Updated on 2025/12/24

写真a

 
IMANAKA Hiroyuki
 
Organization
Faculty of Environmental, Life, Natural Science and Technology Assistant Professor
Position
Assistant Professor
External link

Degree

  • 博士(工学) ( 京都大学 )

Research Interests

  • genetic engineering

  • immobilization

  • peptide

  • protein

  • hyperthemophile

  • 遺伝子工学

  • intermolecular interaction

  • 超好熱菌

  • 分子間相互作用

  • 固定化

  • ペプチド

  • タンパク質

  • protein engineering

  • タンパク質工学

Research Areas

  • Life Science / Applied biochemistry

  • Nanotechnology/Materials / Composite materials and interfaces

  • Life Science / Molecular biology

  • Life Science / Food sciences

  • Nanotechnology/Materials / Bio chemistry

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Biofunction and bioprocess engineering

  • Nanotechnology/Materials / Nanobioscience

▼display all

Education

  • Kyoto University   大学院工学研究科   合成・生物化学専攻

    - 2003.3

      More details

  • Kyoto University   大学院工学研究科   化学工学専攻

    - 1999.3

      More details

  • Kyoto University   工学部   工業化学科

    - 1997.3

      More details

Professional Memberships

▼display all

Committee Memberships

  • 日本生物工学会 若手会   会長  

    2017.9 - 2019.9   

      More details

    Committee type:Academic society

    researchmap

  • 日本農芸化学会   Frontiersシンポジウム実行委員長  

    2014.4 - 2015.3   

      More details

    Committee type:Academic society

    researchmap

  • 日本農芸化学会中四国支部   参与  

    2013.4   

      More details

    Committee type:Academic society

    researchmap

  • 日本生物工学会西日本支部   評議員  

    2013.4   

      More details

  • Young Asian Biological Engineers' Community (YABEC)   日本事務局メンバー  

    2011.6   

      More details

    Committee type:Academic society

    researchmap

  • 岡山地区化学工学懇話会   幹事  

    2011.4   

      More details

    Committee type:Academic society

    researchmap

  • 日本生物工学会西日本支部   幹事(会計)  

    2011.4 - 2013.4   

      More details

    Committee type:Academic society

    researchmap

  • 日本生物工学会   若手研究者の集いセミナー実行委員長  

    2009.8 - 2010.7   

      More details

    Committee type:Academic society

    researchmap

▼display all

 

Papers

▼display all

Books

  • バイオ実験を安全に行うために

    今中 洋行( Role: Contributor ,  5章 情報の保管と管理 pp.108-110)

    化学同人  2018 

     More details

  • 細胞・生体分子の固定化と機能発現

    今中 洋行( Role: Contributor ,  第6章 クッションタンパク質を用いたリガンド分子固定化法の開発と利用)

    シーエムシー出版  2018 

     More details

  • Encyclopedia of Industrial Biotechnology : Bioprocess, Bioseparation, and Cell Technology (ed. by M.C. Flickinger)

    Nakanishi Kazuhiro, Imanaka Hiroyuki, Tanaka Soukichi( Role: Contributor ,  Chapter: Membrane-Surface Liquid Culture, Fungi)

    Wiley  2009 

     More details

  • 第5版実験化学講座29 -バイオテクノロジーの基本技術-

    丸善  2006 

     More details

MISC

▼display all

Presentations

▼display all

Industrial property rights

▼display all

Awards

  • YABEC 2019 Best Poster Presentation Award

    2019.11   AFOB  

     More details

  • 農芸化学会中四国支部奨励賞

    2013  

     More details

    Country:Japan

    researchmap

  • ACB2011 Outstanding Young Scientist and Student Award

    2011.5   AFOB  

     More details

    Country:Japan

    researchmap

  • YABEC 2010 Best Poster Presentation Award

    2010   AFOB  

     More details

Research Projects

  • Development and Functionality Expansion of Highly Stable Multivalent Molecular Recognition Elements Based on Proteinaceous CutA1 Scaffold

    Grant number:23K04508  2023.04 - 2026.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    今中 洋行

      More details

    Grant amount:\4680000 ( Direct expense: \3600000 、 Indirect expense:\1080000 )

    リガンドバイオ分子の機能を精密に制御しうる足場タンパク質CutA1を用いた分子認識素子開発における分子設計多様性の拡張とその機能検証を進めた.令和5年度は,まずCutA1の多価化を図るべく,網羅的な分子間相互作用エネルギーの解析を通じ,リガンド分子挿入の可能性がある部位の候補を複数リストアップした.それぞれの候補サイトにリガンドペプチドを挿入した各種変異体を設計し,発現タンパク質の安定性を含む特性評価を行った.CutA1配列中の2か所にリガンドペプチドを同時挿入した場合では,挿入サイトの組合せ,挿入長さにより,可溶化率や熱安定性に顕著な差が生じることがわかった.そこで,複数箇所へのペプチドの同時挿入が可能であったサイトの組合せを基に,3か所へのリガンドペプチド同時挿入についても検討を加え,これを可能とするサイトの組合せを新規に見出した.その検証モデルとして,静電的相互作用の再現を試み,酸性ペプチド挿入CutA1と塩基性ペプチドとの部位特異的な相互作用の検出に成功した.アラニンスキャニングによる相互作用形成における重要な残基を同定するとともに,アナライトペプチドの長さが相互作用検出に及ぼす影響について調査し,CutA1変異体によって低分子から中分子にわたる多様なサイズの分子の捕捉が可能であることを明らかにした.また,同数の酸性アミノ酸を単一箇所に挿入あるいは複数箇所に分散して挿入し,相互作用の検出を試みた結果,複数箇所に同時挿入し,多点で相互作用を形成するモデルが効果的であることが実証でき,CutA1の多価化が分子間相互作用形成に有用であることを示した.

    researchmap

  • Development of fuctional molecular recognition elements utilizing a highly stable cushioning scaffold protein

    Grant number:19K05166  2019.04 - 2022.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    IMANAKA Hiroyuki

      More details

    Grant amount:\4420000 ( Direct expense: \3400000 、 Indirect expense:\1020000 )

    In order to establish a simple and rapid biosensing system for detection of biomolecular interactions on solid substrates, we attempted to expand the molecular design diversity of CutA1, a novel scaffold protein, and verified its function. An objective multivalent CutA1 was successfully developed by identifying a novel sequence insertion site. In addition, single-chained CutA1, for another type of multivalent molecular recognition element, was also constructed by the insertion of appropriate linker sequences between CutA1 subunits. As for the detection of biomolecular interactions, the detection sensitivity can be improved by controlling the arrangement and orientation of the ligand molecules and by introducing irregularities at the nanobio-interface.

    researchmap

  • Creation of functional cushion protein for a highly sensitive bimolecular interaction detection system by rational molecular design

    Grant number:15K06582  2015.04 - 2018.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    Imanaka Hiroyuki

      More details

    Grant amount:\4810000 ( Direct expense: \3700000 、 Indirect expense:\1110000 )

    The applications of combinations of surface affinity peptide-tag and cushioning scaffold protein, CutA1 from a hyperthermophilic archaeon, were examined in detail to construct functional ligand biomolecular immobilized surfaces. Through the evaluations of non-labelled biomolecular interaction detection after immobilizations of rationally designed various CutA1s by quartz crystal microbalance (QCM), the importance of precise control of ligand orientation with avoiding steric hindrance to construct highly sensitive interaction detection system was clarified. On the other hand, an original affinity peptide of gold nanoparticle (AuNP-tag) was screened and its applications for sensitive colorimetric interaction detection was demonstrated with CutA1 scaffold. In addition, possible VHH antibody insertion site was successfully found in CutA1 and thus expansion of molecular design tolerance of CutA1 was verified.

    researchmap

  • Application of energy conversion apparatus consisting of photosystem I complex fused with tailor-made peptide tag

    Grant number:15K14551  2015.04 - 2017.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Challenging Exploratory Research

    Takahashi Yuichiro, IMANAKA Hiroyuki

      More details

    Grant amount:\3900000 ( Direct expense: \3000000 、 Indirect expense:\900000 )

    We have developed a chloroplast battery cell which consists of photosynthetic proteins bound to an electrode and produces electricity under illumination. Peptide tags (Au-tags), which have an affinity to gold electrodes, have been screened by the bio-panning method using T7 bacteriophage. We genetically fused the resulting tags to one of the photosystem I (PSI) reaction center proteins and expressed it in the chloroplast of the green alga Chlamydomonas reinhardtii. The PSI complex containing an Ag-tag was purified and was bound to the electrode, resulting in the chloroplast battery cell. We measured electricity of the chloroplast battery cells with wild-type and Au-tag fused PSI complexes in the presence of artificial electron donors under illumination. It was found that only the chloroplast battery cell of Au-tagged PSI complex exhibited electricity. In conclusion, our strategy to use affinity peptide tag to bind PSI complex on the electrode is effective and useful.

    researchmap

  • Development of highly sensitive biomolecular interaction detection system utilizing affinity peptide conjugated cushion protein as the anchor domain

    Grant number:24560963  2012.04 - 2015.03

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    IMANAKA Hiroyuki

      More details

    Grant amount:\5460000 ( Direct expense: \4200000 、 Indirect expense:\1260000 )

    Biomolecular immobilization is one of the basic technologies for microanalysis, diagnosis and proteome analysis. We have tried to establish the highly sensitive biomolecular interaction detection system on solid substrate by utilizing techniques of precise control of biomolecular immobilization. As the results, high interaction detection sensitivity was achieved through the combination of selected cushion protein and solid surface affinity peptide for immobilization of target biomolecule.

    researchmap

  • Development of Site-Directed Immobilization Method to ConstructHigh-Efficient Bioreactors

    Grant number:22560771  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    NAKANISHI Kazuhiro, IMAMURA Koreyoshi, IMANAKA Hiroyuki

      More details

    Grant amount:\4550000 ( Direct expense: \3500000 、 Indirect expense:\1050000 )

    In this study, a method to immobilize enzymes/proteins on the solid surface without suffering from denaturation that might occur upon coming in contact with the solid surface was investigated. Conjugating peptide tags that show a high affinity to silica and polystyrene surfaces, toenzymes enabled a strong, nearly irreversible immobilization without appreciable loss of activity.

    researchmap

  • Development of efficient peptide drug discovery system by using highly specific tag-mediated protein immobilization technique

    Grant number:22760609  2010 - 2011

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    IMANAKA Hiroyuki

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    We have tried to develop an efficient peptide drug discovery system utilizing highly specific tag-mediated protein immobilization technique. Two cancer-related proteins, FOXP3 and NFkB(p50), were adopted as targets and site specific inhibitory peptides were screened from T7 phage random peptide library. The clear correlation between effective isolation of candidate peptides and pretreatment of phage library with solid substrate for protein immobilization was found. In addition, a number of functional inhibitory peptides with high binding affinity with target proteins were successfully obtained.

    researchmap

  • Development of molecular target peptide screening system by using a highly effective protein immobilization

    Grant number:20760540  2008 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (B)

    IMANAKA Hiroyuki

      More details

    Grant amount:\4160000 ( Direct expense: \3200000 、 Indirect expense:\960000 )

    We have examined a novel peptide drug screening system by which the affinity peptides that bind to functional domain of FoxP3 (target protein) could be effectively obtained by applying highly functional protein immobilization method developed in our group. As the results, functional immobilization of trimmed FoxP3 was verified at first. In addition, several affinity peptides that could significantly inhibit the binding of relevant oligo DNA to functional domain of FoxP3 were successfully isolated from T7 phage random peptide library.

    researchmap

  • 親水性ポリスチレン高親和性ペプチドを用いた革新的蛋白質相互作用解析システムの創製

    Grant number:19656221  2007 - 2008

    日本学術振興会  科学研究費助成事業  萌芽研究

    中西 一弘, 今村 維克, 今中 洋行

      More details

    Grant amount:\3300000 ( Direct expense: \3300000 )

    本年度は、親水性ポリスチレン親和性ペプチドを用いた、1)コアストレプトアビジン(Core-SA)-DNA相互作用解析と2)相互作用に関与する機能性ペプチド部位を連結したクッションタンパク質を用いた相互作用解析を計画したが、両課題共に、初期の予定を達成できた。1)の課題においては、4量体のCore-SAに連結する親和性ペプチド(PSペプチド)の個数を変えて、その固定化特性とオリゴDNAとの相互作用をELISA法で検出した。結果として、4つのPSペプチドを連結したCore-SAは共存する高濃度牛血清アルブミンとの競合に影響されることなく、最も強固に固定化できることを示した。さらに、ビオチン標識オリゴDNAを連結したペプチドタグ連結コアストレプトアビジンは、市販のSA-coated plateよりも高い検出感度を示すことがわかった。一方、2)の課題に関しては,システイン合成酵素を構成するO-acetylserine sulfhydryrase-A(OASS-A)とそのC末端で相互作用することが知られているserine acetyltransferase(SAT)との間の相互作用に着目した。SATのC末端20残基からなるオリゴペプチドを、そのN末端にPSペプチドを連結したクッションタンパク質(RNaseHII)のC末端に連結し、オリゴペプチドのC末端アミノ酸を変化させてOASS-Aとの相互作用をELISA法で検出した結果、C末端アミノ酸がイソロイシンの野生型ペプチドを提示させた場合にのみ、相互作用することがわかった。同様に、Strep-tagIIをクッションタンパク質に提示したが、そのN末端をクッションタンパク質に向けて結合した場合にのみstreo-tactinと強い相互作用を示した。これらの結果から、本研究で検討した、親水性PS特異的親和性ペプチを用いる相互作用解析方法は、極めて高い検出感度と特異性を有することが明らかにされた。

    researchmap

  • 固体材料表面への新規なタンパク質付着配向制御技術の開発

    Grant number:17760624  2005 - 2007

    日本学術振興会  科学研究費助成事業  若手研究(B)

    今中 洋行

      More details

    Grant amount:\3300000 ( Direct expense: \3300000 )

    固体表面との相互作用を緩和する「クッションタンパク質」として,物理的強度が高い単量体タンパク質である超好熱菌Thermococcus Kodakaraensis由来Ribonuclease HII(HII)を利用し,モデル表面としては親水性ポリスチレン(PS)およびステンレス(SUS316L)を用いて,バイオ分子の固定化特性の調査を行った.N末端に各種固体表面親和性ペプチドを連結したHIIのC末端にHis-tag(モデルペプチド) または緑色蛍光タンパク質(GFP)(モデルタンパク質)を連結した各種キメラタンパク質をそれぞれ発現,精製した.そして,まずこれらを親水性PSプレート上に固定化し,ELISAによって固定化率,検出感度を調べた.その結果,His-tagについては,表面高親和性タグ(PS-tag : RAFIASRRIKRP)+HIIに連結することで1000倍濃度のタンパク質(BSA)共存下においても優先的に表面に固定化できることがわかった.さらにHIIのC末端にフレキシブルリンカー(FL : GGGS)を挿入することにより,酵素標識抗His抗体を用いた検出の感度向上がみられた.また,GFPを固定化した場合,PS-tagだけではなくHIIも連結した方が,より強固な固定化が可能であった.一方,ステンレス表面へのペプチド(His-tag)の固定化についても検討を行ったところ,ステンレス高親和性タグ(SS-tag :ADGEGEWTSGRR)+FLに連結した場合に比べ,HIIをSS-tagとFLとの間に挿入することで,検出感度が劇的に向上した.すなわち,抗体に標識化された検出用酵素とステンレス表面との相互作用がHIIの挿入により高度に低減されたと考えられた.これらの結果から,固体表面親和性ペプチドおよびFLを連結したHIIを「クッションタンパク質」として固定化対象のバイオ分子に連結することで,各種表面上に対して,配向および構造を維持しつつ優先的かつ機能的に固定化しうることがわかった.

    researchmap

  • Molecular mechanism for adsorption and adsorption of soil components formed on the surface of equipment wall during manufacturing and development of an efficient cleaning method

    Grant number:16206076  2004 - 2007

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (A)

    NAKANISHI Kazuhiro, IMAMURA Koreyoshi, IMANAKA Hiroyuki

      More details

    Grant amount:\46800000 ( Direct expense: \36000000 、 Indirect expense:\10800000 )

    In various manufacturing processes, cleaning of the equipment and piping systems used for manufacturing of various products is requisite for maintaining sanitary conditions and/or functions of the equipments. In particular, in the food- and bio-products manufacturing processes, a large amount of energy and detergents are usually consumed in addition to time, since soils or residues of the products strongly interact with the equipment surface. In this study, we studied adsorption mechanisms of various proteins/peptides and low-molecular weight substances as a model soil component on the surfaces of various metal oxides, plastics, and glasses. We clarified the molecular mechanisms for reversible/irreversible adsorptions, states and orientation of the molecules adsorbed, the effects of the pI values of the metal oxide surfaces/solution pHs on the adsorption characteristics, and conformational change of the adsorbed proteins, on the basis of adsorption/desorption experiments, IR spectrum analyses, and molecular calculations. Furthermore, we investigated the effects of various factors such as the kinds of the co-existing salts and their concentrations on the removal rates of the metal oxide surface fouled with proteins, using H2O2-electrolysis cleaning method that was developed by the author's group. Furthermore, we developed a method to immobilize proteins with controlled orientation and structure for various uses in chip-based biotechnology, which was derived in the course of investigation on the adsorption mechanism of proteins.

    researchmap

▼display all

 

Class subject in charge

  • Basic Chemistry (2025academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2025academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2025academic year) Second semester  - 火3~4,金1~2

  • Chemical Engineering 4 (2025academic year) Fourth semester  - 金1~2

  • Chemical Reaction Engineering Ⅱ (2025academic year) Fourth semester  - 金1~2

  • Synthetic Chemistry Experiment 3 (2025academic year) Third semester  - 火5~8,金5~8

  • Introduction to Practical Informatics and Computational Chemistry (2025academic year) Late  - 木3~4

  • Applied Chemistry Experiment 2 (2025academic year) Third semester  - 火5~8,金5~8

  • Seminar in Advanced Chemistry (2025academic year) Other  - その他

  • Basic Mathematical and Data Sciences (2025academic year) Third semester  - 月3~4

  • Material Process Experiment 3 (2025academic year) Third semester  - 火5~8,金5~8

  • Materials and Reaction Process Engineering (2025academic year) Late  - 火1~2

  • Advanced Study (2025academic year) Other  - その他

  • Biochemiacl Engineering (2025academic year) Late  - その他

  • Biointerface Engineering (2025academic year) Late  - その他

  • Basic Chemistry (2024academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2024academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2024academic year) Second semester  - 火3~4,金1~2

  • Chemical Engineering 4 (2024academic year) Fourth semester  - 金1~2

  • Chemical Reaction Engineering Ⅱ (2024academic year) Fourth semester  - 金1~2

  • Synthetic Chemistry Experiment 3 (2024academic year) Third semester  - 火5~8,金5~8

  • Introduction to Practical Informatics and Computational Chemistry (2024academic year) Late  - 木3~4

  • Seminar on Applied Chemistry 1 (2024academic year) Prophase  - その他

  • Seminar on Applied Chemistry 2 (2024academic year) Late  - その他

  • Applied Chemistry Experiment 2 (2024academic year) Third semester  - 火5~8,金5~8

  • Research Works for Master Thesis on Applied Chemistry (2024academic year) Year-round  - その他

  • Seminar in Advanced Chemistry (2024academic year) Other  - その他

  • Basic Mathematical and Data Sciences (2024academic year) Third semester  - 月3~4

  • Material Process Experiment 3 (2024academic year) Third semester  - 火5~8,金5~8

  • Materials and Reaction Process Engineering (2024academic year) Late  - 火1~2

  • Advanced Study (2024academic year) Other  - その他

  • Biochemiacl Engineering (2024academic year) Late  - その他

  • Biointerface Engineering (2024academic year) Late  - その他

  • Basic Chemistry (2023academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2023academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2023academic year) Second semester  - 火3~4,金1~2

  • Chemical Engineering 4 (2023academic year) Fourth semester  - 金1~2

  • Chemical Reaction Engineering Ⅱ (2023academic year) Fourth semester  - 金1~2

  • Synthetic Chemistry Experiment 3 (2023academic year) Third semester  - 火5~8,金5~8

  • Internship in Applied Chemistry (2023academic year) Prophase  - その他

  • Introduction to Practical Informatics and Computational Chemistry (2023academic year) Late  - 木3~4

  • Seminar on Applied Chemistry 1 (2023academic year) Prophase  - その他

  • Seminar on Applied Chemistry 2 (2023academic year) Late  - その他

  • Applied Chemistry Experiment 2 (2023academic year) Third semester  - 火5~8,金5~8

  • Research Works for Master Thesis on Applied Chemistry (2023academic year) Year-round  - その他

  • Seminar in Advanced Chemistry (2023academic year) Other  - その他

  • Basic Mathematical and Data Sciences (2023academic year) Third semester  - 月3~4

  • Material Process Experiment 3 (2023academic year) Third semester  - 火5~8,金5~8

  • Materials and Reaction Process Engineering (2023academic year) Late  - 火1~2

  • Advanced Study (2023academic year) Other  - その他

  • Biochemiacl Engineering (2023academic year) Late  - その他

  • Biointerface Engineering (2023academic year) Late  - その他

  • Frontier Materials and Process Engineering (2022academic year) Prophase  - 金1,金2

  • Basic Chemistry (2022academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2022academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2022academic year) Second semester  - 火3~4,金1~2

  • Internship in Applied Chemistry (2022academic year) Prophase  - その他

  • Seminar on Applied Chemistry 1 (2022academic year) Prophase  - その他

  • Seminar on Applied Chemistry 2 (2022academic year) Late  - その他

  • Research Works for Master Thesis on Applied Chemistry (2022academic year) Year-round  - その他

  • Basic Mathematical and Data Sciences (2022academic year) Third semester  - 月3~4

  • Material Process Experiment 2 (2022academic year) 1st semester  - 月5~8,木5~8

  • Material Process Experiment 2 (2022academic year) 1st semester  - 月5~8,木5~8

  • Frontier Materials and Process Engineering (2021academic year) Prophase  - 金1,金2

  • Basic Chemistry (2021academic year) Second semester  - 火3,火4,金1,金2

  • Basic Chemistry (2021academic year) Second semester  - 火3~4,金1~2

  • Basic Chemistry (2021academic year) Second semester  - 火3,火4,金1,金2

  • Internship in Applied Chemistry (2021academic year) Prophase  - その他

  • Seminar on Applied Chemistry 1 (2021academic year) Prophase  - その他

  • Seminar on Applied Chemistry 2 (2021academic year) Late  - その他

  • Research Works for Master Thesis on Applied Chemistry (2021academic year) Year-round  - その他

  • Basic Mathematical and Data Sciences (2021academic year) Third semester  - 月3~4

  • Material Process Experiment 2 (2021academic year) 1st semester  - 月5,月6,月7,月8,木5,木6,木7,木8

  • Material Process Experiment 2 (2021academic year) 1st semester  - 月5,月6,月7,月8,木5,木6,木7,木8

  • Frontier Materials and Process Engineering (2020academic year) Prophase  - 金1,金2

  • Internship in Applied Chemistry (2020academic year) Prophase  - その他

  • Seminar on Applied Chemistry 1 (2020academic year) Prophase  - その他

  • Seminar on Applied Chemistry 2 (2020academic year) Late  - その他

  • Research Works for Master Thesis on Applied Chemistry (2020academic year) Year-round  - その他

  • Basic Mathematical and Data Sciences (2020academic year) Third semester  - 月1,月2

  • Material Process Experiment 2 (2020academic year) 1st semester  - 月4,月5,月6,月7,木4,木5,木6,木7

  • Material Process Experiment 2 (2020academic year) 1st semester  - 月4,月5,月6,月7,木4,木5,木6,木7

▼display all