タンパク質が膜電位差、塩素イオン依存的に還元型アスコルビン酸を輸送することを見いだした。間接蛍光抗体法より、AtPHT4;4は柵状組織の葉緑体に多く発現し、葉緑体の包膜に局在していることを明らかにした。この遺伝子を欠損したシロイヌナズナを調べると、葉の中の還元型アスコルビン酸含量が低下すること、さらに、光合成により生じた過剰な光エネルギーを熱放散する過程(非光化学消光)が阻害されることを明らかにした。
    以上の結果より、AtPHT4;4が長年探し求められていた葉緑体のアスコルビン酸トランスポーターであると結論した。葉緑体のアスコルビン酸輸送を制御することによって、光ストレス下に適応できるストレス耐性能を備えた作物の作出が期待できる。

    researchmap

  • アスパラギン酸化学伝達の生理的意義の解明と創薬ターゲットの探索

    2013 - 2014

    公益財団法人武田科学振興財団  薬学系奨励継続研究 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 痛風発症因子である尿酸排出トランスポーターの同定と生理的意義

    2013 - 2014

    公益財団法人花王芸術・科学財団  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • ニコチン刺激によるプリン性化学伝達の生理作用の全貌解明

    2012 - 2014

    公益財団法人喫煙科学研究財団  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • 痛風発症因子であるSLC型尿酸排出トランスポーターファミリーの全貌解明

    2012 - 2013

    公益財団法人両備てい園記念財団  研究助成金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • サラ病の病態解明と治療法開発に関する研究

    2011 - 2012

    公益財団法人上原記念生命科学財団  研究奨励金 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • アスパラギン酸化学伝達の生理的意義の解明と創薬ターゲットの探索

    2011 - 2012

    公益財団法人武田科学振興財団  薬学系奨励研究 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • The physiological significance of aspartergic and purinergic neurotransmission.

    Grant number:22790067  2010 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Young Scientists (B)  Grant-in-Aid for Young Scientists (B)

    MIYAJI Takaaki

      More details

    Authorship:Principal investigator  Grant type:Competitive

    Grant amount:\4030000 ( Direct expense: \3100000 、 Indirect expense:\930000 )

    Neurotransmitter is stored in synaptic vesicles, is released upon depolarization-evoked stimulation, and binds to specific receptor, which in turn leads to neurotransmission. We identified vesicular excitatory amino acid transporter(VEAT) and vesicular nucleotide transporter(VNUT), which are responsible for vesicular storage of neurotransmitter. In this study, we investigated the physiological significance of aspartergic and purinergic neurotransmission using VEAT and VNUT as molecular probes. We found that(1) VEAT mutants causing Salla disease are devoid of aspartate transport activity,(2) VNUT transports divalent cation complexed with ATP, physiologically,(3) ketone bodies inhibit aspartate, glutamate and ATP release by competing with Cl-,(4) aspartergic neurotransmission is associated with oxidative stress.

    researchmap

  • アスパラギン酸化学伝達を司る出力装置の生理的意義について

    2009.04 - 2010.03

    日本学術振興会  若手研究(スタートアップ) 

    宮地 孝明

      More details

    Authorship:Principal investigator  Grant type:Competitive

    researchmap

  • アスパラギン酸化学伝達の出力装置の構造・機能と生理的意義

    Grant number:21890145  2009 - 2010

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up  Grant-in-Aid for Research Activity start-up

    宮地 孝明

      More details

    Grant amount:\2821000 ( Direct expense: \2170000 、 Indirect expense:\651000 )

    神経は伝達物質をシナプス小胞内に濃縮しシナプス間隙に開口放出することで、後シナプス側にシグナルを伝達する(化学伝達)。我々は、アスパラギン酸をシナプス小胞内に濃縮する分子装置を世界に先駆け同定し、これを小胞型興奮性アミノ酸トランスポーター(VEAT)と名付けた。本研究課題は、モデル生物としてショウジョウバエを用いて、VEATを通じたアスパラギン酸化学伝達の生理的意義を解明することを目的とする。これにより、アスパラギン酸化学伝達の創薬ターゲットを定義することが可能となる。これまでに(1) ショウジョウバエ遺伝子の中からヒトVEATとのホモロジー検索をし、その中からシナプスに発現している遺伝子を見い出した。(2) この遺伝子をクローニングし、昆虫細胞を用いた大量発現・精製系を構築した。(3) 精製タンパク質を人工膜小胞に再構成し、輸送活性測定系を構築した。その結果、ヒトVEATと同様にアスパラギン酸、グルタミン酸、シアル酸輸送活性があることを見い出した。(4) ヒトVEAT遺伝子の変異によって、サラ病と小児シアル酸蓄積症を引き起こすことが知られている。これら変異が輸送活性に与える影響はヒトとショウジョウバエで一致した。(5) ショウジョウバエVEATはシナプス小胞だけでなく、いくつかの分泌顆粒にも局在していた。(6) VEAT遺伝子ノックアウトショウジョウバエを作製した。以上のように研究は着実に進展しており、現在作製したショウジョウバエを解析中である。

    researchmap

▼display all

 

Class subject in charge

  • Transporters: Structure, function and regulation (2023academic year) special  - その他

  • Transporters: Structure, function and regulation (2023academic year) special  - その他

  • Seminar on the transporter technology (2023academic year) special  - その他

  • Advanced Seminars in Drug Discovery and Drug Development (Transporters: Structure, function and regulation) (2023academic year) special  - その他

  • Life science for drug discovery (2023academic year) Third semester  - 木5~6

  • Basic Mathematical and Data Sciences (2023academic year) Third semester  - 月5~6

  • Drug/biomembrane interactions I (2023academic year) special  - その他

  • Drug/biomembrane interactions II (2023academic year) special  - その他

  • Life Science and Molecular Cell Biology (2023academic year) special  - その他

  • Life Science 1 (2023academic year) special  - その他

  • Experimental Molecular Biology (2023academic year) Second semester  - その他5~9

  • Experimental Molecular Biology (2023academic year) Second semester  - その他5~9

  • Statistics for Bioscience 1 (2023academic year) Third semester  - 火3~4

  • Statistics for Bioscience 1 (2023academic year) Third semester  - 火3~4

  • Statistics for Bioscience A (2023academic year) Third semester  - 火3~4

  • Statistics for Bioscience A (2023academic year) Third semester  - 火3~4

  • Cell Biology 1 (2023academic year) Third semester  - 火5~6

  • Cell Biology 1 (2023academic year) Third semester  - 火5~6

  • Cell Biology A (2023academic year) Third semester  - 火5~6

  • Cell Biology A (2023academic year) Third semester  - 火5~6

  • Advanced Lectures: Molecular Membrane Biology (2023academic year) special  - その他

  • Practice in Fundamental Pharmaceutical Sciences III (2023academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2023academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2023academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2023academic year) Second semester  - その他5~9

  • Transporters: Structure, function and regulation (2022academic year) special  - その他

  • Seminar on the transporter technology (2022academic year) special  - その他

  • Life science for drug discovery (2022academic year) Third semester  - 木5~6

  • Basic Mathematical and Data Sciences (2022academic year) Third semester  - 月5~6

  • Drug/biomembrane interactions I (2022academic year) special  - その他

  • Drug/biomembrane interactions II (2022academic year) special  - その他

  • Life Science 1 (2022academic year) special  - その他

  • Statistics for Bioscience 1 (2022academic year) Third semester  - 火3~4

  • Statistics for Bioscience 1 (2022academic year) Third semester  - 火3~4

  • Cell Biology 1 (2022academic year) Third semester  - 火5~6

  • Cell Biology 1 (2022academic year) Third semester  - 火5~6

  • Cell Biology A (2022academic year) Third semester  - 火5~6

  • Cell Biology A (2022academic year) Third semester  - 火5~6

  • Practice in Fundamental Pharmaceutical Sciences III (2022academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2022academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2022academic year) Second semester  - その他5~9

  • Practice in Fundamental Pharmaceutical Sciences III (2022academic year) Second semester  - その他5~9

  • Transporters: Structure, function and regulation (2021academic year) special  - その他

  • Seminar on the transporter technology (2021academic year) special  - その他

  • Life science for drug discovery (2021academic year) Third semester  - 木5~6

  • Basic Mathematical and Data Sciences (2021academic year) Third semester  - 月5~6

  • Drug/biomembrane interactions I (2021academic year) special  - その他

  • Drug/biomembrane interactions II (2021academic year) special  - その他

  • Life Science 1 (2021academic year) Prophase  - その他

  • Cell Biology 1 (2021academic year) Third semester  - 火5,火6

  • Cell Biology 1 (2021academic year) Third semester  - 火5,火6

  • Cell Biology A (2021academic year) Third semester  - 火5,火6

  • Cell Biology A (2021academic year) Third semester  - 火5,火6

  • Practice in Fundamental Pharmaceutical Sciences III (2021academic year) Second semester  - その他6~9

  • Practice in Fundamental Pharmaceutical Sciences III (2021academic year) Second semester  - その他6~9

  • Practice in Fundamental Pharmaceutical Sciences III (2021academic year) Second semester  - その他6~9

  • Practice in Fundamental Pharmaceutical Sciences III (2021academic year) Second semester  - その他6~9

  • Transporters: Structure, function and regulation (2020academic year) special  - その他

  • Seminar on the transporter technology (2020academic year) special  - その他

  • Life science for drug discovery (2020academic year) Third semester  - 木5,木6

  • Basic Mathematical and Data Sciences (2020academic year) Third semester  - 月5,月6

  • Drug/biomembrane interactions I (2020academic year) special  - その他

  • Drug/biomembrane interactions II (2020academic year) special  - その他

  • Cell Biology 1 (2020academic year) Third semester  - 火5,火6

  • Cell Biology 1 (2020academic year) Third semester  - 火5,火6

  • Practice in Fundamental Pharmaceutical Sciences III (2020academic year) Second semester  - その他

  • Practice in Fundamental Pharmaceutical Sciences III (2020academic year) Second semester  - その他

▼display all