Updated on 2025/07/16

写真a

 
TORII Takeshi
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Professor
Position
Professor
External link

Degree

  • Ph.D. ( Johns Hopkins University )

  • Doctor (Science) ( Kyoto University )

Research Interests

  • 形式群

  • ボルディズム

  • Stable homotopy

  • 安定ホモトピー

  • Formal Group

  • Bordisum

Research Areas

  • Natural Science / Geometry

Research History

  • Okayama University

    2017

      More details

  • Okayama University

    2007 - 2017

      More details

  • Fukuoka University   Faculty of Science

    2001 - 2007

      More details

Professional Memberships

 

Papers

  • On duoidal ∞-categories Reviewed

    Takeshi Torii

    Journal of Homotopy and Related Structures   20 ( 1 )   125 - 162   2025.2

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media LLC  

    DOI: 10.1007/s40062-025-00364-x

    arXiv

    researchmap

    Other Link: https://link.springer.com/article/10.1007/s40062-025-00364-x/fulltext.html

  • Uniqueness of monoidal adjunctions Reviewed

    Takeshi Torii

    Homology, Homotopy and Applications   26 ( 2 )   259 - 272   2024.10

     More details

    Publisher:International Press of Boston  

    DOI: 10.4310/hha.2024.v26.n2.a13

    arXiv

    researchmap

  • Applications of Hochschild cohomology to the moduli of subalgebras of the full matrix ring Reviewed

    Kazunori Nakamoto, Takeshi Torii

    Journal of Pure and Applied Algebra   227 ( 11 )   107426 - 107426   2023.11

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.jpaa.2023.107426

    researchmap

  • A perfect pairing for monoidal adjunctions Reviewed

    Takeshi Torii

    Proceedings of the American Mathematical Society   2023.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:American Mathematical Society (AMS)  

    <p>We give another proof of the fact that there is a dual equivalence between the -category of monoidal -categories with left adjoint oplax monoidal functors and that with right adjoint lax monoidal functors by constructing a perfect pairing between them.</p>

    DOI: 10.1090/proc/16460

    arXiv

    researchmap

  • On graded $\mathbb{E}_{\infty}$-rings and projective schemes in spectral algebraic geometry Reviewed

    Mariko Ohara, Takeshi Torii

    Journal of Homotopy and Related Structures   17 ( 1 )   105 - 144   2022.1

     More details

    We introduce graded $\mathbb{E}_{\infty}$-rings and graded modules over them,
    and study their properties. We construct projective schemes associated to
    connective $\mathbb{N}$-graded $\mathbb{E}_{\infty}$-rings in spectral
    algebraic geometry. Under some finiteness conditions, we show that the
    $\infty$-category of almost perfect quasi-coherent sheaves over a spectral
    projective scheme $\mathrm{Proj}\,(A)$ associated to a connective
    $\mathbb{N}$-graded $\mathbb{E}_{\infty}$-ring $A$ can be described in terms of
    $\mathbb{Z}$-graded $A$-modules.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/1803.09389v4

▼display all

MISC

  • Hecke operators in Morava $E$-theories of different heights

    Takeshi Torii

    2022.10

     More details

    There is a natural action of a kind of Hecke algebra $\mathcal{H}_n$ on the
    $n$th Morava $E$-theory of spaces. We construct Hecke operators in an
    amalgamated cohomology theory of the $n$th and the $(n+1)$st Morava
    $E$-theories. These operations are natural extensions of the Hecke operators in
    the $(n+1)$st Morava $E$-theory, and they induce an action of the Hecke algebra
    $\mathcal{H}_{n+1}$ on the $n$th Morava $E$-theory of spaces. We study a
    relationship between the actions of the Hecke algebras $\mathcal{H}_n$ and
    $\mathcal{H}_{n+1}$ on the $n$th Morava $E$-theory, and show that the
    $\mathcal{H}_{n+1}$-module structure is obtained from the
    $\mathcal{H}_n$-module structure by the restriction along an algebra
    homomorphism from $\mathcal{H}_{n+1}$ to $\mathcal{H}_n$.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2210.06625v1

  • Duoidal $\infty$-categories of operadic modules

    Takeshi Torii

    2022.4

     More details

    In this paper we study duoidal structures on $\infty$-categories of operadic
    modules. Let $\mathcal{O}^{\otimes}$ be a small coherent $\infty$-operad and
    let $\mathcal{P}^{\otimes}$ be an $\infty$-operad. If a
    $\mathcal{P}\otimes\mathcal{O}$-monoidal $\infty$-category
    $\mathcal{C}^{\otimes}$ has a sufficient supply of colimits, then we show that
    the $\infty$-category ${\rm Mod}_A^{\mathcal{O } }(\mathcal{C})$ of
    $\mathcal{O}$-$A$-modules in $\mathcal{C}^{\otimes}$ has a structure of
    $(\mathcal{P},\mathcal{O})$-duoidal $\infty$-category for any
    $\mathcal{P}\otimes\mathcal{O}$-algebra object $A$.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2204.11152v1

  • On higher monoidal $\infty$-categories

    Takeshi Torii

    2021.10

     More details

    In this paper we introduce a notion of $\mathbf{O}$-monoidal
    $\infty$-categories for a finite sequence $\mathbf{O}^{\otimes}$ of
    $\infty$-operads, which is a generalization of the notion of higher monoidal
    categories in the setting of $\infty$-categories. We show that the
    $\infty$-category of coCartesian $\mathbf{O}$-monoidal $\infty$-categories and
    right adjoint lax $\mathbf{O}$-monoidal functors is equivalent to the opposite
    of the $\infty$-category of Cartesian $\mathbf{O}_{\rm rev}$-monoidal
    $\infty$-categories and left adjoint oplax $\mathbf{O}_{\rm rev}$-monoidal
    functors, where $\mathbf{O}^{\otimes}_{\rm rev}$ is a sequence obtained by
    reversing the order of $\mathbf{O}^{\otimes}$.

    arXiv

    researchmap

    Other Link: http://arxiv.org/pdf/2111.00158v1

  • The moduli of 4-dimensional subalgebras of the full matrix ring of degree 3

    K, Nakamoto, T. Torii

    Symposium on Ring Theory and Representation Theory   66 - 73   2024

     More details

  • Hochschild cohomology of Nm

    T. Itagaki, K. Nakamoto, T. Torii

    Proceedings of the 53rd Symposium on Ring Theory and Representation Theory   116 - 123   2022

     More details

▼display all

Research Projects

  • トランス・クロマティック・ホモトピー論の研究

    Grant number:23K03113  2023.04 - 2028.03

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    鳥居 猛

      More details

    Grant amount:\4680000 ( Direct expense: \3600000 、 Indirect expense:\1080000 )

    researchmap

  • Equivariant Schubert calculus for p-compact groups

    Grant number:23K03092  2023.04 - 2026.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    中川 征樹, 西本 哲, 鳥居 猛, 奥山 真吾

      More details

    Grant amount:\3510000 ( Direct expense: \2700000 、 Indirect expense:\810000 )

    researchmap

  • Moduli of representations and related topics (4)

    Grant number:20K03509  2020.04 - 2024.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    中本 和典, 鳥居 猛, 面田 康裕, 奥山 真吾

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    Quadratic monomial algebraであるN_m (m≧3)と名付けたKoszul algebraについて、板垣智洋氏(高崎経済大)と鳥居猛氏(岡山大)と共同で、そのHochschild cohomology ringの代数構造を決定し、無限生成代数であることを示した。その成果を「第53回環論および表現論シンポジウム」および日本数学会2022年度年会(埼玉大学)にて発表した。さらにGerstenhaber bracketを計算し、Gerstenhaber bracketと整合性のあるBatalin-Vilkovisky構造が入らないことを確認した。これらの結果について論文を執筆中である。
    面田康裕氏(明石高専)との共著“The classification of thick representations of simple Lie groups”がKodai Mathematical Journalに掲載受理された。連結複素単純Lie群の有限次元複素thick表現を分類した論文である。
    また、城野悠志氏(山梨大)との共著“Decision tree-based estimation of the overlap of two probability distributions"について、学術雑誌に投稿中である。その内容について、「非可換代数幾何学の大域的問題とその周辺」高知小研究集会で発表した。

    researchmap

  • 一般の安定ホモトピー論における余加群の研究

    Grant number:17K05253  2017.04 - 2024.03

    日本学術振興会  科学研究費助成事業 基盤研究(C)  基盤研究(C)

    鳥居 猛

      More details

    Grant amount:\4680000 ( Direct expense: \3600000 、 Indirect expense:\1080000 )

    一般の安定ホモトピー論におけるガロア群と導来淡中双対性および導来群スキームの表現のモジュライについて研究するために、デュオイダル圏およびデュオイダル圏におけるホップ亜代数とその余加群の無限大圏への一般化について研究を行った。
    2つのモノイダル構造をもち、一方のモノイダル構造が他方のモノイダル構造に関して、ラックスモノイダルになっている、あるいは同値であるが、一方のモノイダル構造が他方のモノイダル構造に関して、コラックスモノイダルになっているような圏をデュオイダル圏と呼ぶ。デュオイダル圏は双代数を定義できる最小の構造のみを備えた圏と考えることができる。今年度はデュオイダル圏の無限大圏への一般化について研究を行った。二つの無限大オペラッド上のモノイダル圏の構造をもち、一方のモノイダル構造が他方のモノイダル構造に関して、ラックスモノイダルになっている無限大圏を定式化した。また、無限大オペラッド上のモノイダル無限大バイカテゴリーに対して、ループ構成により、デュオイダル無限大圏が得られることを示した。また、デュオイダル無限大圏における双亜代数がホップ亜代数になるための条件をその余加群の無限大圏の性質により特徴づける研究を行った。
    また、研究集会「ホモトピー沖縄」、研究集会「空間の代数的・幾何的モデルとその周辺」、「非可換代数幾何学の大域的問題とその周辺」高知小研究集会、高知ホモトピー論談話会、福岡ホモトピー論セミナーなどに参加し、様々な研究者と研究課題について議論を行った。さらに、研究集会「ホモトピー沖縄」および高知ホモトピー論談話会ではデュオイダル無限大圏とホップ亜代数について講演を行った。

    researchmap

  • Research on the stable homotopy category using quasi-categories

    Grant number:25400092  2013.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C)  Grant-in-Aid for Scientific Research (C)

    Torii Takeshi

      More details

    Grant amount:\4940000 ( Direct expense: \3800000 、 Indirect expense:\1140000 )

    I have studied the stable homotopy category and its localizations by means of quasi-categories. Through spectral sequences, the stable homotopy category and its Bousfield localizations are considered to be related to the categories of representations for some groups and their derived categories. I gave a formulation of this relationship through the theories of model categories and quasi-categories. I have also constructed a functor between algebraic models of Bousfield localizations of the stable homotopy category via Morava K-theories. Furthermore, based on these, I have also studied more general moduli spaces of representations.

    researchmap

▼display all

 

Class subject in charge

  • Advanced Practice in Homotopy Theory 1 (2024academic year) Prophase  - その他

  • Advanced Practice in Homotopy Theory 2 (2024academic year) Late  - その他

  • Advanced Practice in Homotopy Theory 3 (2024academic year) Prophase  - その他

  • Advanced Practice in Homotopy Theory 4 (2024academic year) Late  - その他

  • Homotopy Theory (2024academic year) Prophase  - 火7~8

▼display all